
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

ANNOUNCEMENTS
• This Thursday (2/2): HW 1 due, HW 2 out

• Next Tuesday (2/7): Project proposal due

• Next Thursday (2/9): Colab 2 due, Colab 3 out

 Main question today: Given a network with
labels on some nodes, how do we assign
labels to all other nodes in the network?

▪ Example: In a network, some nodes are fraudsters,
and some other nodes are fully trusted. How do
you find the other fraudsters and trustworthy
nodes?

 Node embeddings (from random walks,
GNN) is a method to solve this problem

▪ Are there alternative solutions based on the
network topology?

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

? ?

?
?

?

 Given labels of some nodes
 Let’s predict labels of unlabeled nodes
 Transductive node classification (also called

semi-supervised node classification)
2/16/2023 4Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Main question today: Given a network with
labels on some nodes, how do we assign labels
to all other nodes in the network?

 Today we will discuss an alternative
framework: Label propagation

 Intuition: Correlations exist in networks.

▪ Connected nodes tend to share the same label

 We will look at three techniques today:

▪ Label propagation

▪ Correct & Smooth

▪ Masked label prediction
2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

 Behaviors of nodes are correlated across the
links of the network

 Correlation: Nearby nodes have the same
color (belonging to the same class)

2/16/2023 6Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Two explanations for why behaviors of nodes
in networks are correlated:

Homophily Influence

72/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Homophily: The tendency of
individuals to associate and bond
with similar others
▪ “Birds of a feather flock together”

▪ It has been observed in a vast array of
network studies, based on a variety of
attributes (e.g., age, gender,
organizational role, etc.)

▪ Example: Researchers who focus on
the same research area are more likely
to establish a connection (meeting at
conferences, interacting in academic
talks, etc.)

2/16/2023 8Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Homophily

Example of homophily
 Online social network

▪ Nodes = people

▪ Edges = friendship

▪ Node color = interests
(sports, arts, etc.)

 People with the same
interest are more closely
connected due to
homophily

2/16/2023 9Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

(Easley and Kleinberg, 2010)

 Influence: Social connections can
influence the individual
characteristics of a person.

▪ Example: I recommend my musical
preferences to my friends, until one of
them grows to like my same favorite
genres!

2/16/2023 10Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Influence

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 How do we leverage this correlation observed
in networks to help predict node labels?

How do we predict the labels for the nodes in grey?

122/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1

4

3

Label 1

Label 1

Label 0

Label 0

13

Formal setting:
Given:
• Graph
• Few labeled nodes

Find: Class (red/green) of
remaining nodes

Main assumption: There is
homophily in the network

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

?

?

?

Example task:

 Let 𝑨 be a 𝑛 × 𝑛 adjacency matrix over 𝑛 nodes

 Let Y = 0,1 𝑛 be a vector of labels:

▪ Y𝑣 = 1 belongs to Class 1

▪ Y𝑣 = 0 belongs to Class 0

▪ There are unlabeled node needs to be classified

 Goal: Predict which unlabeled nodes are likely
Class 1, and which are likely Class 0

142/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 How to predict the labels 𝒀𝒗 for the
unlabeled nodes 𝒗 (in grey color)?

 Each node 𝑣 has a feature vector 𝑓𝑣
 Labels for some nodes are given (1 for green,
0 for red)

 Task: Find 𝑃(𝑌𝑣) given all features and the
network

2/16/2023 15Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑃(𝑌𝑣) = ?

68

7

9

5

2

1
4

3

 We focus on semi-supervised binary node
classification

 We will introduce three approaches:

▪ Label propagation

▪ Correct & Smooth

▪ Masked label prediction

2/16/2023 16Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Idea: Propagate node labels across the network

▪ Class probability 𝑌𝑣 of node 𝑣 is a weighted average of
class probabilities of its neighbors.

 For labeled nodes 𝑣, initialize label 𝑌𝑣 with
ground-truth label 𝑌𝑣

∗.

 For unlabeled nodes, initialize 𝑌𝑣 = 0.5.

 Update all unlabeled nodes (in parallel or a
random order) until convergence or until
maximum number of iterations is reached.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

 The math: Update each unlabeled node 𝑣 label

▪ If edges have strength/weight information, 𝐴𝑣,𝑢 can
be the edge weight between 𝑣 and 𝑢.

▪ 𝑃 𝑌𝑣 = 𝑐 is the probability of node 𝑣 having label 𝑐.

▪ Repeated the update until convergence

2/16/2023 19Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Initialization:
 All labeled nodes with their labels
 All unlabeled nodes 0.5 (belonging to class 1 with

probability 0.5)

2/16/2023 20Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1

𝑃𝑌7 = 1

𝑃𝑌6 = 1

𝑃𝑌2 = 0

𝑃𝑌1 = 0
𝑃𝑌9 = 0.5

𝑃𝑌8 = 0.5

𝑃𝑌5 = 0.5
𝑃𝑌3 = 0.5

𝑃𝑌4 = 0.5

4

3

Notation: 𝑃𝑌1 = 𝑃(𝑌1 = 1)

 Update for the 1st Iteration:

▪ For node 3, 𝑁3 = {1, 2, 4}

2/16/2023 21Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑃(𝑌3) = 0 + 0 + 0.5 /3 = 0.17

68

7

9

5

2

1

𝑃(𝑌7) = 1

𝑃(𝑌6) = 1

𝑃(𝑌2) = 0

𝑃(𝑌1) = 0

𝑃(𝑌8) = 0.5

𝑃(𝑌5) = 0.5

𝑃(𝑌4) = 0.5

4

3

𝑃(𝑌9) = 0.5

 Update for the 1st Iteration:

▪ For node 4, 𝑁4 = {1, 3, 5, 6}

2/16/2023 22Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑃(𝑌4)
= 0+ 0.5 + 0.5 + 1 /4
= 0.5

68

7

9

5

2

1

𝑃(𝑌7) = 1

𝑃(𝑌6) = 1

𝑃(𝑌2) = 0

𝑃(𝑌9) = 0.5

𝑃(𝑌8) = 0.5

𝑃(𝑌5) = 0.5
𝑃(𝑌3) = 0.17

4

3

𝑃(𝑌1) = 0

Note that we update based on the

scores in the previous iteration

 Update for the 1st Iteration:

▪ For node 5, 𝑁5 = {4, 6, 7, 8}

2/16/2023 23Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1

𝑃(𝑌7) = 1

𝑃(𝑌6) = 1

𝑃(𝑌2) = 0

𝑃(𝑌9) = 0.5

𝑃(𝑌8) = 0.5

𝑃 𝑌5 = 1+ 0.5+ 1+ 0.5 /4 = 0.75

𝑃(𝑌3) = 0.17

4

3

𝑃(𝑌4) = 0.5
𝑃(𝑌1) = 0

Note that we update based on the

scores in the previous iteration

After Iteration 1 (a round of updates for all
unlabeled nodes)

2/16/2023 24Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1

𝑃(𝑌7) = 1

𝑃(𝑌6) = 1

𝑃(𝑌2) = 0

𝑃(𝑌9) = 1

𝑃(𝑌8) = 0.83

𝑃(𝑌5) = 0.75
𝑃(𝑌3) = 0.17

4

3

𝑃(𝑌1) = 0
𝑃(𝑌4) = 0.5

Note that we update based on the

scores in the previous iteration

After Iteration 2

2/16/2023 25Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1

𝑃(𝑌7) = 1

𝑃(𝑌6) = 1

𝑃(𝑌2) = 0

𝑃(𝑌9) = 1

𝑃(𝑌8) = 0.92

𝑃(𝑌5) = 0.83
𝑃(𝑌3) = 0.17

4

3

𝑃(𝑌1) = 0
𝑃(𝑌4) = 0.48

 Intuition: Stop iterating when all nodes have

reached a static value. Applying label

propagation does not change labels anymore.

 Convergence criteria:

𝑃 𝑡 𝑌𝑣 − 𝑃 𝑡−1 𝑌𝑣 ≤ 𝜖

for all nodes 𝑣.

Here 𝜖 is the convergence threshold.

2/16/2023 26Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

After Iteration 3

2/16/2023 27Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1

𝑃(𝑌7) = 1

𝑃(𝑌6) = 1

𝑃(𝑌2) = 0

𝑃 𝑌9 = 1

𝑃 𝑌8 = 0.94

𝑃 𝑌5 = 0.85
𝑃(𝑌3) = 0.16

4

3

𝑃(𝑌1) = 0
𝑃 𝑌4 = 0.5

After Iteration 4

2/16/2023 28Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1

𝑃(𝑌7) = 1

𝑃(𝑌6) = 1

𝑃(𝑌2) = 0

𝑃(𝑌9) = 1

𝑃 𝑌8 = 0.95

𝑃 𝑌5 = 0.86
𝑃(𝑌3) = 0.17

4

3

𝑃(𝑌1) = 0
𝑃 𝑌4 = 0.5

 All scores stabilize after 4 iterations. We therefore predict:

▪ Nodes 4, 5, 8, 9 belong to class 1 (𝑃𝑌𝑣 > 0.5)

▪ Nodes 3 belong to class 0 (𝑃𝑌𝑣 < 0.5)

2/16/2023 29Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1

𝑃(𝑌7) = 1

𝑃(𝑌6) = 1

𝑃(𝑌2) = 0

𝑃(𝑌9) = 1

𝑃 𝑌8 = 0.95

𝑃 𝑌5 = 0.86
𝑃(𝑌3) = 0.17

4

3

𝑃(𝑌1) = 0
𝑃 𝑌4 = 0.51

Converged

Converged
Converged

Converged

Converged

 Document classification

▪ Nodes: documents

▪ Edges: document similarity (e.g. word overlap)

 Twitter polarity classification

▪ Nodes: users, tweets, words, hashtags, emoji

▪ Edges [users -> users] Twitter follower graph;

Edges [users -> tweets] creation;

Edges [tweets -> words/hashtags/emoji] part of.

 Spam and fraud detection

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

 Label propagation

▪ Iteratively update probabilities of node belonging
to a label class based on its neighbors

 Issue

▪ Convergence may be very slow and not
guaranteed

▪ Label propagation does not use node attributes

▪ Can we improve the idea of label propagation to
leverage attribute/feature information?

2/16/2023 31Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Correct & Smooth (C&S), recent state-of-the-
art node classification method.

2/16/2023 33Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

[Huang et al., ICLR 2021]

OGB leaderboard snapshot at Jan 30, 2023

C&S tops the

OGB

leaderboard!

https://arxiv.org/abs/2010.13993
https://ogb.stanford.edu/docs/leader_nodeprop/

2/16/2023 34Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Label Propagation (LP) Graph Neural Networks

• Modeling assumption: connected
nodes have similar labels.

• Works because of homophily
a.k.a. associativity

• FAST: few sparse matrix-vector
products

• Why not use additional info or
features?

• Modeling assumption: labels only
depend on neighbor features.

• Works because these features are
sometimes very informative.

• SLOW: many parameters,
irregular computation

• Why not assume labels are
correlated?

[Adapted from “Label Propagation and Graph Neural Networks”]

https://www.cs.cornell.edu/~arb/slides/2021-03-12-northeastern.pdf

2/16/2023 35Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

▪ GNN uses labels to train the weights of a model

▪ Given a trained model, predictions for different node are

independent/uncorrelated.

▪ In contrast, LP directly uses the labels in predictions.

[Adapted from “Label Propagation and Graph Neural Networks”]

https://www.cs.cornell.edu/~arb/slides/2021-03-12-northeastern.pdf

2/16/2023 36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

1. Form local neighborhoods.

2. Combine features to get a representation ℎ𝑉 at node 𝑣.

3. Predict outcome given representation (learn params with train data).

If node features are overwhelmingly predictive, making
uncorrelated predictions for each node is OK.

[Adapted from “Label Propagation and Graph Neural Networks”]

Input

Predictions

https://www.cs.cornell.edu/~arb/slides/2021-03-12-northeastern.pdf

2/16/2023 37Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Uncorrelated GNN predictions can be catastrophic in
simple cases when features are only mildly predictive.

▪ Big problem! Features are no longer super predictive.
▪ LP (ignoring features) would work much better.

[Adapted from “Label Propagation and Graph Neural Networks”]

Input

Predictions

Labels Given a new label

GNN fails to make a

different prediction

https://www.cs.cornell.edu/~arb/slides/2021-03-12-northeastern.pdf

 Setting: A partially labeled graph and features
over nodes.

 C&S follows the three-step procedure:
1. Train base predictor

2. Use the base predictor to predict soft labels of all nodes.

3. Post-process the predictions using graph structure to
obtain the final predictions of all nodes.

2/16/2023 38Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1
4

3

Feature

[Huang et al., ICLR 2021]

https://arxiv.org/abs/2010.13993

 (1) Train a base predictor that predict soft
labels (class probabilities) over all nodes.

▪ Labeled nodes are used for train/validation data.

▪ Base predictor can be simple:

▪ Linear model/Multi-Layer-Perceptron(MLP) over node
features, or a full GNN

2/16/2023 39Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1
4

3

Base

model
0.05
0.95

Soft

labels

Green: Class 0

Red: Class 1

 (2) Given a trained base predictor, we apply it
to obtain soft labels for all the nodes.
▪ We expect these soft labels to be decently accurate.

▪ Can we use graph structure to post-process the
predictions to make them more accurate?

2/16/2023 40Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1
4

3

0.95
0.05

0.60
0.40

0.90
0.10

0.80
0.20

0.40
0.60

0.20
0.80

0.60
0.40

0.05
0.95

0.30
0.70

 (3) C&S uses the 2-step procedure to post-
process the soft predictions.

1. Correct step

2. Smooth step

2/16/2023 41Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1
4

3

0.95
0.05

0.60
0.40

0.90
0.10

0.80
0.20

0.40
0.60

0.20
0.80

0.05
0.95

0.30
0.70

0.60
0.40

 Correct step

▪ The degree of the errors of
the soft labels are biased.

▪ We need to correct for the
error bias.

 Smooth step

▪ The predicted soft labels may
not be smooth over the
graph.

▪ We need to smoothen the
soft labels.

2/16/2023 42Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Soft labels less erroneous

Soft labels more

erroneous

68

7

9

5

2

1
4

3

0.95
0.05

0.60
0.40

0.90
0.10

0.80
0.20

0.40
0.60

0.20
0.80

0.05
0.95

0.30
0.70

0.60
0.40

68

7

9

5

2

1
4

3

0.95
0.05

0.60
0.40

0.90
0.10

0.80
0.20

0.40
0.60

0.20
0.80

0.05
0.95

0.30
0.70

0.60
0.40

Non-smooth Non-smooth

 The key idea is that we expect errors in the base
prediction to be positively correlated along
edges in the graph.

▪ In other words, an error at node 𝑢 increases the
chance of a similar error at neighbors of 𝑢.

▪ Thus, we should “spread” such uncertainty over the
graph.

2/16/2023 43Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Correct step:

▪ Compute training errors of nodes.

▪ Training error: Ground-truth label minus soft label.
Defined as 0 for unlabeled nodes.

2/16/2023 44Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1
4

3

0.05
−0.05

=
1.0
0.0

−
0.95
0.05

0
0

0
0

0
0

0
0

0
0

0.40
−0.40

=
1.0
0.0

−
0.60
0.40

−0.30
0.30

=
0.0
1.0

−
0.30
0.70

−0.05
0.05

=
0.0
1.0

−
0.05
0.95

 Correct step (contd.):

▪ Diffuse training errors 𝑬(0) along the edges.

▪ Let 𝑨 be the adjacency matrix, ෩𝑨 be the diffusion
matrix (defined in the next slide).

▪ 𝑬(𝑡+1) ← 1 − 𝛼 ⋅ 𝑬 𝑡 + 𝛼 ⋅ ෩𝑨𝑬 𝑡 .

▪ Similar to PageRank.

2/16/2023 45Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1
4

3

0.05
−0.05

0
0

0
0

0
0

0
0

0
0

0.40
−0.40

−0.30
0.30

−0.05
0.05

Hyper-parameter

Diffuse training errors along the edges

Assumption: errors are similar for

nearby nodes

Initial

training

error

matrix

 Normalized diffusion matrix ෩𝑨 ≡ 𝑫−1/2𝑨𝑫−1/2

▪ Add self-loop to the adjacency matrix 𝑨, i.e., 𝐴𝑖𝑖 = 1.

▪ Let 𝑫 ≡ Diag(𝑑1 , … , 𝑑𝑁) be the degree matrix.

▪ See Zhu et al. ICML 2013 for details.

2/16/2023 46Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1
4

3

Error:
0.05
−0.05

0.35

0.29

0.25
Diffusion

weights

Error diffused from
node 7 to node 9:

0.35 ⋅
0.05
−0.05

https://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

 Normalized diffusion matrix ෩𝑨 ≡ 𝑫−1/2𝑨𝑫−1/2

 All the eigenvalues 𝜆’s are in the range of [-1,1].

▪ Eigenvector for 𝜆 = 1 is 𝑫1/2𝟏 (𝟏 is an all-one vector).

▪ Proof: ෩𝑨𝑫1/2𝟏 = 𝑫−1/2𝑨𝑫−1/2𝑫1/2𝟏 =

𝑫−1/2𝑨𝟏 = 𝑫−1/2𝑫𝟏 = 1 ⋅ 𝑫1/2𝟏.

▪𝑨𝟏 = 𝑫𝟏, since they both leads to node degree vector

▪ The power of ෩𝑨 (i.e., ෩𝑨𝐾) is well-behaved for any 𝑲.

▪ The eigenvalues of ෩𝑨𝐾 are always within [-1,1].

▪ The largest eigenvalue is always 1.

▪ Output of ෩𝑨𝒙 (e.g., in error diffusion) is normalized

2/16/2023 47Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 If and are connected, the weight is

 Intuition:

▪ Large if 𝑖 and 𝑗 are connected only with each other
(no other nodes are connected to 𝑖 and 𝑗).

▪ Small if 𝑖 and 𝑗 are connected also connected with
many other nodes.

2/16/2023 48Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑖
𝑗

𝑖
𝑗Large ෩𝑨𝑖𝑗

Small ෩𝑨𝑖𝑗

 Diffusion of training errors:

2/16/2023 49Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑬(𝑡+1) ← 1 − 𝛼 ⋅ 𝑬 𝑡 + 𝛼 ⋅ ෩𝑨𝑬 𝑡

𝑬(0) 𝑬(3), 𝛼 = 0.8

68

7

9

5

2

1
4

3

0.05
−0.05

0
0

0
0

0
0

0
0

0
0

0.40
−0.40

−0.30
0.30

−0.05
0.05

68

7

9

5

2

1
4

3

0.06
−0.06

0.02
−0.02

0.08
−0.08

0.07
−0.07

−0.06
0.06

0.02
−0.02

0.09
−0.09

−0.09
0.09

−0.06
0.06

Before diffusion After diffusion

Less erroneous part

More erroneous part

Assumption: Prediction errors are similar for

nearby nodes.

 Add the scaled diffused training errors into
the predicted soft labels

2/16/2023 50Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1
4

3

𝑠 ⋅
0.06
−0.06

𝑠 ⋅
0.02
−0.02

𝑠 ⋅
0.08
−0.08

𝑠 ⋅
0.07
−0.07 𝑠 ⋅

−0.06
0.06

𝑠 ⋅
0.02
−0.02

𝑠 ⋅
0.09
−0.09 𝑠 ⋅

−0.09
0.09

𝑠 ⋅
−0.06
0.06 Scale by 𝑠

(hyper-parameter)

68

7

9

5

2

1
4

3

0.95
0.05

0.60
0.40

0.90
0.10

0.80
0.20

0.40
0.60

0.20
0.80

0.05
0.95

0.30
0.70

0.60
0.40

Soft labels

Diffused training errors

Output after the correct step (𝑠 = 2)

68

7

9

5

2

1
4

3

1.08
−0.08

0.78
0.22

1.05
−0.05

0.85
0.15

0.56
0.44

0.25
0.75

−0.08
1.08

0.13
0.87

0.47
0.53

 Smoothen the corrected soft labels along the
edges.

▪ Assumption: Neighboring nodes tend to share the
same labels.

▪ Note: For training nodes, we use the ground-truth
hard labels instead of the soft labels.

2/16/2023 51Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1
4

3

1
0

1
0

1.05
−0.05

0.85
0.15

0.56
0.44

0.25
0.75

0
1

0
1

0.47
0.53

Input to the smooth step:

 Smooth step:

▪ Diffuse label 𝒁(0) along the graph structure.

▪ 𝑍(𝑡+1) ← 1 − 𝛼 ⋅ 𝑍 𝑡 + 𝛼 ⋅ ෩𝑨𝑍 𝑡 .

2/16/2023 52Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Hyper-parameter Diffuse labels along the edges

Corrected

label

matrix
68

7

9

5

2

1
4

3

1
0

1
0

1.05
−0.05

0.85
0.15

0.56
0.44

0.25
0.75

0
1

0
1

0.47
0.53

 Smooth step:

2/16/2023 53Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝒁(𝑡+1) ← 1 − 𝛼 ⋅ 𝒁 𝑡 + 𝛼 ⋅ ෩𝑨𝒁 𝑡

𝒁(0) 𝒁(3), 𝛼 = 0.8

68

7

9

5

2

1
4

3

𝟎. 𝟗𝟑
0.17

𝟎. 𝟕𝟐
0.10

𝟎. 𝟕𝟒
0.18

𝟎. 𝟕𝟔
0.27

0.27
𝟎. 𝟕𝟒

𝟎. 𝟓𝟔
𝟎. 𝟓𝟔

𝟎. 𝟕𝟑
0.28

0.17
𝟎. 𝟕𝟐

0.26
𝟎. 𝟕𝟒

Before smoothing After smoothing

68

7

9

5

2

1
4

3

1
0

1
0

1.05
−0.05

0.85
0.15

0.56
0.44

0.25
0.75

0
1

0
1

0.47
0.53

The final class prediction of C&S is the class with the maximum 𝒁(𝟑) score.

Note: The 𝒁(3) scores do not have direct probabilistic interpretation (e.g., not
sum to 1 for each node), but larger scores indicate the classes are more likely.

 Our toy example shows that C&S successfully
improves base model performance using
graph structure.

2/16/2023 54Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

14

3

𝟎.𝟗𝟓
0.05

𝟎.𝟔𝟎
0.40

𝟎.𝟗𝟎
0.10

𝟎.𝟖𝟎
0.20

0.40
𝟎.𝟔𝟎

0.20
𝟎.𝟖𝟎

𝟎.𝟔𝟎
0.40

0.05
𝟎.𝟗𝟓

0.30
𝟎.𝟕𝟎

Prediction of the base model After C&S

68

7

9

5

2

1
4

3

𝟎. 𝟗𝟑
0.17

𝟎. 𝟕𝟐
0.10

𝟎. 𝟕𝟒
0.18

𝟎. 𝟕𝟔
0.27

0.27
𝟎. 𝟕𝟒

𝟎. 𝟓𝟔
𝟎. 𝟓𝟔

𝟎. 𝟕𝟑
0.28

0.17
𝟎. 𝟕𝟐

0.26
𝟎. 𝟕𝟒

Misclassified!

Misclassified!Too

confident!

 C&S significantly improves the performance
of the base model (e.g., MLP).

 C&S outperforms Smooth-only (no correct
step) baseline.

2/16/2023 55Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Method Classification accuracy (%) on

ogbn-products dataset

MLP (base model) 63.41

MLP + smooth only 80.34

MLP + C&S 84.18

 Correct & Smooth (C&S) uses graph structure
to post-process the soft node labels predicted
by any base model.

 Correction step: Diffuse and correct for the
training errors of the base predictor.

 Smooth step: Smoothen the prediction of the
base predictor (a variant of label propagation).

 C&S can be combined with GNNs

▪ C&S achieves strong performance on semi-
supervised node classification.

2/16/2023 56Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 An alternative approach to explicitly include
node label information (works with GNN).

 Inspired from BERT objective in NLP.

▪ Pretraining strategy: masked word prediction

2/16/2023 58Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Idea: Treat labels as additional features

▪ Concatenate the node label matrix 𝑌 with the node
feature matrix 𝑋

 ML setting: Use partially observed labels ෠𝑌 to
predict the remaining unobserved labels

▪ Training: First corrupt ෠𝑌 into ෨𝑌 by randomly masking
a portion of node labels to zeros, then use [𝑋, ෨𝑌] to
predict the masked node labels.

▪ Inference: Employ all ෠𝑌 to predict the remaining
unlabeled nodes (in the validation/test set).

▪ Similar to link prediction! Also a self-supervised task
2/16/2023 59Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

[Shi et al., IJCAI 2021]

https://arxiv.org/abs/2010.13993
https://arxiv.org/abs/2009.03509
https://arxiv.org/abs/2010.13993

 We discussed 3 ideas that explicitly use labels
when making predictions on graphs

▪ Label propagation

▪ Directly propagate known labels to all the nodes

▪ Correct & Smooth

▪ First define a base predictor, then correct and
smooth the predictions with label propagation

▪ Masked label prediction

▪ Construct a self-supervised ML task, let graph ML
model to propagate label information

2/16/2023 60Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 We discussed 3 frameworks to approach
machine learning tasks on graphs

 Node embeddings
▪ Embed nodes into Euclidean space, and use

distance metric in embedding space to approximate
node similarity

 Graph Neural Networks
▪ Iterative neighborhood aggregation

 Label Propagation
▪ Inductive bias: homophily

▪ Explicitly incorporate label information when
making predictions

2/16/2023 61Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

