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ANNOUNCEMENTS
• This Thursday (2/2): HW 1 due, HW 2 out

• Next Tuesday (2/7): Project proposal due

• Next Thursday (2/9): Colab 2 due, Colab 3 out



 Main question today: Given a network with 
labels on some nodes, how do we assign 
labels to all other nodes in the network?

▪ Example: In a network, some nodes are fraudsters, 
and some other nodes are fully trusted. How do 
you find the other fraudsters and trustworthy 
nodes?

 Node embeddings (from random walks, 
GNN) is a method to solve this problem

▪ Are there alternative solutions based on the 
network topology?
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 Given labels of some nodes
 Let’s predict labels of unlabeled nodes
 Transductive node classification (also called 

semi-supervised node classification)
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 Main question today: Given a network with 
labels on some nodes, how do we assign labels 
to all other nodes in the network?

 Today we will discuss an alternative 
framework: Label propagation

 Intuition: Correlations exist in networks.

▪ Connected nodes tend to share the same label

 We will look at three techniques today:

▪ Label propagation

▪ Correct & Smooth

▪ Masked label prediction
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 Behaviors of nodes are correlated across the 
links of the network

 Correlation: Nearby nodes have the same 
color (belonging to the same class)
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 Two explanations for why behaviors of nodes 
in networks are correlated: 

Homophily Influence
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 Homophily: The tendency of 
individuals to associate and bond 
with similar others
▪ “Birds of a feather flock together”

▪ It has been observed in a vast array of 
network studies, based on a variety of 
attributes (e.g., age, gender, 
organizational role, etc.)

▪ Example: Researchers who focus on 
the same research area are more likely 
to establish a connection (meeting at 
conferences, interacting in academic 
talks, etc.)
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Example of homophily
 Online social network

▪ Nodes = people

▪ Edges = friendship

▪ Node color = interests 
(sports, arts, etc.)

 People with the same 
interest are more closely 
connected due to 
homophily
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(Easley and Kleinberg, 2010)



 Influence: Social connections can 
influence the individual 
characteristics of a person.

▪ Example: I recommend my musical 
preferences to my friends, until one of 
them grows to like my same favorite 
genres!
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 How do we leverage this correlation observed 
in networks to help predict node labels? 

How do we predict the labels for the nodes in grey?

122/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

68

7

9

5

2

1

4

3

Label 1

Label 1

Label 0

Label 0



13

Formal setting:
Given: 
• Graph
• Few labeled nodes

Find: Class (red/green) of 
remaining nodes

Main assumption: There is 
homophily in the network
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Example task:

 Let 𝑨 be a 𝑛 × 𝑛 adjacency matrix over 𝑛 nodes

 Let Y = 0,1 𝑛 be a vector of labels:

▪ Y𝑣 = 1 belongs to Class 1

▪ Y𝑣 = 0 belongs to Class 0

▪ There are unlabeled node needs to be classified

 Goal: Predict which unlabeled nodes are likely 
Class 1, and which are likely Class 0
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 How to predict the labels 𝒀𝒗 for the 
unlabeled nodes 𝒗 (in grey color)?

 Each node 𝑣 has a feature vector 𝑓𝑣
 Labels for some nodes are given (1 for green, 
0 for red)

 Task: Find 𝑃(𝑌𝑣) given all features and the 
network
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 We focus on semi-supervised binary node 
classification

 We will introduce three approaches:

▪ Label propagation

▪ Correct & Smooth

▪ Masked label prediction
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 Idea: Propagate node labels across the network

▪ Class probability 𝑌𝑣 of node 𝑣 is a weighted average of 
class probabilities of its neighbors.

 For labeled nodes 𝑣, initialize label 𝑌𝑣 with 
ground-truth label 𝑌𝑣

∗.

 For unlabeled nodes, initialize 𝑌𝑣 = 0.5.

 Update all unlabeled nodes (in parallel or a 
random order) until convergence or until 
maximum number of iterations is reached.
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 The math: Update each unlabeled node 𝑣 label

▪ If edges have strength/weight information, 𝐴𝑣,𝑢 can 
be the edge weight between 𝑣 and 𝑢.

▪ 𝑃 𝑌𝑣 = 𝑐 is the probability of node 𝑣 having label 𝑐.

▪ Repeated the update until convergence
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Initialization:
 All labeled nodes with their labels
 All unlabeled nodes 0.5 (belonging to class 1 with 

probability 0.5)
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 Update for the 1st Iteration:

▪ For node 3, 𝑁3 = {1, 2, 4}
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68

7

9

5

2

1

𝑃(𝑌7) = 1

𝑃(𝑌6) = 1

𝑃(𝑌2) = 0

𝑃(𝑌1) = 0

𝑃(𝑌8) = 0.5

𝑃(𝑌5) = 0.5

𝑃(𝑌4) = 0.5

4

3

𝑃(𝑌9) = 0.5



 Update for the 1st Iteration:

▪ For node 4, 𝑁4 = {1, 3, 5, 6}
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 Update for the 1st Iteration:

▪ For node 5, 𝑁5 = {4, 6, 7, 8}
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After Iteration 1 (a round of updates for all 
unlabeled nodes)
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After Iteration 2
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 Intuition: Stop iterating when all nodes have 

reached a static value. Applying label 

propagation does not change labels anymore.

 Convergence criteria:

𝑃 𝑡 𝑌𝑣 − 𝑃 𝑡−1 𝑌𝑣 ≤ 𝜖

for all nodes 𝑣.

Here 𝜖 is the convergence threshold.
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After Iteration 3
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After Iteration 4
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 All scores stabilize after 4 iterations. We therefore predict:

▪ Nodes 4, 5, 8, 9 belong to class 1 (𝑃𝑌𝑣 > 0.5)

▪ Nodes 3 belong to class 0 (𝑃𝑌𝑣 < 0.5)
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 Document classification

▪ Nodes: documents

▪ Edges: document similarity (e.g. word overlap)

 Twitter polarity classification

▪ Nodes: users, tweets, words, hashtags, emoji

▪ Edges [users -> users] Twitter follower graph; 

Edges [users -> tweets] creation;

Edges [tweets -> words/hashtags/emoji] part of. 

 Spam and fraud detection
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 Label propagation

▪ Iteratively update probabilities of node belonging 
to a label class based on its neighbors

 Issue

▪ Convergence may be very slow and not 
guaranteed

▪ Label propagation does not use node attributes

▪ Can we improve the idea of label propagation to 
leverage attribute/feature information?
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 Correct & Smooth (C&S), recent state-of-the-
art node classification method.
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[Huang et al., ICLR 2021]

OGB leaderboard snapshot at Jan 30, 2023

C&S tops the 

OGB 

leaderboard!

https://arxiv.org/abs/2010.13993
https://ogb.stanford.edu/docs/leader_nodeprop/
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Label Propagation (LP) Graph Neural Networks

• Modeling assumption: connected 
nodes have similar labels.

• Works because of homophily 
a.k.a. associativity

• FAST: few sparse matrix-vector 
products

• Why not use additional info or 
features?

• Modeling assumption: labels only 
depend on neighbor features.

• Works because these features are 
sometimes very informative.

• SLOW: many parameters, 
irregular computation

• Why not assume labels are 
correlated?

[Adapted from “Label Propagation and Graph Neural Networks”]

https://www.cs.cornell.edu/~arb/slides/2021-03-12-northeastern.pdf
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▪ GNN uses labels to train the weights of a model 

▪ Given a trained model, predictions for different node are 

independent/uncorrelated.

▪ In contrast, LP directly uses the labels in predictions.

[Adapted from “Label Propagation and Graph Neural Networks”]

https://www.cs.cornell.edu/~arb/slides/2021-03-12-northeastern.pdf
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1. Form local neighborhoods.

2. Combine features to get a representation ℎ𝑉 at node 𝑣.

3. Predict outcome given representation (learn params with train data).

If node features are overwhelmingly predictive, making 
uncorrelated predictions for each node is OK.

[Adapted from “Label Propagation and Graph Neural Networks”]

Input

Predictions

https://www.cs.cornell.edu/~arb/slides/2021-03-12-northeastern.pdf
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Uncorrelated GNN predictions can be catastrophic in 
simple cases when features are only mildly predictive.

▪ Big problem! Features are no longer super predictive.
▪ LP (ignoring features) would work much better.

[Adapted from “Label Propagation and Graph Neural Networks”]

Input

Predictions

Labels Given a new label

GNN fails to make a 

different prediction

https://www.cs.cornell.edu/~arb/slides/2021-03-12-northeastern.pdf


 Setting: A partially labeled graph and features 
over nodes.

 C&S follows the three-step procedure:
1. Train base predictor

2. Use the base predictor to predict soft labels of all nodes.

3. Post-process the predictions using graph structure to 
obtain the final predictions of all nodes.
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 (1) Train a base predictor that predict soft 
labels (class probabilities) over all nodes.

▪ Labeled nodes are used for train/validation data.

▪ Base predictor can be simple:

▪ Linear model/Multi-Layer-Perceptron(MLP) over node 
features, or a full GNN
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 (2) Given a trained base predictor, we apply it 
to obtain soft labels for all the nodes.
▪ We expect these soft labels to be decently accurate.

▪ Can we use graph structure to post-process the 
predictions to make them more accurate?
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 (3) C&S uses the 2-step procedure to post-
process the soft predictions.

1. Correct step

2. Smooth step
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 Correct step

▪ The degree of the errors of 
the soft labels are biased.

▪ We need to correct for the 
error bias.

 Smooth step

▪ The predicted soft labels may 
not be smooth over the 
graph.

▪ We need to smoothen the 
soft labels.
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 The key idea is that we expect errors in the base 
prediction to be positively correlated along 
edges in the graph. 

▪ In other words, an error at node 𝑢 increases the 
chance of a similar error at neighbors of 𝑢. 

▪ Thus, we should “spread” such uncertainty over the 
graph.
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 Correct step:

▪ Compute training errors of nodes.

▪ Training error: Ground-truth label minus soft label. 
Defined as 0 for unlabeled nodes.
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 Correct step (contd.):

▪ Diffuse training errors 𝑬(0) along the edges.

▪ Let 𝑨 be the adjacency matrix, ෩𝑨 be the diffusion 
matrix (defined in the next slide).

▪ 𝑬(𝑡+1) ← 1 − 𝛼 ⋅ 𝑬 𝑡 + 𝛼 ⋅ ෩𝑨𝑬 𝑡 . 

▪ Similar to PageRank.
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 Normalized diffusion matrix ෩𝑨 ≡ 𝑫−1/2𝑨𝑫−1/2

▪ Add self-loop to the adjacency matrix 𝑨, i.e., 𝐴𝑖𝑖 = 1.

▪ Let 𝑫 ≡ Diag(𝑑1 , … , 𝑑𝑁) be the degree matrix.

▪ See Zhu et al. ICML 2013 for details.
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 Normalized diffusion matrix ෩𝑨 ≡ 𝑫−1/2𝑨𝑫−1/2

 All the eigenvalues 𝜆’s are in the range of [-1,1].

▪ Eigenvector for 𝜆 = 1 is 𝑫1/2𝟏 (𝟏 is an all-one vector).

▪ Proof: ෩𝑨𝑫1/2𝟏 = 𝑫−1/2𝑨𝑫−1/2𝑫1/2𝟏 =

𝑫−1/2𝑨𝟏 = 𝑫−1/2𝑫𝟏 = 1 ⋅ 𝑫1/2𝟏.

▪𝑨𝟏 = 𝑫𝟏, since they both leads to node degree vector

▪ The power of ෩𝑨 (i.e., ෩𝑨𝐾 ) is well-behaved for any 𝑲.

▪ The eigenvalues of ෩𝑨𝐾 are always within [-1,1].

▪ The largest eigenvalue is always 1.

▪ Output of ෩𝑨𝒙 (e.g., in error diffusion) is normalized
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 If and are connected, the weight is 

 Intuition:

▪ Large if 𝑖 and 𝑗 are connected only with each other 
(no other nodes are connected to 𝑖 and 𝑗). 

▪ Small if 𝑖 and 𝑗 are connected also connected with 
many other nodes.
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𝑖
𝑗

𝑖
𝑗Large ෩𝑨𝑖𝑗

Small ෩𝑨𝑖𝑗



 Diffusion of training errors:
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𝑬(𝑡+1) ← 1 − 𝛼 ⋅ 𝑬 𝑡 + 𝛼 ⋅ ෩𝑨𝑬 𝑡

𝑬(0) 𝑬(3), 𝛼 = 0.8

68

7

9

5

2

1
4

3

0.05
−0.05

0
0

0
0

0
0

0
0

0
0

0.40
−0.40

−0.30
0.30

−0.05
0.05

68

7

9

5

2

1
4

3

0.06
−0.06

0.02
−0.02

0.08
−0.08

0.07
−0.07

−0.06
0.06

0.02
−0.02

0.09
−0.09

−0.09
0.09

−0.06
0.06

Before diffusion After diffusion

Less erroneous part

More erroneous part

Assumption: Prediction errors are similar for 

nearby nodes.



 Add the scaled diffused training errors into 
the predicted soft labels
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 Smoothen the corrected soft labels along the 
edges.

▪ Assumption: Neighboring nodes tend to share the 
same labels. 

▪ Note: For training nodes, we use the ground-truth 
hard labels instead of the soft labels.
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 Smooth step:

▪ Diffuse label 𝒁(0) along the graph structure.

▪ 𝑍(𝑡+1) ← 1 − 𝛼 ⋅ 𝑍 𝑡 + 𝛼 ⋅ ෩𝑨𝑍 𝑡 . 
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Hyper-parameter Diffuse labels along the edges
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 Smooth step:
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𝒁(𝑡+1) ← 1 − 𝛼 ⋅ 𝒁 𝑡 + 𝛼 ⋅ ෩𝑨𝒁 𝑡

𝒁(0) 𝒁(3), 𝛼 = 0.8
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The final class prediction of C&S is the class with the maximum 𝒁(𝟑) score. 

Note: The 𝒁(3) scores do not have direct probabilistic interpretation (e.g., not 
sum to 1 for each node), but larger scores indicate the classes are more likely.



 Our toy example shows that C&S successfully 
improves base model performance using 
graph structure.  
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 C&S significantly improves the performance 
of the base model (e.g., MLP).

 C&S outperforms Smooth-only (no correct 
step) baseline.
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Method Classification accuracy (%) on 

ogbn-products dataset

MLP (base model) 63.41

MLP + smooth only 80.34

MLP + C&S 84.18



 Correct & Smooth (C&S) uses graph structure 
to post-process the soft node labels predicted 
by any base model.

 Correction step: Diffuse and correct for the 
training errors of the base predictor.

 Smooth step: Smoothen the prediction of the 
base predictor (a variant of label propagation).

 C&S can be combined with GNNs

▪ C&S achieves strong performance on semi-
supervised node classification.
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 An alternative approach to explicitly include 
node label information (works with GNN).

 Inspired from BERT objective in NLP.

▪ Pretraining strategy: masked word prediction
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 Idea: Treat labels as additional features

▪ Concatenate the node label matrix 𝑌 with the node 
feature matrix 𝑋

 ML setting: Use partially observed labels ෠𝑌 to 
predict the remaining unobserved labels

▪ Training: First corrupt ෠𝑌 into ෨𝑌 by randomly masking 
a portion of node labels to zeros, then use [𝑋, ෨𝑌] to 
predict the masked node labels.

▪ Inference: Employ all ෠𝑌 to predict the remaining 
unlabeled nodes (in the validation/test set).

▪ Similar to link prediction! Also a self-supervised task
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[Shi et al., IJCAI 2021]

https://arxiv.org/abs/2010.13993
https://arxiv.org/abs/2009.03509
https://arxiv.org/abs/2010.13993


 We discussed 3 ideas that explicitly use labels 
when making predictions on graphs

▪ Label propagation

▪ Directly propagate known labels to all the nodes

▪ Correct & Smooth

▪ First define a base predictor, then correct and 
smooth the predictions with label propagation

▪ Masked label prediction

▪ Construct a self-supervised ML task, let graph ML 
model to propagate label information
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 We discussed 3 frameworks to approach 
machine learning tasks on graphs

 Node embeddings
▪ Embed nodes into Euclidean space, and use 

distance metric in embedding space to approximate 
node similarity

 Graph Neural Networks
▪ Iterative neighborhood aggregation

 Label Propagation
▪ Inductive bias: homophily

▪ Explicitly incorporate label information when 
making predictions
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