Stanford CS224W:
Label Propagation on Graphs
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Today’s Lecture: Outline

Main question today: Given a network with

labels on some nodes, how do we assign

labels to all other nodes in the network?
Example: In a network, some nodes are fraudsters,

and some other nodes are fully trusted. How do
you find the other fraudsters and trustworthy

nodes?
Node embeddings (from random walks,

GNN) is a method to solve this problem

Are there alternative solutions based on the
network topology?
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Setting: Node Classification

Given labels of some nodes

Let’s predict labels of unlabeled nodes
Transductive node classification (also called
semi-supervised node classification)
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Today’s Lecture: Outline

Main question today: Given a network with

labels on some nodes, how do we assign labels

to all other nodes in the network?

Today we will discuss an alternative

framework: Label propagation

Intuition: Correlations exist in networks.
Connected nodes tend to share the same label

We will look at three techniques today:

Label propagation
Correct & Smooth
Masked Iabel predlctlon
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Observation: Correlations in Networks

Behaviors of nodes are correlated across the

links of the network
Correlation: Nearby nodes have the same

color (belonging to the same class)
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Correlations Exist in Networks

Two explanations for why behaviors of nodes
in networks are correlated:

Homophily Influence

Individual Social
Characteristics Connections
Social Individual
Connections Characteristics
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Social Homophily

Homophily: The tendency of
individuals to associate and bond
with similar others

“Birds of a feather flock together”

It has been observed in a vast array of
network studies, based on a variety of ﬂ

Homophily

Individual
Characteristics

attributes (e.g., age, gender,
organizational role, etc.)

Example: Researchers who focus on
the same research area are more likely
to establish a connection (meeting at
conferences, interacting in academic
talks, etc.)
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Homophily: Example

Example of homophily
Online social network
Nodes = people
Edges = friendship . e
Node color = interests
(sports, arts, etc.)

People with the same
interest are more closely
connected due to

homophily (Easley and Kleinberg, 2010)
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Social Influence: Example

Influence: Social connections can
influence the individual

characteristics of a person. Influence
Example: | recommend my musical ol
preferences to my friends, until one of
them grows to like my same favorite ﬂ
genres!

Individual
Characteristics
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Stanford CS224W:
How do we leverage node
correlations in networks?




Classification with Network Data

How do we leverage this correlation observed
in networks to help predict node labels?

Label O

Label O

How do we predict the labels for the nodes in grey?
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Semi-supervised Learning (1)

2/1

6/2023

Formal setting:
Given:

* Graph

* Few labeled nodes

Find: Class (red/green) of
remaining nodes

Main assumption: There is
homophilyin the network

hs, http://cs224w.stanford.edu



Semi-supervised Learning (2)

Example task:

et A be an X n adjacency matrix over n nodes

etY = {0, 1}" be a vector of labels:

Y, = 1 belongs to Class 1
Y, = 0 belongs to Class O

There are node needs to be classified

Goal: Predict which nodes are likely
Class 1, and which are likely Class 0

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu



Problem Setting

How to predict the labels Y, for the
unlabeled nodes v (in grey color)?

Each node v has a feature vector f,

Labels for some nodes are given (1 for green,
0 for red)

Task: Find P(Y,,) given all features and the
network P(Y,)="?




Overview of What is Coming

We focus on semi-supervised binary node
classification

We will introduce three approaches:
Label propagation
Correct & Smooth
Masked label prediction
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Stanford CS224W:
Label Propagation




Label Propagation (1)

Idea: Propagate node labels across the network

Class probability Y;, of node v is a weighted average of
class probabilities of its neighbors.

For labeled nodes v, initialize label Y;, with
ground-truth label Y.

For unlabeled nodes, initialize Y;, = 0.5.

Update all unlabeled nodes (in parallel or a
random order) until convergence or until
maximum number of iterations is reached.
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Label Propagation (2)

The math: Update each unlabeled node v label

PE+D(Y, = ¢) = Z Ay PO(Y, = ©)

2/16/2023

Z(v U)EE vu WEE

If edges have strength/weight information, 4,, ,, can
be the edge weight between v and u.

P(Y, = c) is the probability of node v having label c.
Repeated the update until convergence
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Example: Initialization

Initialization:
All labeled nodes with their labels

All unlabeled nodes 0.5 (belonging to class 1 with
probability 0.5)

Notation: Py, = P(¥; = 1)
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Example: 15 Iteration, Update Node 3

Update for the 15 Iteration:

For node 3, N; = {1, 2,4}
P(Ys) =(0+0+0.5)/3 =0.17

P(Y,) =1

P(Ys) = 0.5
5
_ P(Y,) = 0.5
P(Ys) = 0.5 ) PCr) = 0
P(Yy) = 0.5 P(Ye) =1

P(Y,) =0
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Example: 15t Iteration, Update Node 4

Update for the 15 Iteration:
For node 4, N, = {1, 3,5, 6}

P(Y;) = 0.17
P(Y,) =1 P(Ye) = 0.5 (¥3)

P(Y,) = 0.5

P(Yy) = 0.5 P(Ye) =1

P(Yy) P(Y,) =0
Note that we update based onthe = (04 0.54+0.5+1)/4
scores in the previous iteration — 05
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Example: 15t Iteration, Update Node 5

Update for the 15 Iteration:
For node 5, N; = {4,6,7,8}

P(Y;) =(1+0.5+1+0.5)/4=0.75

P(Y,) =1
- / (3) P(vy) = 0.17
P(Y,

P(Yy) = 0.5 4) = 0.5
(¥5) P(Y,) = 0
P(Yy) = 0.5 P(¥s) =1
Note that we update based on the P(Y,)=0

scores in the previous iteration
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Example: After 15t Iteration

After Iteration 1 (a round of updates for all
unlabeled nodes)

P(Yy) = 0.17
P(¥;) =1 P(Ys) = 0.75 )

5
P(Yy) =1 4) = 0.5
” P(Y;)=0

P(Yg) = 0.83 P(Ys) =1

P(Y,)=0

Note that we update based on the
scores in the previous iteration
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Example: After 2"d Iteration

After Iteration 2

P(Y;) = 0.17
P(¥7) =1 P(Ys) = 0.83 )

P(Yg) = 0.92 P(Ys) =1
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Label Propagation: Convergence

Intuition: Stop iterating when all nodes have
reached a static value. Applying label
propagation does not change labels anymore.
Convergence criteria:
| PO(Y,) —PEI(Y)| <e
for all nodes v.
Here € is the convergence threshold.
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Example: After 379 Iteration

After Iteration 3

P(Y;) = 0.16
P7) =1 P(Ys) = 0.85 (53)

P(Yg) = 0.94 P(Ys) =1
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Example: After 4" Iteration

After Iteration 4

P(Y;) = 0.17
P7) =1 P(Ys) = 0.86 (53)

P(Yg) = 0.95 P(Ys) =1
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Example: Convergence

All scores stabilize after 4 iterations. We therefore predict:
Nodes 4, 5, 8, 9 belong to class 1 (Pyv > 0.5)

Nodes 3 belong to class 0 (Py < 0.5)

Converged

Converged P(Ys) = 0.17
P(Ys) = 0.86

5

Converged P(Y1) =0

6

P(Y,) =1

P(Yy) =1
Converged

P(Yg) = 0.95 P(Ys) =1
Converged P(Y,) =0
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Label Propagation Applications

Document classification
Nodes: documents

Edges: document similarity (e.g. word overlap)
Twitter polarity classification

Nodes: users, tweets, words, hashtags, emoji

Edges [users -> users] Twitter follower graph;
Edges [users -> tweets] creation;

Edges [tweets -> words/hashtags/emoji] part of.
Spam and fraud detection
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Label propagation

lteratively update probabilities of node belonging
to a label class based on its neighbors

Issue

2/16/2023

Convergence may be very slow and not
guaranteed

Label propagation does not use node attributes

Can we improve the idea of label propagation to
leverage attribute/feature information?
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Stanford CS224W:
Node Classification:

Correct & Smooth




Correct & Smooth

Correct & Smooth (C&S), recent state-of-the-
art node classification method.

Leaderboard for

The classification accuracy on the test and validation sets. The higher, the better.
Package: >=1.1.1

Ext. Test Validation

Rank Method data  Accuracy Accuracy Contact References  #Params Hardware Date

1 GLEM+EnGCN Yes 09014+ 09370+ . 139,633,805  TeslaV100  Oct27,
0.0012 0.0004 (32GB) 2022 C&.S tO pS the
2 EnGCN No 08798+ 09241+ . 653918 GeForce RTX  Oct 23, O G B

0.0004 0.0003 3090 (24GB) 2022

3 GLEM+GIANT+SAGN+SCR Yes 0.8737 + 0.9400 + , 139,792,525 Tesla V100 Oct 27, I ead e r bo ar d !
0.0006 0.0003 (32GB) 2022

4 GIANT-XRT+R-SAGN+SCR+C&S  Yes 0.8684 + 0.9365 . 1,154742  TITAN RTX (24GB  Sep 30,
0.0005 0.0003 GPU) 2022

OGB leaderboard snapshotat Jan 30, 2023
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Correct & Smooth: Motivations

Label Propagation (LP)
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Modeling assumption: connected
nodes have similar labels.

Works because of homophily
a.k.a. associativity

FAST: few sparse matrix-vector
products

Why not use additional info or
features?

Graph Neural Networks

-
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Modeling assumption: labels only
depend on neighbor features.
Works because these features are
sometimes very informative.
SLOW: many parameters,
irregular computation

Why not assume labels are
correlated?
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GNNs make uncorrelated predictions

hS = ReLU (max(xy, xC)W(1 &

= 5 e, b ) g
. *lFﬁLCP <<<<<
/ B <« : ................ . : ....... ‘
\"'...... .

® [ J ® o @
®e0 ® o : oo' : o o o o
~:¢ y e fau®, = N s
YY) ° %, X K ee® °* 'Y Y °® ®es °®

GNN uses labels to train the weights of a model

Given a trained model, predictions for different node are
independent/uncorrelated.
In contrast, LP directly uses the labels in predictions.
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GNNs make uncorrelated predictions

0/@ feature  -1.0@ B +1.0 () training '’ testing
Color is - -\
true label L2, @ s @
] ] ] ] l ]
= o @ O ! o 0
Input
D (o)
O (] O O O O O = (]
| } | | }
[Tlh [T h;s [T hy h [T1h

Predictions () ) O O ) O
1. Form local neighborhoods.

2. Combine features to get a representation hy at node v.
3. Predict outcome given representation (learn params with train data).

If node features are overwhelmingly predictive, making
uncorrelated predictions for each node is OK.
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GNNs make uncorrelated predictions

Uncorrelated GNN predictions can be catastrophic in
simple cases when features are only mildly predictive.

/@ feature -1.0@&_1 +1.0 Q training ’::; testing

4 T .
Labels ' 0y @ ey . Given a new label
\-J’ NS
U ]

] O O ]
@o) @)m @)m @)m @)= (@0
Input
@) (o) ()
O O O O O O O O O O
| | | | | |
[T hy [(Th, [Ths [Thy [T hs [(Thg
l ’l : : ’l l GNN fails t k
Predictions R o ails to make a
redict O - O O - different prediction

Big problem! Features are no longer super predictive.
LP (ignoring features) would work much better.
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Correct & Smooth

Setting: A partially labeled graph and features
over nodes.

Feature

C&S follows the three-step procedure:
Train base predictor

Use the base predictor to predict soft labels of all nodes.

Post-process the predictions using graph structure to
obtain the final predictions of all nodes.
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C&S: (1) Train Base Predictor

(1) Train a base predictor that predict soft
labels (class probabilities) over all nodes.

Labeled nodes are used for train/validation data.

Base predictor can be simple:

Linear model/Multi-Layer-Perceptron(MLP) over node
features, or a full GNN

Green: Class 0
Red: Class 1
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C&S: (2) Predict Over All Nodes

(2) Given a trained base predictor, we apply it
to obtain soft labels for all the nodes.
We expect these soft labels to be decently accurate.

Can we use graph structure to post-process the
predictions to make them more accurate?

(8:32) (8:?8) (0:60)

(0 (00 (070
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C&S: (3) Post-Process Predictions

(3) C&S uses the 2-step procedure to post-
process the soft predictions.

Correct step
Smooth step

Gy Qo) (0:30)
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Intuition of Correct & Smooth

Correct step

The degree of the errors of

Softlabels less erroneous

the soft labels are biased. 0 (0) (") - (040)
We need to correct for the O ’ IA -
I Softlabels more © [ — (0 95)

error bIaS. erroneous (0-40) (0-60) (0.30)
Smooth step | |

The predicted soft labels may NCEQ.;SsmOOthO% Non-smooth

not be smooth over the o) 0) (o) v (040)

©—@ (—9(55%)
We need to smoothen the 0w oo b

soft labels.

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 42



C&S Post-Processing: Correct Step

The key idea is that we expect errors in the base
prediction to be positively correlated along
edges in the graph.

In other words, an error at node u increases the
chance of a similar error at neighbors of u.

Thus, we should “spread” such uncertainty over the

graph.
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C&S Post-Processing: Correct Step (1)

Correct step:

Compute training errors of nodes.

Training error: Ground-truth label minus soft label.
Defined as O for unlabeled nodes.

()= (60)- (523 ()

0

005) = (10) = (09

(o) (%0)-(9-0%)  (-030)_(00)_0a0)

0.30 1.0 0.70
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C&S Post-Processing: Correct Step (2)

Correct step (contd.):
Diffuse training errors E(® along the edges.

Let A be the adjacency matrix, 4 be the diffusion

matrix (defined in the next slide).
Hyper-parameter

ECD (1 —[a) - E® + o |AEY)|
Diffuse training errors along the edges
Assumption: errors are similar for

Similar to PageRank.

( 0.05 ) 0 0 nearby nodes —0.05 0.05
() () ~0.30 0.30
Initial 0 0
training o 0 0
error E7V=[ 0 0
matrix 040 —0.40
0.05 —0.05

K: :/
0 0
45
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Diffusion Matrix A4

Normalized diffusion matrix A = D~1/24D~1/2
Add self-loop to the adjacency matrix 4, i.e., A;; = 1.
Let D = Diag(d,, ..., dy) be the degree matrix.

See Zhu et al. ICML 2013 for details.

0.05 )

Error: (_0.05

Diffusion
weights 0.35

node 7to node g:

0.35- (—()6(.)(;35)
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Theoretical Motivation for 4

Normalized diffusion matrix A = D~1/24D~1/2
All the eigenvalues A’s are in the range of [-1,1].

Eigenvector for A = 1is D/?1 (1 is an all-one vector).
Proof: AD/?21 = D~1/24Dp~1/2p1/21 =
D~'241 =D"'2Dp1 =1 DY/?1.

Al = D1, since they both leads to node degree vector

The power of 4 (i.e., AX ) is well-behaved for any K.
The eigenvalues of AX are always within [-1,1].
The largest eigenvalue is always 1.

Output of Ax (e.g., in error diffusion) is normalized
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More Intuitions for 4

If i and j are connected, the welghtA

J_J_

Intuition:

Large if i and j are connected only with each other
(no other nodes are connected to i and j).

Small if i and j are connected also connected with
many other nodes.

Small Zl]

Large 4;;

J

i‘/‘
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C&S Post-Processing: Correct Step (3)

Diffusion of training errors:

ECD « 1—a) - E®D + - AEW
Assumption: Prediction errors are similar for
nearby nodes.

Before diffusion After diffusion
E© E® a=0.8

Less erroneous part

Coo) () (7009

More erroneous part
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C&S Post-Processing: Correct Step (4)

Add the scaled diffused training errors into
the predicted soft labels

Soft labels

(8282) (8:(;8) (0-60)

0.60 0.40

:N ( (—16(-)(?8) (—16(.)(?5) | (0.47)
(0.40) (0.60) (0_30) ' . A

Diffused training errors

(0,06 (007 B .
- s (Coos) (Z0.07) s-(o(_)(')()66) (8:451461) (8;2) (g:ég)
S (—0.02 ¢ . (—0-06)
' 0.06 Scale by s

(hyper-parameter)

0.08
s (Coos) 5 (Copo) s-(700)
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C&S Post-Processing: Smooth Step

Smoothen the corrected soft labels along the
edges.

Assumption: Neighboring nodes tend to share the
same labels.

Note: For training nodes, we use the ground-truth
hard labels instead of the soft labels.

Input to the smooth step:

(é) (_1()(_)55) (0.47)
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C&S Post-Processing: Smooth Step (1)

Smooth step:

Diffuse label Z(°) along the graph structure.
7@ (1 —[a) - Z® + ¢ |AZD]

Hyper-parameter Diffuse labels along the edges

0 1
( 0 1 \
0.47 0.53
Corrected 025 075

label Z©® =11.05 -0.05
matrix 1 0

\0.56 0.44
0.85 0.15
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C&S Post-Processing: Correct Step (2)

Smooth step:
ZOD « 1—q) - ZW + o - AZW

Before smoothing After smoothing
yAS Z®3) a=0.8
1 1.05 0.93
B i N e B (027

(20

The final class prediction of C&S is the class with the maximum Z®) score.
Note: The Z(® scores do not have direct probabilistic interpretation (e.g., not
sum to 1 for each node), but larger scores indicate the classes are more likely.
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C&S: Toy Example Summary

Our toy example shows that C&S successfully
improves base model performance using
graph structure.

Prediction of the base model After C&S
0o Misclassified! 0.93 0.76 0.27
(0 80) ((()) gg) ((()) ?8) I(;)ggdentl(% Zg) (0' 72 (0.17) (0_27) (0. 74)
6 B
(6:02)
(0 40) (0 60) 0.30 '
0.60 0.40 (0_70)

Misclassified!
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C&S on a Real-World Dataset

C&S significantly improves the performance
of the base model (e.g., MLP).

C&S outperforms Smooth-only (no correct
step) baseline.

MLP (base model) 63.41
MLP + smooth only 80.34
MLP + C&S 84.18

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 55



Correct & Smooth: Summary

2/1

6/2023

Correct & Smooth (C&S) uses graph structure
to post-process the soft node labels predicted
by any base model.

Correction step: Diffuse and correct for the
training errors of the base predictor.

Smooth step: Smoothen the prediction of the
base predictor (a variant of label propagation).
C&S can be combined with GNNs

C&S achieves strong performance on semi-
supervised node classification.
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Stanford CS224W:
Masked Label Prediction




Masked Label Prediction

An alternative approach to explicitly include
node label information (works with GNN).
Inspired from BERT objective in NLP.

Pretraining strategy: masked word prediction

1 2 3 4
an American football game
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

t t t t t t t t t t t %

Transformer Encoder

t ottt t ottt ottt %

Super | | Bowl 50 was [MASK]| |[MASK]| |[MASK]| |[MASK] to | |determine|| the | |champion
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Masked Label Prediction

Idea: Treat labels as additional features

Concatenate the node label matrix Y with the node
feature matrix X

ML setting: Use partially observed labels Y to
predict the remaining unobserved labels

Training: First corrupt Y into ¥ by randomly masking

a portion of node labels to zeros, then use [X, Y] to
predict the masked node labels.

Inference: Employ all Y to predict the remaining
unlabeled nodes (in the validation/test set).

Similar to link prediction! Also a self-supervised task
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https://arxiv.org/abs/2010.13993
https://arxiv.org/abs/2009.03509
https://arxiv.org/abs/2010.13993

Summary of the Lecture

We discussed 3 ideas that explicitly use labels
when making predictions on graphs
Label propagation
Directly propagate known labels to all the nodes

Correct & Smooth

First define a base predictor, then correct and
smooth the predictions with label propagation

Masked label prediction

Construct a self-supervised ML task, let graph ML
model to propagate label information
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Summary of ML with Graphs

We discussed 3 frameworks to approach
machine learning tasks on graphs
Node embeddings

Embed nodes into Euclidean space, and use

distance metric in embedding space to approximate
node similarity

Graph Neural Networks

lterative neighborhood aggregation
Label Propagation

Inductive bias: homophily

Explicitly incorporate label information when
making predictions
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