
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu

http://cs224w.stanford.edu/

¡ Colab 1 due today
§ Gradescope submissions close at 11:59 PM

¡ Homework 1 due this Thursday

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ So far we only handle graphs with one edge
type

¡ How to handle graphs with multiple nodes or
edge types (a.k.a heterogeneous graphs)?

¡ Goal: Learning with heterogeneous graphs
§ Relational GCNs
§ Heterogeneous Graph Transformer
§ Design space for heterogeneous GNNs

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

2 types of nodes:
¡ Node type A: Paper nodes
¡ Node type B: Author nodes

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

2 types of edges:
¡ Edge type A: Cite
¡ Edge type B: Like

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

A graph could have multiple types of nodes and
edges! 2 types of nodes + 2 types of edges.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

Relation types: (node_start, edge, node_end)
¡ We use relation type to describe an edge (as

opposed to edge type)
¡ Relation type better captures the interaction

between nodes and edges

(Paper, Cite, Paper)

(Paper, Like, Paper)

(Paper, Cite, Author)

(Paper, Like, Author)

(Author, Cite, Author)

(Author, Like, Author)

(Author, Cite, Paper)

(Author, Like, Paper)

8 possible relation types!

¡ A heterogeneous graph is defined as
𝑮 = 𝑽, 𝑬, 𝜏, 𝜙

§ Nodes with node types 𝑣 ∈ 𝑉
§ Node type for node 𝑣: 𝜏 𝑣

§ Edges with edge types (𝑢, 𝑣) ∈ 𝐸
§ Edge type for edge (𝑢, 𝑣): 𝜙 𝑢, 𝑣
§ Relation type for edge 𝑒 is a tuple: 𝑟 𝑢, 𝑣 =
(𝜏 𝑢 , 𝜙 𝑢, 𝑣 , 𝜏(𝑣))

¡ There are other definitions for heterogeneous graphs
as well – describe graphs with node & edge types

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

An edge can be
described as a
pair of nodes

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Event GraphsBiomedical Knowledge Graphs
Example node: SFO
Example relation: (UA689, Origin,
LAX)
Example node type: Flight
Example edge type: Destination

Example node: Migraine
Example relation: (fulvestrant,
Treats, Breast Neoplasms)
Example node type: Protein
Example edge type: Causes

¡ Example: E-Commerce Graph
§ Node types: User, Item, Query, Location, ...
§ Edge types: Purchase, Visit, Guide, Search, …
§ Different node type's features spaces can be different!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

¡ Example: Academic Graph
§ Node types: Author, Paper, Venue, Field, ...
§ Edge types: Publish, Cite, …
§ Benchmark dataset: Microsoft Academic Graph

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

¡ Observation: We can also treat types of
nodes and edges as features
§ Example: Add a one-hot indicator for nodes and

edges
§ Append feature [1, 0] to each “author node”; Append

feature [0, 1] to each “paper node”
§ Similarly, we can assign edge features to edges with

different types

§ Then, a heterogeneous graph reduces to a
standard graph

¡ When do we need a heterogeneous graph?
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

¡ When do we need a heterogeneous graph?
§ Case 1: Different node/edge types have different

shapes of features
§ An “author node” has 4-dim feature, a “paper node” has

5-dim feature

§ Case 2: We know different relation types
represent different types of interactions
§ (English, translate, French) and (English, translate,

Chinese) require different models

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

¡ Ultimately, heterogeneous graph is a more
expressive graph representation
§ Captures different types of interactions between

entities
¡ But it also comes with costs
§ More expensive (computation, storage)
§ More complex implementation

¡ There are many ways to convert a
heterogeneous graph to a standard graph
(that is, a homogeneous graph)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ (1) Graph Convolutional Networks (GCN)

¡ How to write this as Message + Aggregation?

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

𝐡!
(#) = 𝜎 𝐖 # %

%∈' !

𝐡%
#()

𝑁 𝑣 	

𝐡!
(#) = 𝜎 %

%∈' !

𝐖 # 𝐡%
#()

𝑁 𝑣 	

Aggregation

Message

Kipf and Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message

https://arxiv.org/pdf/1609.02907.pdf

¡ We will extend GCN to handle heterogeneous
graphs with multiple edge/relation types

¡ We start with a directed graph with one relation
§ How do we run GCN and update the representation of

the target node A on this graph?

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

A
C

B

E
F

D

Target Node

Input Graph

¡ We will extend GCN to handle heterogeneous
graphs with multiple edge/relation types

¡ We start with a directed graph with one relation
§ How do we run GCN and update the representation of

the target node A on this graph?

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

A
C

B

E
F

D

Target Node

Input Graph

A

D

C

B

E

F

COnly pass messages
along direction of edges

¡ What if the graph has multiple relation types?

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

A

Target node

Input graph

𝑟)

𝑟)

𝑟* 𝑟*

𝑟+

𝑟+

𝑟)

C

B

E
F

D

¡ What if the graph has multiple relation types?
¡ Use different neural network weights for

different relation types.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

Weights 𝐖!! for 𝑟"

Weights 𝐖!" for 𝑟#

Weights 𝐖!# for 𝑟$

A

Target node

Input graph

𝑟)

𝑟)

𝑟* 𝑟*

𝑟+

𝑟+

𝑟)

C

B

E
F

D

¡ What if the graph has multiple relation types?
¡ Use different neural network weights for

different relation types!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

A

D

C

B

E

F

C

Neural networks

Aggregation

A

Target node

Input graph

𝑟)

𝑟)

𝑟* 𝑟*

𝑟+

𝑟+

𝑟)

C

B

E
F

D

¡ Introduce a set of neural networks for each
relation type!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

…
Weight for rel_1

Weight for rel_N

…

Weight for self-loop

¡ Relational GCN (RGCN):

𝐡!
#.) = 𝜎 %

/∈0

%
%∈'!"

1
𝑐!,/

𝐖/
𝐡%

(#) +𝐖2
(#)𝐡!

(#)

¡ How to write this as Message + Aggregation?
¡ Message:

§ Each neighbor of a given relation:

𝐦!,#
(%) =

1
𝑐',#

𝐖#
% 𝐡!

(%)

§ Self-loop:
𝐦'
(%) = 𝐖(

% 𝐡'
(%)

¡ Aggregation:
§ Sum over messages from neighbors and self-loop, then apply activation

§ 𝐡'
%)* = 𝜎 Sum 𝐦!,#

% , 𝑢 ∈ 𝑁(𝑣) ∪ 𝐦'
%

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

Normalized by node degree
of the relation 𝑐%,! = 𝑁%!

¡ Each relation has 𝐿 matrices: 𝐖!
" ,𝐖!

⋯𝐖!
$

¡ The size of each 𝐖!
% is 𝑑(%'")×𝑑(%)

¡ Rapid growth of the number of parameters w.r.t
number of relations!
§ Overfitting becomes an issue

¡ Two methods to regularize the weights 𝐖𝒓
(𝒍)

§ (1) Use block diagonal matrices
§ (2) Basis/Dictionary learning

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

𝑑(") is the hidden
dimension in layer 𝑙

¡ Key insight: make the weights sparse!
¡ Use block diagonal matrices for 𝐖!

¡ If use 𝐵 low-dimensional matrices, then # param

reduces from 𝑑(%'")×𝑑(%) to 𝐵× + !"#

,
× + !

,
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

𝐖+ =
Limitation: only nearby
neurons/dimensions
can interact through 𝑊

¡ Key insight: Share weights across different
relations!

¡ Represent the matrix of each relation as a linear
combination of basis transformations
𝐖! = ∑-.", 𝑎!- ⋅ 𝐕-, where 𝐕- is shared across
all relations
§ 𝐕! are the basis matrices
§ 𝑎"! is the importance weight of matrix 𝐕!

¡ Now each relation only needs to learn 𝑎!- -."
, ,

which is 𝐵 scalars
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

¡ Goal: Predict the label of a given node
¡ RGCN uses the representation of the final layer:
§ If we predict the class of node 𝑨 from 𝒌 classes

§ Take the final layer (prediction head): 𝐡#
(%) ∈ ℝ',

each item in 𝐡#
(%) represents the probability of that

class

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

A
C

B

E
F

D

Target Node

Input Graph

𝑟)

𝑟)

𝑟* 𝑟*

𝑟+

𝑟+

𝑟)

¡ Link prediction split:

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

3
2

45

1

The original graph

3
2

45

1

Split Graph with 4
categories of edges

Split

Training message edges
Training supervision edges
Validation edges
Test edges

Every edge also has a
relation type, this is
independent of the 4
categories.

Training message edges for 𝒓𝟏
Training supervision edges for 𝒓𝟏
Validation edges for 𝒓𝟏
Test edges for 𝒓𝟏

Training message edges for 𝒓𝒏
Training supervision edges for 𝒓𝒏
Validation edges for 𝒓𝒏
Test edges for 𝒓𝒏

…
..

In a heterogeneous
graph, the homogeneous
graphs formed by every
single relation also have
the 4 splits.

¡ Assume 𝑬, 𝒓𝟑, 𝑨 is training supervision edge,
all the other edges are training message edges

¡ Use RGCN to score 𝑬, 𝒓𝟑, 𝑨 !
§ Take the final layer of 𝐸 and 𝐴: 𝐡$

% and 𝐡&
(%) ∈ ℝ)

§ Relation-specific score function 𝑓*: ℝ)×ℝ) → ℝ
§ One example 𝑓#) 𝐡. , 𝐡/ = 𝐡.0𝐖#)𝐡/, 𝐖#) ∈ ℝ

1×1

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

A
C

B

E
F

D

Input Graph

𝑟)

𝑟)

𝑟* 𝑟*

𝑟+

𝑟+

𝑟)
𝒓𝟑

¡ Training:

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

training supervision edges: 𝑬, 𝒓𝟑, 𝑨
training message edges: all the rest
existing edges (solid lines)

(1) Use training message edges to
predict training supervision edges

1. Use RGCN to score the training
supervision edge 𝑬, 𝒓𝟑, 𝑨

2. Create a negative edge by perturbing
the supervision edge 𝑬, 𝒓𝟑, 𝑩
• Corrupt the tail of 𝑬, 𝒓𝟑, 𝑨
• e.g., 𝑬, 𝒓𝟑, 𝑩 , 𝑬, 𝒓𝟑, 𝑫

Note the negative edges should NOT
belong to training message edges or
training supervision edges!
e.g., 𝑬, 𝒓𝟑, 𝑪 is NOT a negative edge

A
C

B

E
F

D

Input Graph

𝑟)

𝑟)

𝑟* 𝑟*

𝑟+

𝑟+

𝑟)
𝒓𝟑

¡ Training:

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

1. Use RGCN to score the training
supervision edge 𝑬, 𝒓𝟑, 𝑨

2. Create a negative edge by perturbing
the supervision edge 𝑬, 𝒓𝟑, 𝑩

3. Use GNN model to score negative edge
4. Optimize a standard cross entropy loss

(as discussed in Lecture 6)
1. Maximize the score of training supervision edge
2. Minimize the score of negative edge

A
C

B

E
F

D

Input Graph

𝑟)

𝑟)

𝑟* 𝑟*

𝑟+

𝑟+

𝑟)
𝒓𝟑

ℓ = − log 𝜎 𝑓"! ℎ(, ℎ# − log(1 − 𝜎 𝑓"!(ℎ(, ℎ)))

𝜎… Sigmoid function

¡ Evaluation:
§ Validation time as an example, same at the test time

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

Evaluate how the model can predict the
validation edges with the relation types.
Let’s predict validation edge 𝑬, 𝒓𝟑, 𝑫
Intuition: the score of 𝑬, 𝒓𝟑, 𝑫 	should be
higher than all 𝑬, 𝒓𝟑, 𝒗 	where 𝑬, 𝒓𝟑, 𝒗 	is NOT
in the training message edges and training
supervision edges, e.g., 𝑬, 𝒓𝟑, 𝑩

validation edges: 𝑬, 𝒓𝟑, 𝑫
training message edges & training supervision
edges: all existing edges (solid lines)

(2) At validation time:
Use training message edges & training
supervision edges to predict validation edges

A
C

B

E
F

D

Input Graph

𝑟)

𝑟)

𝑟* 𝑟*

𝑟+

𝑟+

𝑟)

𝑟+

𝒓𝟑?

¡ Evaluation:
§ Validation time as an example, same at the test time

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

Evaluate how the model can predict the
validation edges with the relation types.
Let’s predict validation edge 𝑬, 𝒓𝟑, 𝑫
Intuition: the score of 𝑬, 𝒓𝟑, 𝑫 	should be
higher than all 𝑬, 𝒓𝟑, 𝒗 	where 𝑬, 𝒓𝟑, 𝒗 	is NOT
in the training message edges and training
supervision edges, e.g., 𝑬, 𝒓𝟑, 𝑩

A
C

B

E
F

D

Input Graph

𝑟)

𝑟)

𝑟* 𝑟*

𝑟+

𝑟+

𝑟)

𝑟+

𝒓𝟑?
1. Calculate the score of 𝑬, 𝒓𝟑, 𝑫
2. Calculate the score of all the negative edges: 𝑬, 𝒓𝟑, 𝒗 𝒗 ∈ 𝑩, 𝑭	 , since 𝑬, 𝒓𝟑, 𝑨 ,

𝑬, 𝒓𝟑, 𝑪 belong to training message edges & training supervision edges
3. Obtain the ranking 𝑹𝑲 of 𝑬, 𝒓𝟑, 𝑫 .
4. Calculate metrics

1. Hits@𝒌: 𝟏 𝑹𝑲 ≤ 𝒌 . Higher is better
2. Reciprocal Rank: 𝟏

𝑹𝑲
. Higher is better

¡ Benchmark dataset
§ ogbn-mag from Microsoft Academic Graph (MAG)

¡ Four (4) types of entities
§ Papers: 736k nodes
§ Authors: 1.1m nodes
§ Institutions: 9k nodes
§ Fields of study: 60k nodes

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

Wang et al. Microsoft academic graph: When experts are not enough. Quantitative Science Studies 2020.

https://ogb.stanford.edu/docs/nodeprop/
https://direct.mit.edu/qss/article/1/1/396/15572/Microsoft-Academic-Graph-When-experts-are-not

¡ Benchmark dataset
§ ogbn-mag from Microsoft Academic Graph (MAG)

¡ Four (4) directed relations
§ An author is "affiliated with" an institution
§ An author "writes" a paper
§ A paper "cites" a paper
§ A paper "has a topic of" a field of study

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

Wang et al. Microsoft academic graph: When experts are not enough. Quantitative Science Studies 2020.

https://ogb.stanford.edu/docs/nodeprop/
https://direct.mit.edu/qss/article/1/1/396/15572/Microsoft-Academic-Graph-When-experts-are-not

¡ Prediction task
§ Each paper has a 128-dimensional word2vec feature vector
§ Given the content, references, authors, and author affiliations

from ogbn-mag, predict the venue of each paper
§ 349-class classification problem due to 349 venues considered

¡ Time-based dataset splitting
§ Training set: papers published before 2018
§ Test set: papers published after 2018

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

Wang et al. Microsoft academic graph: When experts are not enough. Quantitative Science Studies 2020.

https://direct.mit.edu/qss/article/1/1/396/15572/Microsoft-Academic-Graph-When-experts-are-not

¡ Benchmark results:

§ SOTA method: SeHGNN
§ ComplEx (Next lecture) + Simplified GCN (Lecture 17)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

Wang et al. Microsoft academic graph: When experts are not enough. Quantitative Science Studies 2020.

SOTA

R-GCN

https://direct.mit.edu/qss/article/1/1/396/15572/Microsoft-Academic-Graph-When-experts-are-not

¡ Relational GCN, a graph neural network for
heterogeneous graphs

¡ Can perform entity classification as well as
link prediction tasks.

¡ Ideas can easily be extended into RGNN
(RGraphSAGE, RGAT, etc.)

¡ Benchmark: ogbn-mag from Microsoft
Academic Graph, to predict paper venues

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Graph Attention Networks (GAT)

Not all node’s neighbors are equally important
§ Attention is inspired by cognitive attention.
§ The attention 𝜶𝒗𝒖 focuses on the important parts of

the input data and fades out the rest.
§ Idea: the NN should devote more computing power on that

small but important part of the data.
¡ Can we adapt GAT for heterogeneous graphs?

𝐡2
(3) = 𝜎(∑4∈6 2 𝛼24𝐖(3)𝐡4

(378))

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

Attention weights

¡ Motivation: GAT is unable to represent different
node & different edge types

¡ Introduce a set of neural networks for each
relation type is too expensive for attention
§ Recall: relation describes (node_s, edge, node_e)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

Hu et al. Heterogeneous Graph Transformer. WWW 2020.

Weight for rel_1

Weight for rel_N

… Too expensive!

https://arxiv.org/abs/2003.01332

¡ HGT uses Scaled Dot-Product Attention
(proposed in Transformer)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

¡ Query: 𝑄, Key: 𝐾, Value: 𝑉
§ 𝑄,𝐾, 𝑉 have shape (batch_size, dim)

How do we obtain 𝑄,𝐾, 𝑉?
¡ Apply Linear layer to the input

§ 𝑄 = 𝑄_𝐿𝑖𝑛𝑒𝑎𝑟(𝑋)
§ 𝐾 = 𝐾_𝐿𝑖𝑛𝑒𝑎𝑟(𝑋)
§ 𝑉 = 𝑉_𝐿𝑖𝑛𝑒𝑎𝑟(𝑋)

¡ Recall: Applying GAT to a homogeneous graph
§ 𝐻 3 is the 𝑙-th layer representation:

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

Hu et al. Heterogeneous Graph Transformer. WWW 2020.

How do we take relation type (node_s, edge,
node_e) into attention computation?

https://arxiv.org/abs/2003.01332

¡ Innovation: Decompose heterogeneous attention to
Node- and edge-type dependent attention mechanism
§ 3 node weight matrices, 2 edge weight matrices
§ Without decomposition: 3*2*3=18 relation types -> 18

weight matrices (suppose all relation types exist)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

Hu et al. Heterogeneous Graph Transformer. WWW 2020.

……

!!"#$
%&&

!'("#$
%&&

Q-Linear!"#$%

K-Linear!"#$%

K-Linear&'()*%

'()*+[-]

/)+[0+]

'()*+[-]

/)+[0,]

!!

!"

Paper

Author

Paper

CiteWrite 1--[01, -]

1--[02, -]

"

https://arxiv.org/abs/2003.01332

¡ Heterogeneous Mutual Attention:

¡ Each relation (𝑇 𝑠 , 𝑅 𝑒 , 𝑇 𝑡) has a distinct set
of projection weights
§ 𝑇 𝑠 : type of node 𝑠, 𝑅 𝑒 : type of edge 𝑒
§ 𝑇(𝑠) & 𝑇(𝑡) parameterize 𝐾_𝐿𝑖𝑛𝑒𝑎𝑟> ? & 𝑄_𝐿𝑖𝑛𝑒𝑎𝑟> @ ,

which further return Key and Query vectors 𝐾(𝑠) & 𝑄(𝑡)
§ Edge type 𝑅(𝑒) directly parameterizes WR(e)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

Hu et al. Heterogeneous Graph Transformer. WWW 2020.

https://arxiv.org/abs/2003.01332

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

We have just computed

¡ Similarly, HGT decomposes weights with node & edge
types in the message computation

Weights for
each node type

Weights for
each edge type

¡ A full HGT layer

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Hu et al. Heterogeneous Graph Transformer. WWW 2020.

¡ Benchmark: ogbn-mag from Microsoft
Academic Graph, to predict paper venues

¡ HGT uses much fewer parameters, even
though the attention computation is expensive,
while performs better than R-GCN
§ Thanks to the weight decomposition over node &

edge types

https://arxiv.org/abs/2003.01332

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

How do we extend the general GNN design
space to heterogneous graphs?

https://arxiv.org/pdf/2011.08843.pdf

¡ (1) Message computation
§ Message function:

§ Intuition: Each node will create a message, which will be
sent to other nodes later

§ Example: A Linear layer 𝐦%
(#) = 𝐖 # 𝐡%

#()

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

(2) Aggregation

(1) Message

Node 𝒗

𝐦4
(3) = MSG 3 𝐡4

378

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ (1) Heterogeneous message computation
§ Message function:
§ Observation: A node could receive multiple types of

messages. Num of message type = Num of relation
type

§ Idea: Create a different message function for each
relation type

§𝐦+
(,) = MSG*

, 𝐡+
,-. , 𝑟 = (𝑢, 𝑒, 𝑣) is the relation

type between node 𝑢 that sends the message, edge
type 𝑒 , and node 𝑣 that receive the message

§ Example: A Linear layer 𝐦+
(,) = 𝐖*

, 𝐡+
,-.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

𝐦4
(3) = MSG"

3 𝐡4
378

¡ (2) Aggregation
§ Intuition: Each node will aggregate the messages from

node 𝑣’s neighbors

§ Example: Sum(⋅), Mean(⋅) or Max(⋅) aggregator

§𝐡!
= Sum({𝐦%

, 𝑢 ∈ 𝑁(𝑣)})

𝐡/
(,) = AGG , 𝐦4

3 , 𝑢 ∈ 𝑁 𝑣

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

(2) Aggregation

(1) Message

Node 𝒗

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ (2) Heterogeneous Aggregation
§ Observation: Each node could receive multiple types of

messages from its neighbors, and multiple neighbors
may belong to each message type.

§ Idea: We can define a 2-stage message passing

§𝐡!
(#) = AGGA##

AGG/
𝐦%

, 𝑢 ∈ 𝑁/ 𝑣

§Given all the messages sent to a node
§Within each message type, aggregate the messages

that belongs to the edge type with AGG/
#

§Aggregate across the edge types with AGGA##
#

§ Example: 𝐡!
= Concat Sum 𝐦%

, 𝑢 ∈ 𝑁/ 𝑣
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

¡ (3) Layer connectivity
§ Add skip connections, pre/post-process layers

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

Pre-processing layers: Important when
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when
reasoning / transformation over node
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

¡ Heterogeneous pre/post-process layers:
§ MLP layers with respect to each node type

§ Since the output of GNN are node embeddings

§ 𝐡2
(3) = MLP9(2)(𝐡2

(3))
§ 𝑇(𝑣) is the type of node 𝑣

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

¡ Other successful GNN designs are
also encouraged for heterogeneous
GNNs: skip connections, batch/layer
normalization, …

¡ Graph Feature manipulation
§ The input graph lacks features à feature

augmentation
¡ Graph Structure manipulation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when

doing message passing
§ The graph is too large à Sample subgraphs to

compute embeddings
§ Will cover later in lecture: Scaling up GNNs

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

¡ Graph Feature manipulation
§ 2 Common options: compute graph statistics (e.g.,

node degree) within each relation type, or across the
full graph (ignoring the relation types)

¡ Graph Structure manipulation
§ Neighbor and subgraph sampling are also common

for heterogeneous graphs.
§ 2 Common options: sampling within each relation

type (ensure neighbors from each type are covered),
or sample across the full graph

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

Node-level prediction:
¡ 9𝒚𝒗 = Head0123(𝐡4

$) = 𝐖(5)𝐡4
($)

Edge-level prediction:
¡ 9𝒚𝒖𝒗 = Head3278(𝐡9

$, 𝐡4
$)=

Linear(Concat(𝐡9
$, 𝐡4

$))
Graph-level prediction:
¡ 9𝒚: = Head7;<=>({𝐡4

$ ∈ ℝ+ , ∀𝑣 ∈ 𝐺})

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

Node-level prediction:
¡ 9𝒚𝒗 = Head0123, @(4)(𝐡4

$) = 𝐖@(4)
5 𝐡4

($)

Edge-level prediction:
¡ 9𝒚𝒖𝒗 = Head3278, !(𝐡9

$, 𝐡4
$)=

Linear!(Concat(𝐡9
$, 𝐡4

$))
Graph-level prediction:
¡ 9𝒚: = AGG(Head7;<=>, A({𝐡4

$ ∈
ℝ+ , ∀𝑇 𝑣 = 𝑖}))

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Heterogeneous GNNs extend GNNs by separately
modeling node/relation types + additional AGG

https://arxiv.org/pdf/2011.08843.pdf

¡ Heterogeneous graphs: graphs with multiple
nodes or edge types
§ Key concept: relation type (node_s, edge, node_e)
§ Be aware that we don’t always need

heterogeneous graphs
¡ Learning with heterogeneous graphs
§ Key idea: separately model each relation type
§ Relational GCNs
§ Heterogeneous Graph Transformer
§ Design space for heterogeneous GNNs

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

