
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu

http://cs224w.stanford.edu/

¡ New office hours format:
§ 1 hour of group office hour (general questions)
§ 1 hour of individual office hour (questions/help

with individuals’ code)
§ See Ed announcement for more details

¡ Deep learning review session:
§ Monday, Oct 9, 9-11 AM PT on Zoom

§ Hosted by Anirudh during his Monday OH

§ Session will be recorded
§ See Ed announcement for more details

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

¡ Homework 1 will be released today by 9PM
on our course website

¡ Homework 1:
§ Due Thursday, 10/19 (2 weeks from now)
§ TAs will hold a recitation session for HW 1:

§ Time: Friday (10/13), specific time TBA
§ Location: Zoom, link will be posted on Ed
§ Session will be recorded

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

…

Output: Node embeddings.
Also, we can embed subgraphs,
graphs

Idea: Node’s neighborhood defines a
computation graph

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Determine node
computation graph

𝑖

Propagate and
transform information

𝑖

Learn how to propagate information across the
graph to compute node features

¡ Intuition: Nodes aggregate information from
their neighbors using neural networks

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks

¡ Intuition: Network neighborhood defines a
computation graph

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

Every node defines a computation
graph based on its neighborhood!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 2

GNN Layer 1

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 2

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

¡ Idea of a GNN Layer:
§ Compress a set of vectors into a single vector
§ Two-step process:

§ (1) Message
§ (2) Aggregation

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

Input node embedding 𝐡!
"#$, 𝐡%∈'(!)

"#$

(from node itself + neighboring nodes)

𝒍-th GNN Layer

Output node embedding 𝐡!
"

(2) Aggregation

(1) Message

Node 𝒗

¡ (1) Message computation
§ Message function:

§ Intuition: Each node will create a message, which will be
sent to other nodes later

§ Example: A Linear layer 𝐦#
(%) = 𝐖 % 𝐡#

%'(

§ Multiply node features with weight matrix 𝐖 !

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

(2) Aggregation

(1) Message

Node 𝒗

𝐦"
($) = MSG $ 𝐡"

$&'

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ (2) Aggregation
§ Intuition: Node 𝑣 will aggregate the messages from its

neighbors 𝑢:

§ Example: Sum(⋅), Mean(⋅) or Max(⋅) aggregator

§𝐡)
% = Sum({𝐦#

% , 𝑢 ∈ 𝑁(𝑣)})

𝐡!
(#) = AGG # 𝐦"

$, 𝑢 ∈ 𝑁 𝑣

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

(2) Aggregation

(1) Message

Node 𝒗

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

𝐡)
% = CONCAT AGG 𝐦#

% , 𝑢 ∈ 𝑁 𝑣 ,𝐦)
%

¡ Issue: Information from node 𝑣 itself could get lost
§ Computation of 𝐡)

(%) does not directly depend on 𝐡)
(%'()

¡ Solution: Include 𝐡(
($&') when computing 𝐡(

($)

§ (1) Message: compute message from node 𝒗 itself
§ Usually, a different message computation will be performed

§ (2) Aggregation: After aggregating from neighbors, we can
aggregate the message from node 𝒗 itself
§ Via concatenation or summation

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

𝐦"
(!) = 𝐁 ! 𝐡"

!%&𝐦'
(!) = 𝐖 ! 𝐡'

!%&

First aggregate from neighbors

Then aggregate from node itself

(2) Aggregation

(1) Message

¡ Putting things together:
§ (1) Message: each node computes a message

§ (2) Aggregation: aggregate messages from neighbors

§ Nonlinearity (activation): Adds expressiveness
§ Often written as 𝜎(⋅). Examples: ReLU(⋅), Sigmoid(⋅) , …
§ Can be added to message or aggregation

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

𝐦"
($) = MSG $ 𝐡"

$&' , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡!
(#) = AGG # 𝐦%

, 𝑢 ∈ 𝑁 𝑣 ,𝐦!
#

¡ (1) Graph Convolutional Networks (GCN)

¡ How to write this as Message + Aggregation?

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

𝐡)
(%) = 𝜎 𝐖 % F

#∈+)

𝐡#
%'(

𝑁 𝑣 	

𝐡)
(%) = 𝜎 F

#∈+)

𝐖 % 𝐡#
%'(

𝑁 𝑣 	

Aggregation

Message

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message

https://arxiv.org/pdf/1609.02907.pdf

¡ (1) Graph Convolutional Networks (GCN)

¡ Message:

§ Each Neighbor: 𝐦#
(%) = (

+)
𝐖 % 𝐡#

%'(

¡ Aggregation:
§ Sum over messages from neighbors, then apply activation

§ 𝐡)
% = 𝜎 Sum 𝐦#

% , 𝑢 ∈ 𝑁 𝑣

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

Normalized by node degree
(In the GCN paper they use a slightly
different normalization)

𝐡)
(%) = 𝜎 F

#∈+)

𝐖 % 𝐡#
%'(

𝑁 𝑣
	 (2) Aggregation

(1) Message

In GCN the input graph is
assumed to have self-edges that
are included in the summation.

¡ (2) GraphSAGE

¡ How to write this as Message + Aggregation?
§ Message is computed within the AGG ⋅
§ Two-stage aggregation

§ Stage 1: Aggregate from node neighbors

§ Stage 2: Further aggregate over the node itself

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

𝐡)
(%) = 𝜎 𝐖(%) H CONCAT 𝐡)

%'(, AGG 𝐡#
%'(, ∀𝑢 ∈ 𝑁 𝑣

𝐡((")
(!) ← AGG 𝐡'

(!%&), ∀𝑢 ∈ 𝑁 𝑣

𝐡"
(!) ← 𝜎 𝐖(!) ⋅ CONCAT(𝐡"

!%& , 𝐡((")
(!))

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf

¡ Mean: Take a weighted average of neighbors

¡ Pool: Transform neighbor vectors and apply
symmetric vector function Mean(⋅) or Max(⋅)

¡ LSTM: Apply LSTM to reshuffled of neighbors

AGG = 7
"∈<(()

𝐡"
($&')

𝑁(𝑣)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

AGG = Mean({MLP(𝐡"
($&')), ∀𝑢 ∈ 𝑁(𝑣)})

AGG = LSTM([𝐡"
($&'), ∀𝑢 ∈ 𝜋 𝑁 𝑣])

Message computation

Message computation

Aggregation

Aggregation

Aggregation

¡ ℓ! Normalization:
§ Optional: Apply ℓ, normalization to 𝐡)

(%) at every layer

§ 𝐡!
(#) ← 𝐡#

(%)

𝐡#
(%)

'

∀𝑣 ∈ 𝑉 where 𝑢 ' = ∑(𝑢(' (ℓ'-norm)

§ Without ℓ' normalization, the embedding vectors have
different scales (ℓ'-norm) for vectors

§ In some cases (not always), normalization of embedding
results in performance improvement

§ After ℓ' normalization, all vectors will have the same
ℓ'-norm

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

¡ (3) Graph Attention Networks

¡ In GCN / GraphSAGE

§ 𝛼(" =
'

< (
is the weighting factor (importance)

of node 𝑢’s message to node 𝑣
§ ⟹ 𝛼(" is defined explicitly based on the

structural properties of the graph (node degree)
§ ⟹ All neighbors 𝑢 ∈ 𝑁(𝑣) are equally important

to node 𝑣

𝐡(
($) = 𝜎(∑"∈< (𝛼("𝐖($)𝐡"

($&'))

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

Attention weights

¡ (3) Graph Attention Networks

Not all node’s neighbors are equally important
§ Attention is inspired by cognitive attention.
§ The attention 𝜶𝒗𝒖 focuses on the important parts of

the input data and fades out the rest.
§ Idea: the NN should devote more computing power on that

small but important part of the data.
§ Which part of the data is more important depends on the

context and is learned through training.

𝐡(
($) = 𝜎(∑"∈< (𝛼("𝐖($)𝐡"

($&'))

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

Attention weights

Can we do better than simple
neighborhood aggregation?

Can weighting factors 𝜶𝒗𝒖 be learned?

¡ Goal: Specify arbitrary importance to different
neighbors of each node in the graph

¡ Idea: Compute embedding 𝒉$
(&) of each node in

the graph following an attention strategy:
§ Nodes attend over their neighborhoods’ message
§ Implicitly specifying different weights to different

nodes in a neighborhood
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

¡ Let 𝛼$(be computed as a byproduct of an
attention mechanism 𝒂:
§ (1) Let 𝑎 compute attention coefficients 𝒆𝒗𝒖 across

pairs of nodes 𝑢, 𝑣 based on their messages:
𝑒(" = 𝑎(𝐖($)𝐡"

($&'),𝐖($)𝒉(
($&'))

§ 𝒆𝒗𝒖 indicates the importance of 𝒖/𝐬message to node 𝒗

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

𝐡*
("#$)

𝐡+
("#$)

𝑒*+

𝑒12 = 𝑎(𝐖(%)𝐡1
(%'(),𝐖(%)𝐡2

(%'())

§ Normalize 𝑒(" into the final attention weight 𝜶𝒗𝒖
§ Use the softmax function, so that ∑#∈+) 𝛼)# = 1:

𝛼!% =
exp(𝑒!%)

∑)∈+ ! exp(𝑒!))

§ Weighted sum based on the final attention weight
𝜶𝒗𝒖:

𝐡!
(#) = 𝜎(∑%∈+ ! 𝛼!%𝐖(%)𝐡%

(#,-))

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

𝛼*+
Weighted sum using 𝛼12, 𝛼14, 𝛼15:
𝐡)
(!) = 𝜎(𝛼)*𝐖(!)𝐡*

(!%&)+𝛼)+𝐖(!)𝐡+
(!%&)+

𝛼),𝐖(!)𝐡,
(!%&))

𝐡+
("#$)

𝐡,
("#$)

𝛼*,

𝛼*-

¡ What is the form of attention mechanism 𝒂?
§ The approach is agnostic to the choice of 𝑎

§ E.g., use a simple single-layer neural network
§ 𝑎 have trainable parameters (weights in the Linear layer)

§ Parameters of 𝑎 are trained jointly:
§ Learn the parameters together with weight matrices (i.e.,

other parameter of the neural net 𝐖(%)) in an end-to-end
fashion

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

𝑒)* = 𝑎 𝐖(!)𝐡)
(!%&),𝐖(!)𝐡*

(!%&)

= Linear Concat 𝐖(!)𝐡)
(!%&),𝐖(!)𝐡*

(!%&)
𝐡*
("#$) 𝐡+

("#$)

Concatenate Linear
𝑒)*

¡ Multi-head attention: Stabilizes the learning
process of attention mechanism
§ Create multiple attention scores (each replica

with a different set of parameters):

§ Outputs are aggregated:
§ By concatenation or summation

§ 𝐡)
(%) = AGG(𝐡)

(%) 1 , 𝐡)
(%) 2 , 𝐡)

(%) 3)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

𝐡!
(#)[1] = 𝜎(∑%∈+ ! 𝛼!%- 𝐖(#)𝐡%

(#,-))

𝐡!
(#)[2] = 𝜎(∑%∈+ ! 𝛼!%' 𝐖(#)𝐡%

(#,-))

𝐡!
(#)[3] = 𝜎(∑%∈+ ! 𝛼!%. 𝐖(#)𝐡%

(#,-))

¡ Key benefit: Allows for (implicitly) specifying different
importance values (𝜶𝒗𝒖) to different neighbors

¡ Computationally efficient:
§ Computation of attentional coefficients can be parallelized

across all edges of the graph
§ Aggregation may be parallelized across all nodes

¡ Storage efficient:
§ Sparse matrix operations do not require more than
𝑂(𝑉 + 𝐸) entries to be stored

§ Fixed number of parameters, irrespective of graph size
¡ Localized:

§ Only attends over local network neighborhoods
¡ Inductive capability:

§ It is a shared edge-wise mechanism
§ It does not depend on the global graph structure

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ In practice, these classic GNN
layers are a great starting point
§ We can often get better

performance by considering a
general GNN layer design

§ Concretely, we can include
modern deep learning modules
that proved to be useful in many
domains

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf

¡ Many modern deep learning modules can be
incorporated into a GNN layer
§ Batch Normalization:

§ Stabilize neural network training

§ Dropout:
§ Prevent overfitting

§ Attention/Gating:
§ Control the importance of a message

§ More:
§ Any other useful deep learning modules

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf

¡ Goal: Stabilize neural networks training
¡ Idea: Given a batch of inputs (node embeddings)

§ Re-center the node embeddings into zero mean
§ Re-scale the variance into unit variance

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

𝛍. =
1
𝑁:

/0$

'

𝐗/,.Input: 𝐗 ∈ ℝ+×5
𝑁 node embeddings

Trainable Parameters:
𝛄, 𝛃 ∈ ℝ5

Output: 𝐘 ∈ ℝ+×5
Normalized node embeddings

𝛔.2 =
1
𝑁:

/0$

'

𝐗/,. − 𝛍.
2

?𝐗/,. =
𝐗/,. − 𝛍.

𝛔.2 + 𝜖

𝐘/,. = 𝛄.?𝐗/,. + 𝛃.

Step 1:
Compute the
mean and variance
over 𝑵 embeddings

Step 2:
Normalize the feature
using computed mean
and variance

S. Loffe, C.Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015

https://arxiv.org/pdf/1502.03167.pdf

¡ Goal: Regularize a neural net to prevent overfitting.
¡ Idea:

§ During training: with some probability 𝑝, randomly set
neurons to zero (turn off)

§ During testing: Use all the neurons for computation

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Removed neurons

Dropout

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_campaign=buffer&utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com

¡ In GNN, Dropout is applied to the
linear layer in the message function
§ A simple message function with linear

layer: 𝐦%
(') = 𝐖 ' 𝐡%

')*

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

Dropout
𝐡#
%'(𝐦#

(%)

𝐖 %

Visualization of a linear layer

(2) Aggregation

(1) Message

Apply activation to 𝒊-th dimension of
embedding 𝐱
¡ Rectified linear unit (ReLU)

ReLU 𝐱E = max(𝐱E, 0)
§ Most commonly used

¡ Sigmoid

𝜎 𝐱E =
1

1 + 𝑒'𝐱!
§ Used only when you want to restrict the

range of your embeddings
¡ Parametric ReLU
PReLU 𝐱E = max 𝐱E, 0 + 𝑎Emin(𝐱E, 0)

𝑎E is a trainable parameter
§ Empirically performs better than ReLU

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

𝑥

𝑦

0
𝑥

𝑦

0

1

𝑥

𝑦

0
𝑦 = 𝑎𝑥

𝑦 = 𝑥

𝑦 = 𝑥

𝑦 =
1

1 + 𝑒!"

¡ Summary: Modern deep learning
modules can be included into a GNN
layer for better performance

¡ Designing novel GNN layers is still
an active research frontier!

¡ Suggested resources: You can
explore diverse GNN designs or try
out your own ideas in GraphGym

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

A GNN Layer

https://github.com/snap-stanford/GraphGym

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

GNN Layer 2

GNN Layer 1

(3) Layer
connectivity

How to connect GNN layers into a GNN?
• Stack layers sequentially
• Ways of adding skip connections

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

¡ How to construct a Graph Neural Network?
§ The standard way: Stack GNN layers sequentially
§ Input: Initial raw node feature 𝐱+
§ Output: Node embeddings 𝐡+

(,) after 𝐿 GNN layers

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

𝐡"
(-) = 𝐱"

𝐡"
(&)

𝐡"
(.)

𝐡"
(/)

¡ The issue of stacking many GNN layers
§ GNN suffers from the over-smoothing problem

¡ The over-smoothing problem: all the node
embeddings converge to the same value
§ This is bad because we want to use node

embeddings to differentiate nodes
¡ Why does the over-smoothing problem

happen?

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

¡ Receptive field: the set of nodes that determine
the embedding of a node of interest
§ In a 𝑲-layer GNN, each node has a receptive field of
𝑲-hop neighborhood

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

Receptive field for
1-layer GNN

Receptive field for
2-layer GNN

Receptive field for
3-layer GNN

¡ Receptive field overlap for two nodes
§ The shared neighbors quickly grows when we

increase the number of hops (num of GNN layers)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!

¡ We can explain over-smoothing via the notion
of the receptive field
§ We know the embedding of a node is determined

by its receptive field
§ If two nodes have highly-overlapped receptive fields, then

their embeddings are highly similar

§ Stack many GNN layers à nodes will have highly-
overlapped receptive fields à node embeddings
will be highly similar à suffer from the over-
smoothing problem

¡ Next: how do we overcome over-smoothing problem?

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

¡ What do we learn from the over-smoothing problem?
¡ Lesson 1: Be cautious when adding GNN layers

§ Unlike neural networks in other domains (CNN for image
classification), adding more GNN layers do not always help

§ Step 1: Analyze the necessary receptive field to solve your
problem. E.g., by computing the diameter of the graph

§ Step 2: Set number of GNN layers 𝐿 to be a bit more than the
receptive field we like. Do not set 𝑳 to be unnecessarily
large!

¡ Question: How to enhance the expressive power of a
GNN, if the number of GNN layers is small?

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

¡ How to make a shallow GNN more expressive?
¡ Solution 1: Increase the expressive power within

each GNN layer
§ In our previous examples, each transformation or

aggregation function only include one linear layer
§ We can make aggregation / transformation become a

deep neural network!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

(2) Aggregation

(1) Transformation

If needed, each box could
include a 3-layer MLP

¡ How to make a shallow GNN more expressive?
¡ Solution 2: Add layers that do not pass messages

§ A GNN does not necessarily only contain GNN layers
§ E.g., we can add MLP layers (applied to each node) before and after

GNN layers, as pre-process layers and post-process layers

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

Pre-processing layers: Important when
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when
reasoning / transformation over node
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

¡ What if my problem still requires many GNN layers?
¡ Lesson 2: Add skip connections in GNNs

§ Observation from over-smoothing: Node embeddings in
earlier GNN layers can sometimes better differentiate nodes

§ Solution: We can increase the impact of earlier layers on the
final node embeddings, by adding shortcuts in GNN

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

Idea of skip connections:
Before adding shortcuts:

𝑭 𝐱
After adding shortcuts:

𝑭 𝐱 + 𝐱

Duplicate
into two
branches

Sum two
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

¡ Why do skip connections work?
§ Intuition: Skip connections create a mixture of models
§ 𝑁 skip connections à 2+ possible paths
§ Each path could have up to 𝑁 modules

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Path 1: include this module

Path 2: skip this module

All the possible paths:
2 ∗ 2 ∗ 2 = 23 = 8

§ We automatically get a mixture
of shallow GNNs and deep GNNs

https://arxiv.org/abs/1605.06431

¡ A standard GCN layer

¡ 𝐡)
(%) = 𝜎 ∑#∈+) 𝐖 % 𝐡*

+,-

+)

¡ A GCN layer with skip connection

¡ 𝐡)
(%) = 𝜎 ∑#∈+) 𝐖 % 𝐡*

+,-

+)
+ 𝐡)

(%'()

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

This is our 𝑭 𝐱

𝑭(𝐱) + 𝐱

¡ Other options: Directly
skip to the last layer
§ The final layer directly

aggregates from the all the
node embeddings in the
previous layers

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

Xu et al. Representation learning on graphs with jumping knowledge networks, ICML 2018

𝐡!
(#)

𝐡!
(%)

𝐡!
(&)

Input:	𝐡!
(')

Output:	𝐡!
(()*+,)

https://arxiv.org/abs/1806.03536

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(4) Graph manipulation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure manipulation

https://arxiv.org/pdf/2011.08843.pdf

Our assumption so far has been
¡ Raw input graph = computational graph
Reasons for breaking this assumption
§ Feature level:

§ The input graph lacks features à feature augmentation
§ Structure level:

§ The graph is too sparse à inefficient message passing
§ The graph is too dense à message passing is too costly
§ The graph is too large à cannot fit the computational

graph into a GPU
§ It’s just unlikely that the input graph happens to be

the optimal computation graph for embeddings
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

¡ Graph Feature manipulation
§ The input graph lacks features à feature

augmentation
¡ Graph Structure manipulation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when

doing message passing
§ The graph is too large à Sample subgraphs to

compute embeddings
§ Will cover later in lecture: Scaling up GNNs

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ a) Assign constant values to nodes

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

1

1

1

1

1

1

Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ b) Assign unique IDs to nodes
§ These IDs are converted into one-hot vectors

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

1

4

2

3

6

5

[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5
One-hot vector for node with ID=5

¡ Feature augmentation: constant vs. one-hot

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Constant node feature One-hot node feature

Expressive power Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature High. High dimensional feature,
cannot apply to large graphs

Use cases Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1

Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Example: Cycle count feature
§ Can GNN learn the length of a cycle that 𝑣* resides in?
§ Unfortunately, no

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

𝑣# 𝑣#

𝑣$ resides in a cycle with length 3 𝑣$ resides in a cycle with length 4

Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Solution:
§ We can use cycle count as augmented node features

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

𝑣# 𝑣#

𝑣$ resides in a cycle with length 3 𝑣$ resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start
from cycle
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks

Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Other commonly used augmented features:
§ Clustering coefficient
§ PageRank
§ Centrality
§ …

¡ Any feature we have introduced in
Lecture 1 can be used!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

¡ Good lecture. Finished here.
¡ Because I did not finish in 2024 I will skip

slides 9-13, 55

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

¡ Motivation: Augment sparse graphs
¡ (1) Add virtual edges
§ Common approach: Connect 2-hop neighbors via

virtual edges
§ Intuition: Instead of using adj. matrix 𝐴 for GNN

computation, use 𝐴 + 𝐴2

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

A

B

C

D

E

Authors Papers

§ Use cases: Bipartite graphs
§ Author-to-papers (they authored)
§ 2-hop virtual edges make an author-author

collaboration graph

¡ Motivation: Augment sparse graphs
¡ (2) Add virtual nodes
§ The virtual node will connect to all the

nodes in the graph
§ Suppose in a sparse graph, two nodes have

shortest path distance of 10
§ After adding the virtual node, all the nodes

will have a distance of 2
§ Node A – Virtual node – Node B

§ Benefits: Greatly improves message
passing in sparse graphs

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

The virtual
node

¡ Our approach so far:
§ All the neighbors are used for message passing

¡ Problem: Dense/large graphs, high-degree nodes

¡ New idea: (Randomly) determine a node’s
neighborhood for message passing

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf

¡ For example, we can randomly choose 2
neighbors to pass messages
§ Only nodes 𝐵 and 𝐷 will pass message to 𝐴

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 72

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ Next time when we compute the embeddings,
we can sample different neighbors
§ Only nodes 𝐶 and 𝐷 will pass message to 𝐴

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 73

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ In expectation, we can get embeddings similar
to the case where all the neighbors are used
§ Benefits: Greatly reduce computational cost
§ And in practice it works great!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 74

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA

¡ Recap: A general perspective for GNNs
§ GNN Layer:

§ Transformation + Aggregation
§ Classic GNN layers: GCN, GraphSAGE, GAT

§ Layer connectivity:
§ Deciding number of layers
§ Skip connections

§ Graph Manipulation:
§ Feature augmentation
§ Structure manipulation

¡ Next: GNN objectives, GNN in practice
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 75

