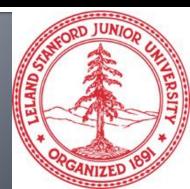
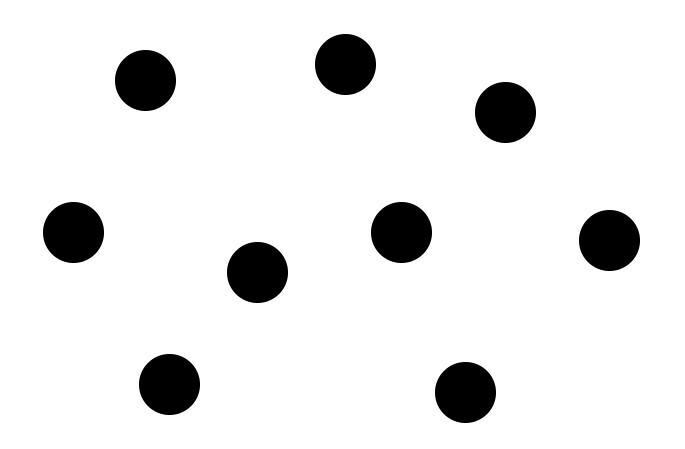
Note to other teachers and users of these slides: We would be delighted if you found our material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: <u>http://cs224w.Stanford.edu</u>

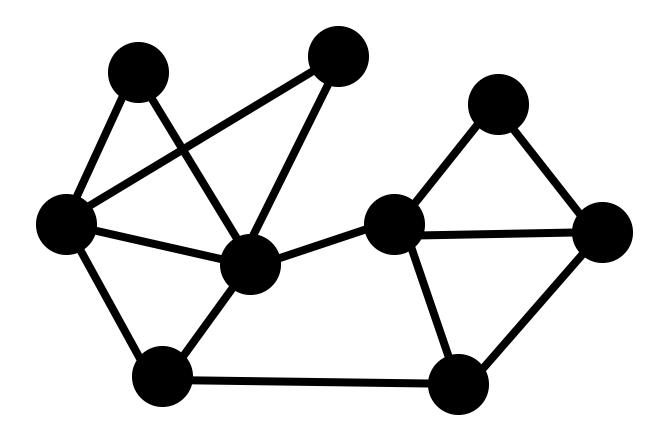
Stanford CS224W: Machine Learning with Graphs Winter 2022/23

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



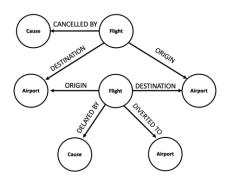
Why Graphs? **Graphs are a general** language for describing and analyzing entities with relations/interactions





Graph

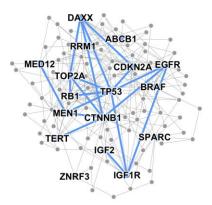
Many Types of Data are Graphs (1)



Event Graphs

Image credit: SalientNetworks

Computer Networks



Disease Pathways

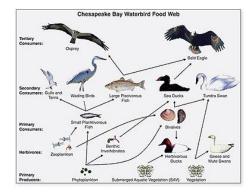


Image credit: Wikipedia

Food Webs

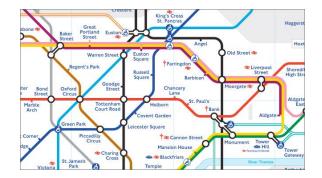


Image credit: visitlondon.com

Underground Networks

Image credit: Pinterest

Particle Networks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Many Types of Data are Graphs (2)

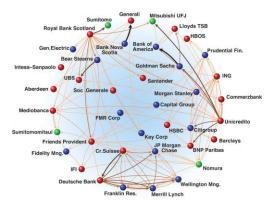


Image credit: <u>Science</u>

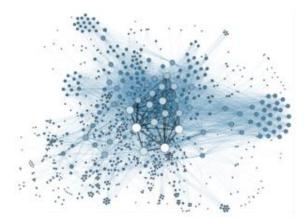
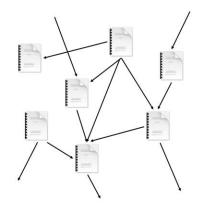


Image credit: Lumen Learning

Image credit: Medium

Social Networks

Economic Networks Communication Networks



Citation Networks

Image credit: Missoula Current News

Internet

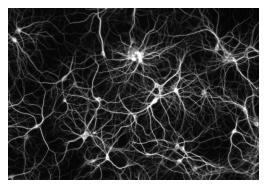


Image credit: The Conversation

Networks of Neurons

Many Types of Data are Graphs (3)

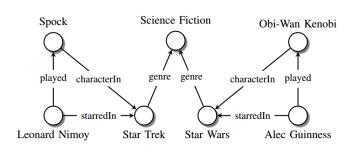


Image credit: Maximilian Nickel et al

Knowledge Graphs

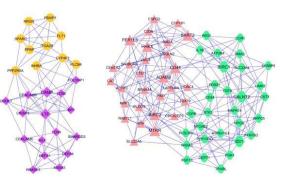


Image credit: <u>ese.wustl.edu</u>

Regulatory Networks

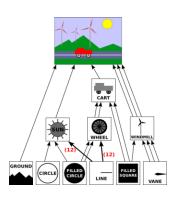
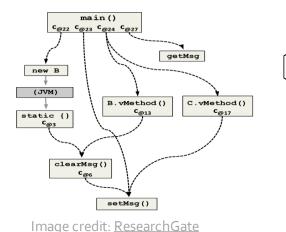


Image credit: <u>math.hws.edu</u>

Scene Graphs



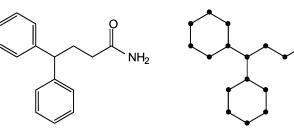


Image credit: MDPI

Molecules

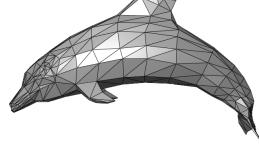


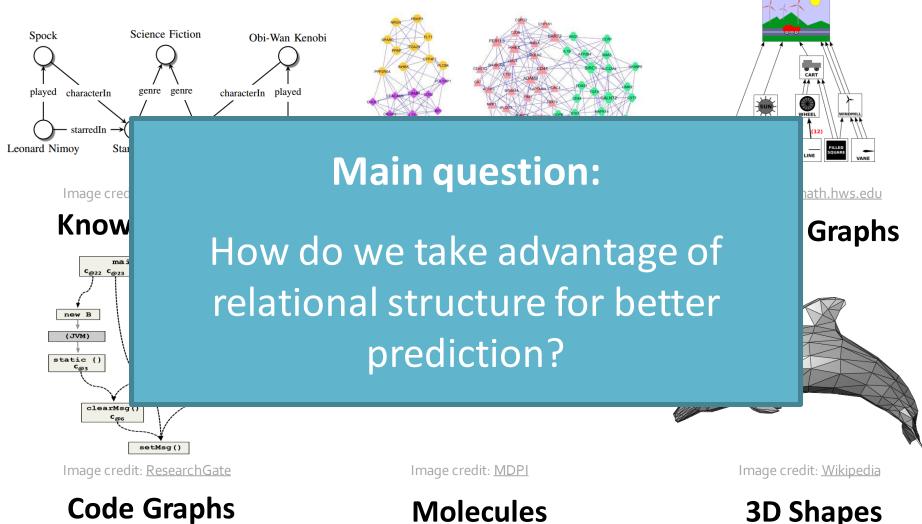
Image credit: Wikipedia

3D Shapes

Code Graphs

2/16/2023

Graphs and Relational Data



Code Graphs

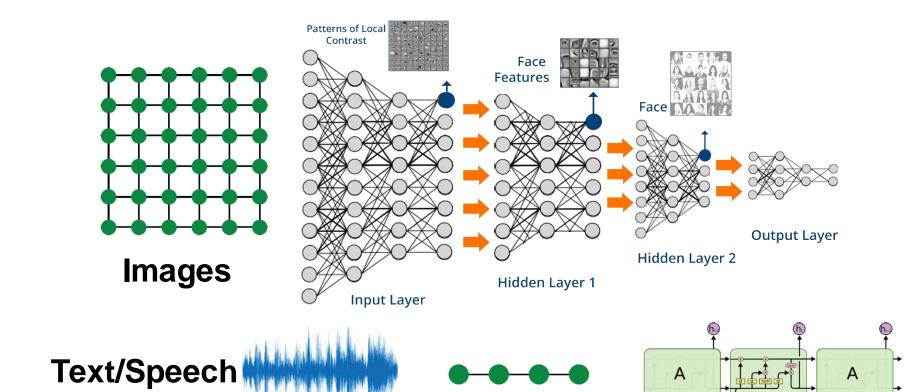
Molecules

2/16/2023

Complex domains have a rich relational structure, which can be represented as a relational graph

By explicitly modeling relationships we achieve better performance!

Today: Modern ML Toolbox



Modern deep learning toolbox is designed for simple sequences & grids

Doubt thou the stars are fire, Doubt that the sun doth move, Doubt truth to be a liar, But never doubt I love...

Audio signals

Images

Modern deep learning toolbox is designed for sequences & grids

2/16/2023

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Not everything can be represented as a sequence or a grid

How can we develop neural networks that are much more broadly applicable?

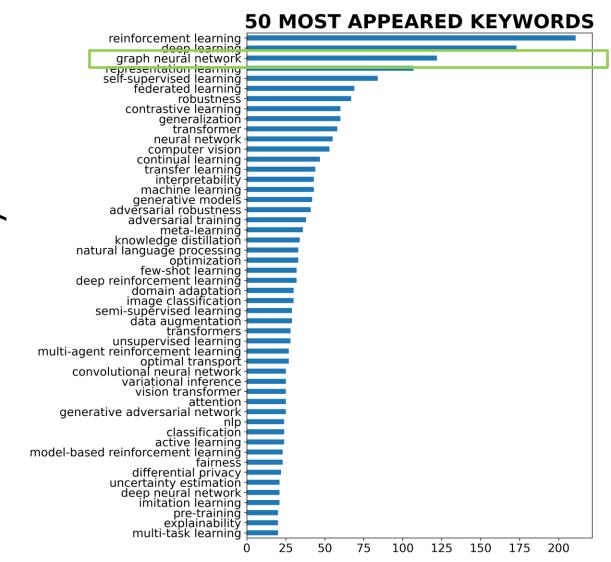
New frontiers beyond classic neural networks that only learn on images and sequences

This Class

<u>Graphs</u> are the new frontier of deep learning

Graphs connect things.

Hot subfield in ML

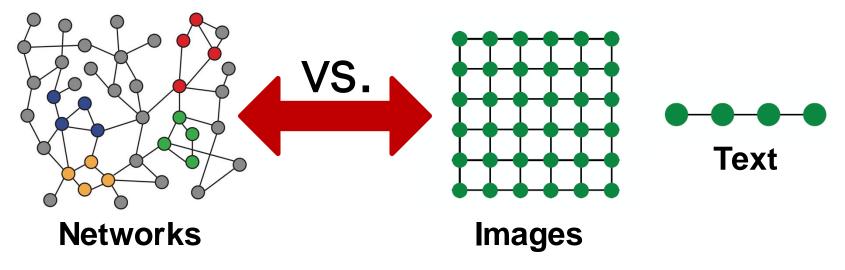


ICLR 2022 keywords

Why is Graph Deep Learning Hard?

Networks are complex.

 Arbitrary size and complex topological structure (*i.e.*, no spatial locality like grids)



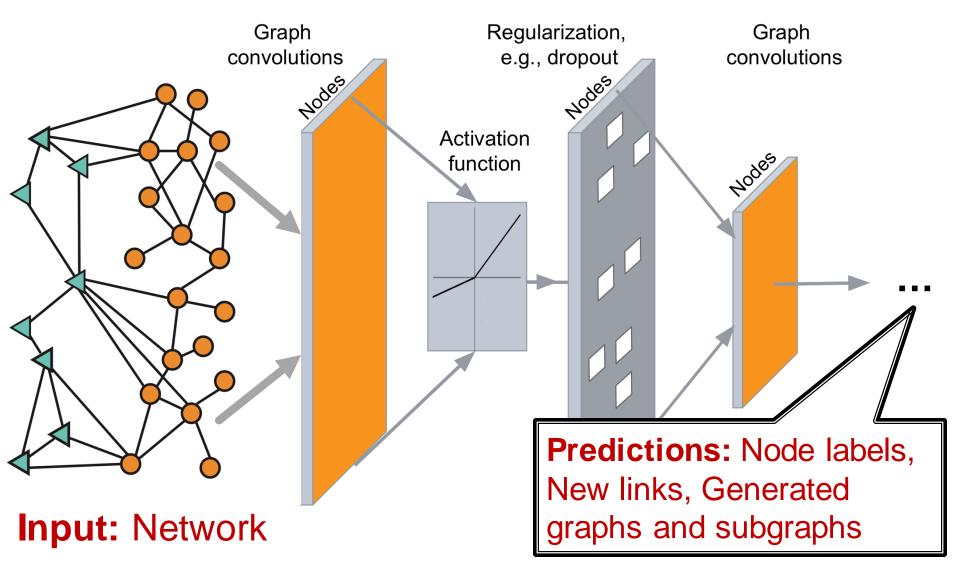
- No fixed node ordering or reference point
- Often dynamic and have multimodal features

This Course

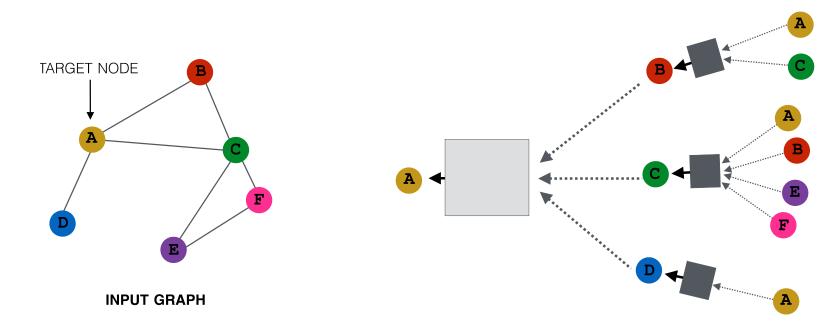
How can we develop neural networks that are much more broadly applicable?

<u>Graphs</u> are the new frontier of deep learning

CS224W: ML withGraphs



Graph Neural Networks

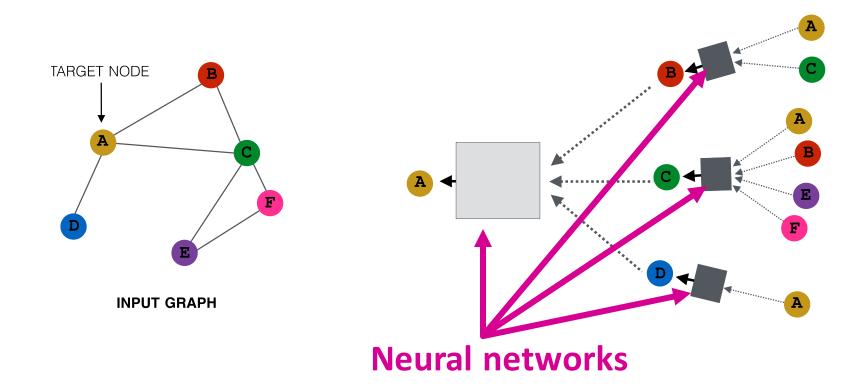


Each node defines a computation graph

Each edge in this graph is a transformation/aggregation function

Scarselli et al. 2005. <u>The Graph Neural Network Model</u>. *IEEE Transactions on Neural Networks*. Jure Leskovec, Stanford University

Graph Neural Networks



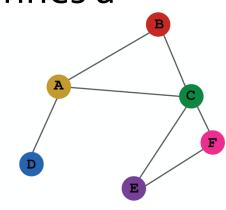
Intuition: Nodes aggregate information from their neighbors using neural networks

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.

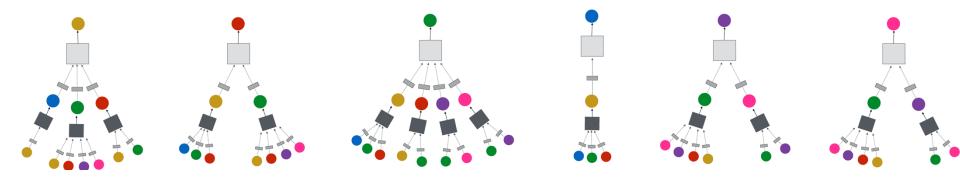
Idea: Aggregate Neighbors

Intuition: Network neighborhood defines a computation graph

Every node defines a computation graph based on its neighborhood!



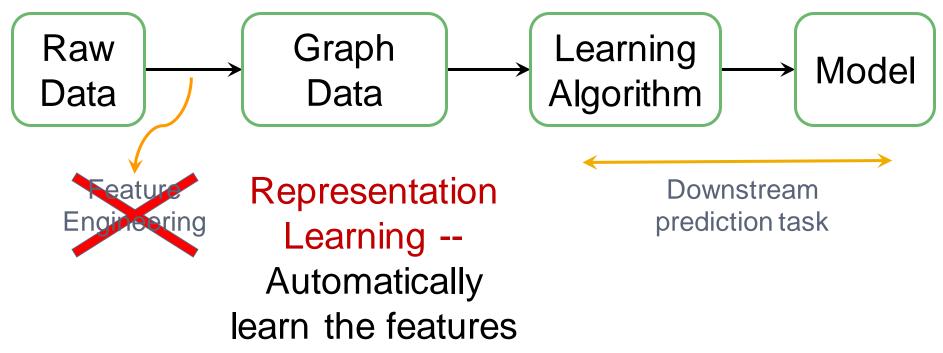
INPUT GRAPH



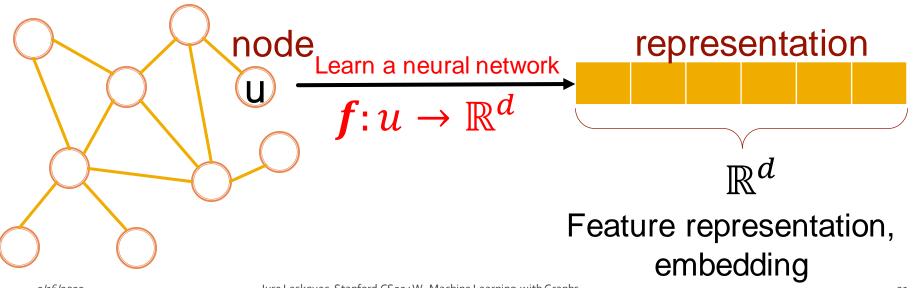
Jure Leskovec, Stanford University

CS224W & Representation Learning

(Supervised) Machine Learning Lifecycle: This feature, that feature. Every single time!



Map nodes to d-dimensional embeddings such that similar nodes in the network are embedded close together



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

CS224W Course Outline

We are going to explore Machine Learning and Representation Learning for graph data:

- Traditional methods: Graphlets, Graph Kernels
- Methods for node embeddings: DeepWalk, Node2Vec
- Graph Neural Networks: GCN, GraphSAGE, GAT, Theory of GNNs
- Knowledge graphs and reasoning: TransE, BetaE
- Deep generative models for graphs: GraphRNN
- Applications to Biomedicine, Science, Technology

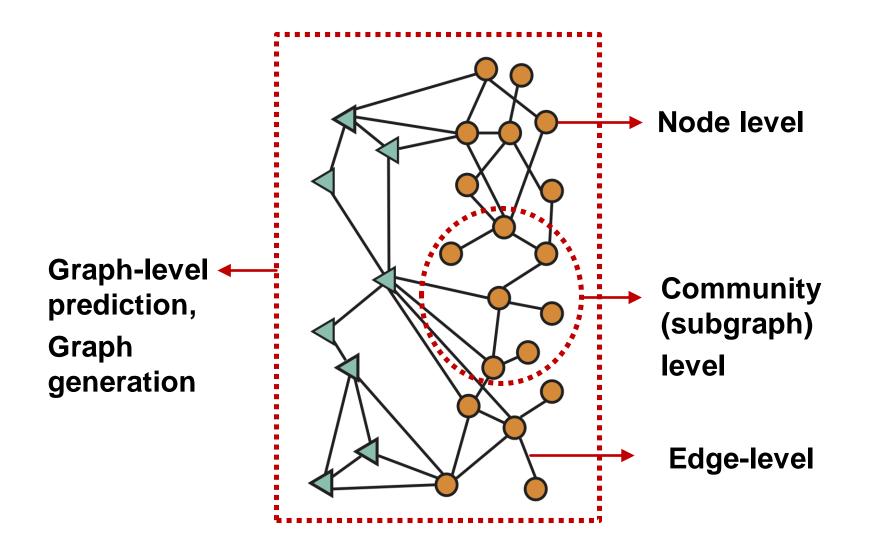
CS224W Course Outline

Dete	Toolo	Dete	Topic
Date	Торіс	Date	Торіс
Tue, 1/10	1. Introduction; Machine Learning for Graphs	Tue, 2/14	11. Community Structure in Networks
Thu, 1/12	2. Node Embeddings	Thu, 2/16	12. Traditional Generative Models for Graphs
Tue, 1/17	 Label Propagation for Node Classification 	Tue, 2/21	13. Deep Generative Models for Graphs
Thu, 1/19	4. Graph Neural Networks 1: GNN Model	Thu, 2/23	14. Advanced Topics on GNNs
Tue <i>,</i> 1/24	5. Graph Neural Networks 2: Design Space	Tue, 2/28	15. Scaling up GNNs
Thu, 1/26	6. Applications of Graph Neural Networks	Thu, 3/2	16. Explainability
Tue, 1/31	7. Theory of Graph Neural Networks	Tue, 3/7	EXAM
Thu, 2/2	8. Knowledge Graph Embeddings	Thu, 3/9	17. Guest lecture: TBD
Tue, 2/7	9. Reasoning over Knowledge Graphs	Tue, 3/14	18. GNNs for Science
Thu, 2/9	10. Frequent Subgraph Mining with GNNs	Thu, 3/16	19. Special topics in GNNs

Stanford CS224W: Applications of Graph ML

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Different Types of Tasks



Classic Graph ML Tasks

Node classification: Predict a property of a node

- Example: Categorize online users / items
- Link prediction: Predict whether there are missing links between two nodes
 - Example: Knowledge graph completion
- **Graph classification**: Categorize different graphs
 - Example: Molecule property prediction
- Clustering: Detect if nodes form a community
 - Example: Social circle detection
- Other tasks:
 - Graph generation: Drug discovery
 - Graph evolution: Physical simulation

Classic Graph ML Tasks

Node classification: Predict a property of a node

- Example: Categorize online users / items
- Link prediction: Predict whether there are missing
 - Exa

links

- Grap These Graph ML tasks lead to phs
 - Exa high-impact applications!
 - Exa
- Others:
 - Graph generation: Drug discovery
 - Graph evolution: Physical simulation

У

Example of Node-level ML Tasks

Example (1): Protein Folding

A protein chain acquires its native 3D structure

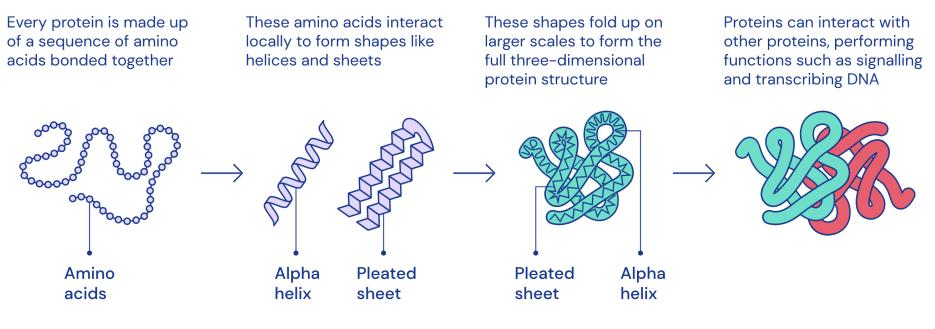
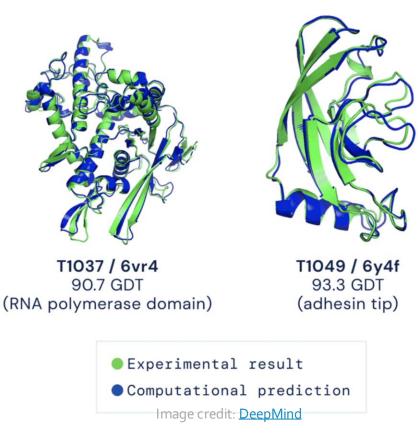


Image credit: DeepMind

The Protein Folding Problem

Computationally predict a protein's **3D structure** based solely on its amino acid sequence



AlphaFold: Impact

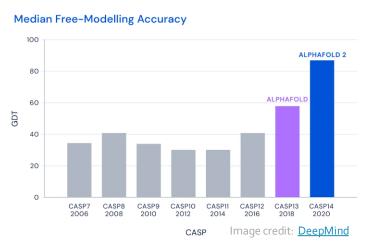


Image credit: SingularityHub

AlphaFold's Al could change the world of biological science as we know it

DeepMind's latest AI breakthrough can accurately predict the way proteins fold

Has Artificial Intelligence 'Solved' Biology's Protein-Folding Problem? DeepMind's latest AI breakthrough could turbocharge drug discovery

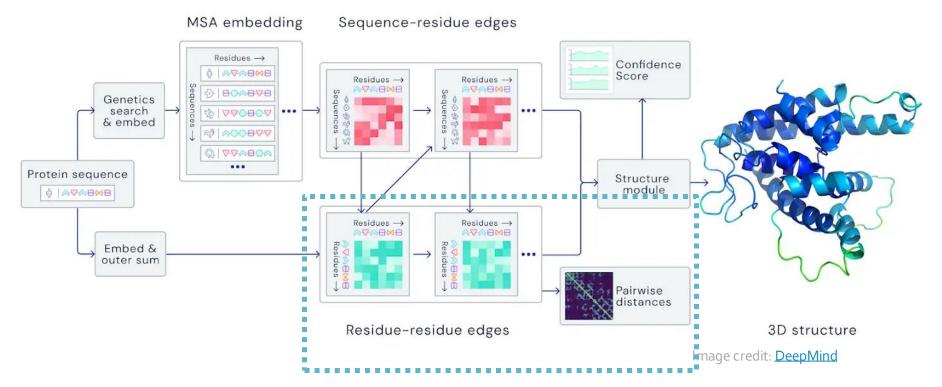
2/16/2023

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

AlphaFold: Solving Protein Folding

Key idea: "Spatial graph"

- Nodes: Amino acids in a protein sequence
- Edges: Proximity between amino acids (residues)



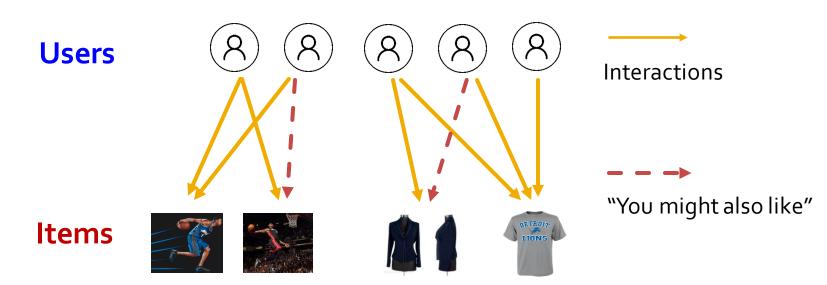
Spatial graph

Examples of Edge-level ML Tasks

Example (2): Recommender Systems

Users interacts with items

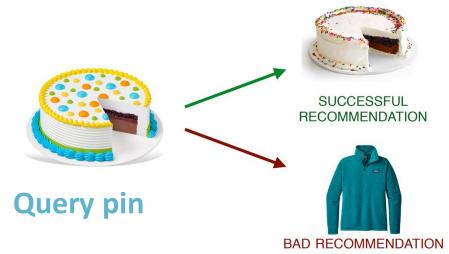
- Watch movies, buy merchandise, listen to music
- Nodes: Users and items
- Edges: User-item interactions
- Goal: Recommend items users might like



Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

PinSage: Graph-based Recommender

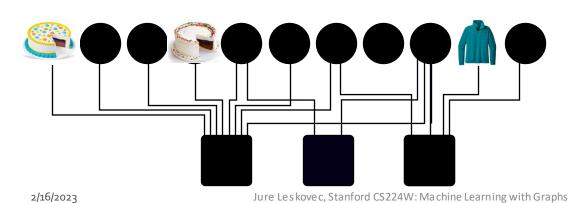
Task: Recommend related pins to users



Task: Learn node embeddings z_i such that $d(z_{cake1}, z_{cake2})$ $< d(z_{cake1}, z_{sweater})$

Z

Predict whether two nodes in a graph are related

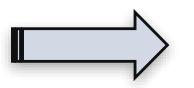


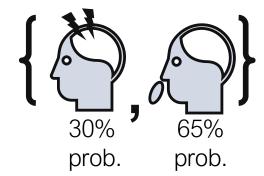
Example (3): Drug Side Effects

Many patients take multiple drugs to treat complex or co-existing diseases:

- 46% of people ages 70-79 take more than 5 drugs
- Many patients take more than 20 drugs to treat heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict adverse side effects



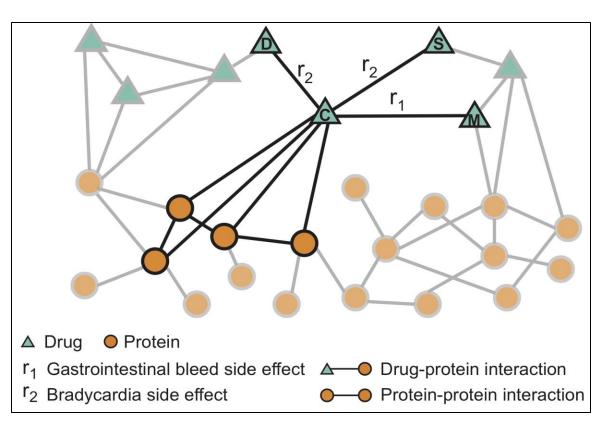


Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

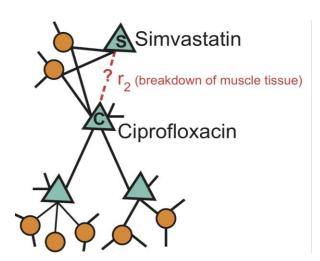
Zitnik et al., Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics 2018

Biomedical Graph Link Prediction

Nodes: Drugs & Proteins
Edges: Interactions



Query: How likely will Simvastatin and Ciprofloxacin, when taken together, break down muscle tissue?



Results: De novo Predictions

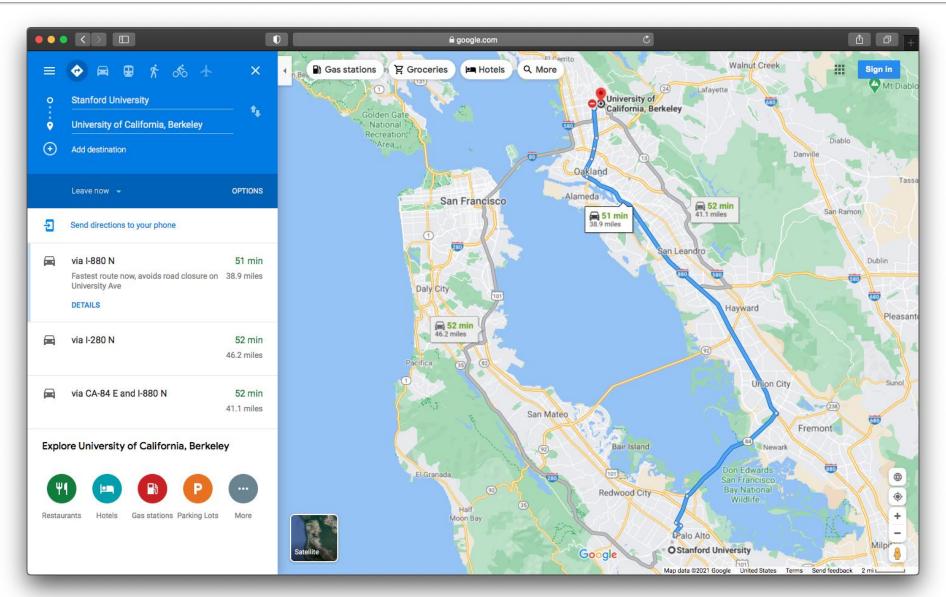
Rank	Drug <i>c</i>	Drug d	Side effect r	Evidence found
1	Pyrimethamine	Aliskiren	Sarcoma	Stage <i>et al.</i> 2015
2	Tigecycline	Bimatoprost	Autonomic neuropathy	
3 Omeprazole		Dacarbazine	Telangiectases	
4	Tolcapone	Pyrimethamine	Breast disorder	Bicker et al. 2017
5	Minoxidil	Paricalcitol	Cluster headache	
6	Omeprazole	Amoxicillin	Renal tubular acidosis	Russo et al. 2016
7	Anagrelide	Azelaic acid	Cerebral thrombosis	
8	Atorvastatin	Amlodipine	Muscle inflammation	Banakh et al. 2017
9	Aliskiren	Tioconazole	Breast inflammation	Parving et al. 2012
10	Estradiol	Nadolol	Endometriosis	
	Casa Data			

Case Report

Severe Rhabdomyolysis due to Presumed Drug Interactions between Atorvastatin with Amlodipine and Ticagrelor

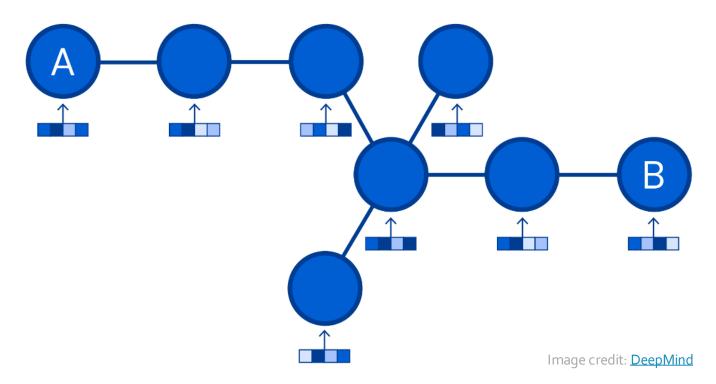
Examples of Subgraph-level ML Tasks

Example (4): Traffic Prediction



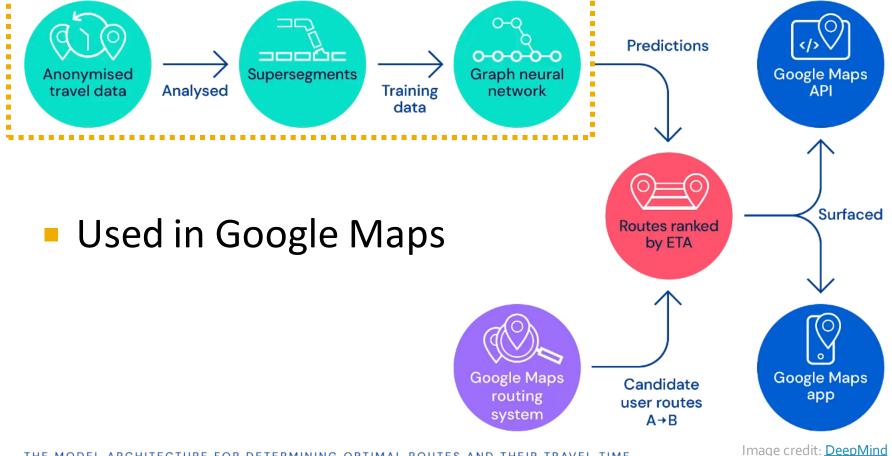
Road Network as a Graph

- Nodes: Road segments
- Edges: Connectivity between road segments
- Prediction: Time of Arrival (ETA)



Traffic Prediction via GNN

Predicting Time of Arrival with Graph Neural **Networks**



THE MODEL ARCHITECTURE FOR DETERMINING OPTIMAL ROUTES AND THEIR TRAVEL TIME. 2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

42

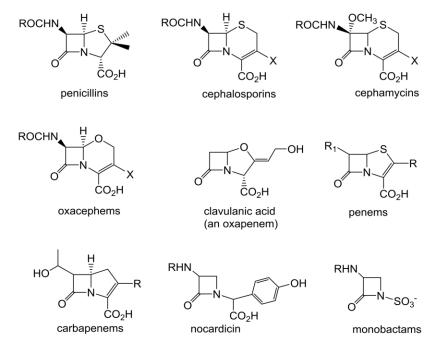
Examples of Graph-level ML Tasks

Example (5): Drug Discovery

Antibiotics are small molecular graphs

Nodes: Atoms

Edges: Chemical bonds



Konaklieva, Monika I. "Molecular targets of β -lactam-based antimicrobials: beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

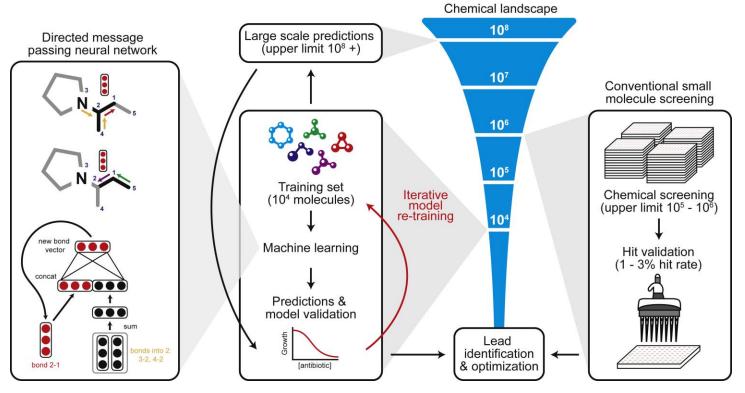
2/16/2023

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Stokes et al., <u>A Deep Learning Approach to Antibiotic Discovery</u>, Cell 2020

Deep Learning for Antibiotic Discovery

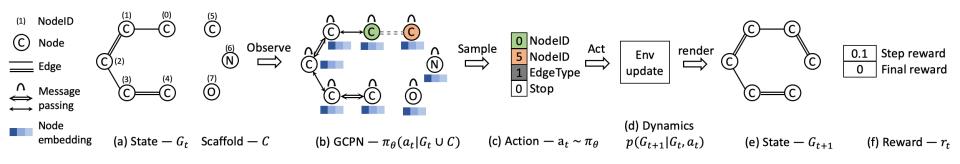
A Graph Neural Network graph classification model
Predict promising molecules from a pool of candidates



Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702. You et al., <u>Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation</u>, NeurIPS 2018

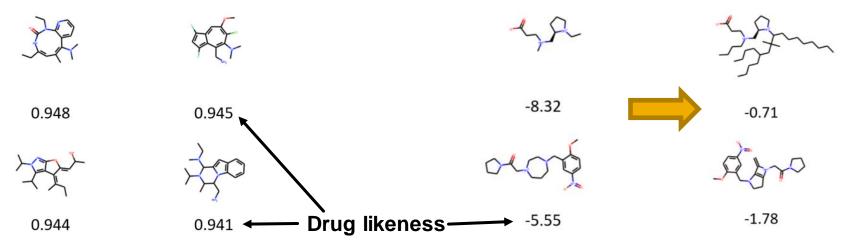
Molecule Generation / Optimization

Graph generation: Generating novel molecules



Use case 1: Generate novel molecules with high Drug likeness value

Use case 2: Optimize existing molecules to have desirable properties



2/16/2023

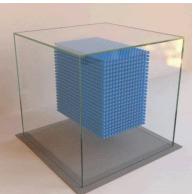
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Sanchez-Gonzalez et al., Learning to simulate complex physics with graph networks, ICML 2020

Example (6): Physics Simulation

Physical simulation as a graph:

- Nodes: Particles
- Edges: Interaction between particles



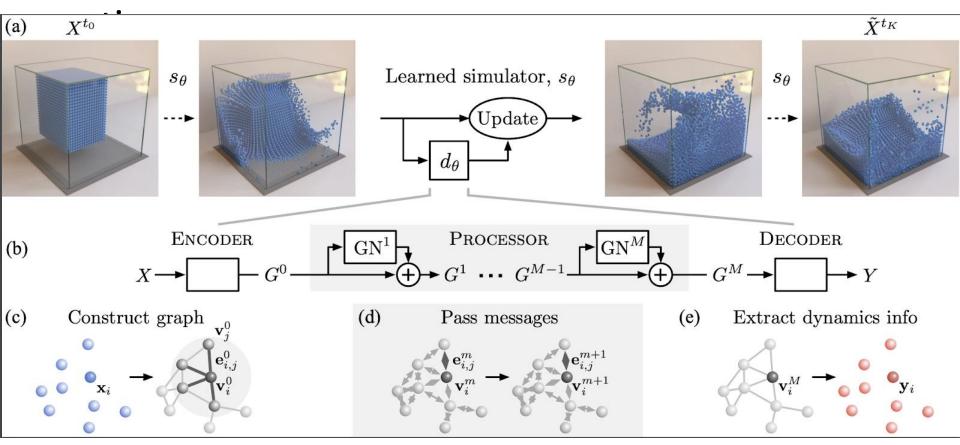


Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

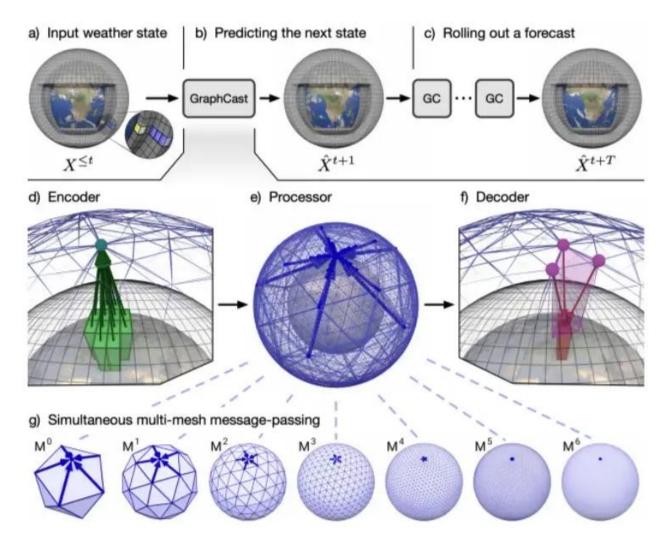
Sanchez-Gonzalez et al., Learning to simulate complex physics with graph networks, ICML 2020

Simulation Learning Framework

A graph evolution task:Goal: Predict how a graph will evolve over



Application: DeepMind weather forecasting



https://medium.com/syncedreview/deepmind-googles-ml-based-graphcast-outperforms-the-world-s-best-medium-range-weather-9d114460aa0c

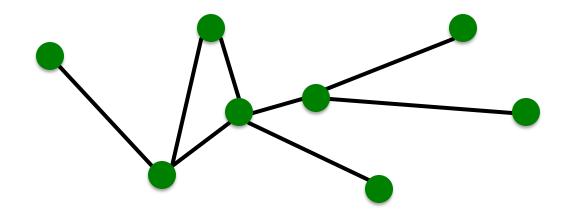
2/16/2023

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Stanford CS224W: Choice of Graph Representation

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

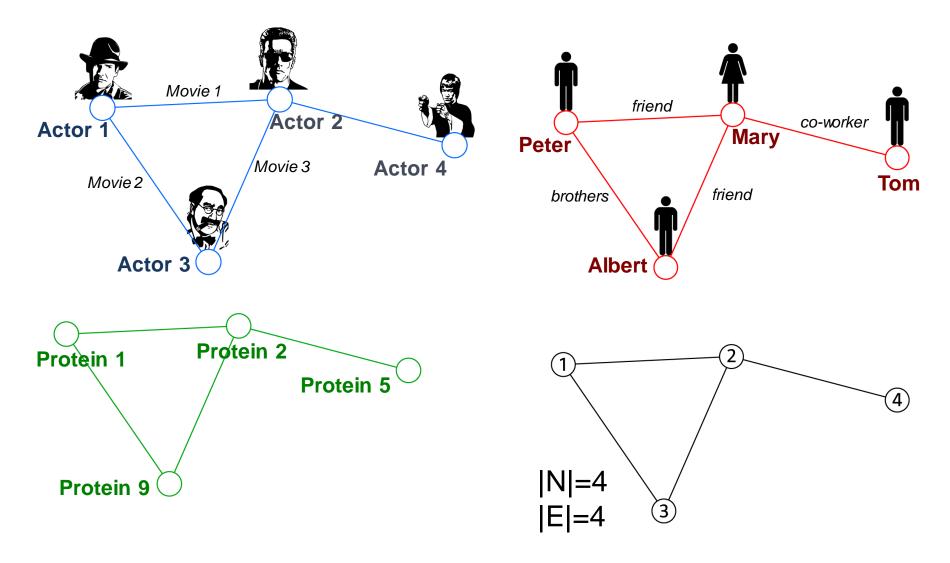
Components of a Network



Objects: nodes, vertices
Interactions: links, edges
System: network, graph

N E G(N,E)

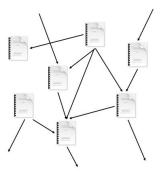
Graphs: A Common Language



Choosing a Proper Representation

- If you connect individuals that work with each other, you will explore a professional network
- If you connect those that have a sexual relationship, you will be exploring sexual networks
- If you connect scientific papers that cite each other, you will be studying the citation network

Image credit: ResearchGate



If you connect all papers with the same word in the title, what will you be exploring? It is a network, nevertheless

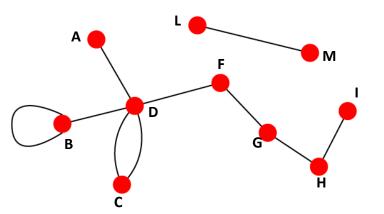
How do you define a graph?

- How to build a graph:
 - What are nodes?
 - What are edges?
- Choice of the proper network representation of a given domain/problem determines our ability to use networks successfully:
 - In some cases, there is a unique, unambiguous representation
 - In other cases, the representation is by no means unique
 - The way you assign links will determine the nature of the question you can study

Directed vs. Undirected Graphs

Undirected

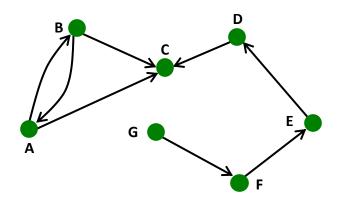
 Links: undirected (symmetrical, reciprocal)



- Examples:
 - Collaborations
 - Friendship on Facebook

Directed

 Links: directed (arcs)

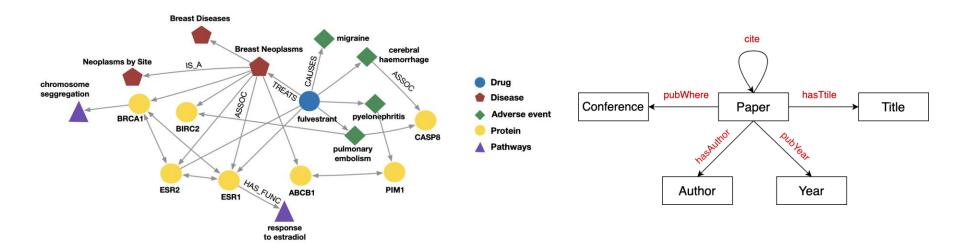


- Examples:
 - Phone calls
 - Following on Twitter

Heterogeneous Graphs

- A heterogeneous graph is defined as
 G = (V, E, R, T)
 - Nodes with node types $v_i \in V$
 - Edges with relation types $(v_i, r, v_j) \in E$
 - Node type $T(v_i)$
 - Relation type $r \in R$

Many Graphs are Heterogeneous Graphs



Biomedical Knowledge Graphs

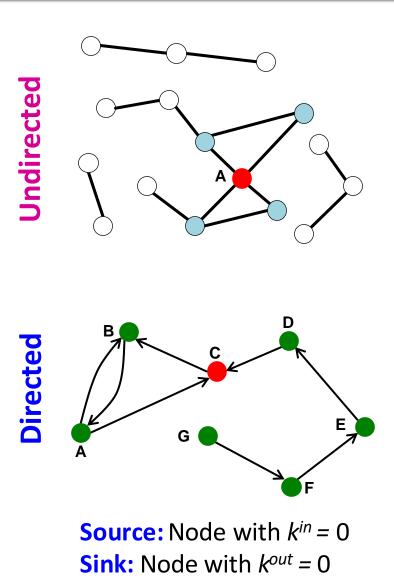
Example node: Migraine

Example edge: (fulvestrant, Treats, Breast Neoplasms) Example node type: Protein Example edge type (relation): Causes

Academic Graphs

Example node: ICML Example edge: (GraphSAGE, NeurIPS) Example node type: Author Example edge type (relation): pubYear

Node Degrees



Node degree, k_i: the number of edges adjacent to node *i* $k_{A} = 4$ Avg. degree: $\overline{k} = \langle k \rangle = \frac{1}{N} \overset{N}{\overset{}_{\overset{}_{\overset{}_{\overset{}}_{\overset{}_{\overset{}}_{\overset{}}_{\overset{}}_{\overset{}}_{\overset{}_{\overset{}}_{\overset{}}_{\overset{}}_{\overset{}}_{\overset{}}_{\overset{}_{\overset{}}_{\overset{}}_{\overset{}}_{\overset{}}_{\overset{}}_{\overset{}_{\overset{}}_{\overset{}}_{\overset{}}_{\overset{}}_{\overset{}}_{\overset{}}_{\overset{}}_{\overset{}_{\overset{}}}_{\overset{}}_{$ In directed networks we define an in-degree and out-degree. The (total) degree of a node is the sum of in- and out-degrees.

$$k_{C}^{in} = 2 \qquad k_{C}^{out} = 1 \qquad k_{C} = 3$$
$$\overline{k} = \frac{E}{k} \qquad \overline{k}^{in} = \overline{k}^{out}$$

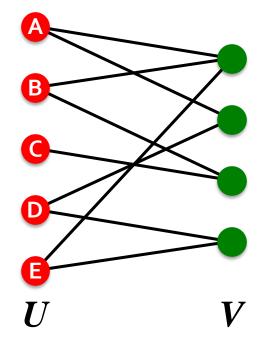
2/16/2023

Bipartite Graph

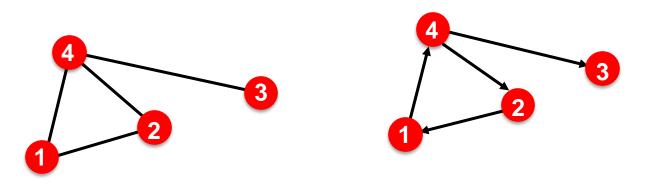
Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets

Examples:

- Authors-to-Papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)
- Recipes-to-Ingredients (they contain)
 "Folded" networks:
- Author collaboration networks
- Movie co-rating networks



Representing Graphs: Adjacency Matrix



 $A_{ij} = 1$ if there is a link from node *i* to node *j* $A_{ii} = 0$ otherwise

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Note that for a directed graph (right) the matrix is not symmetric.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Adjacency Matrices are Sparse

Networks are Sparse Graphs

Most real-world networks are sparse E << E_{max} (or <u>k</u> << N-1)

NETWORK	NODES	LINKS	DIRECTED/ UNDIRECTED	N	L	<k></k>
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.33
WWW	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email Addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93,439	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Paper	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90
			-			

Consequence: Adjacency matrix is filled with zeros! (**Density of the matrix (E/N²):** WWW=1.51x10⁻⁵, MSN IM = 2.27x10⁻⁸)

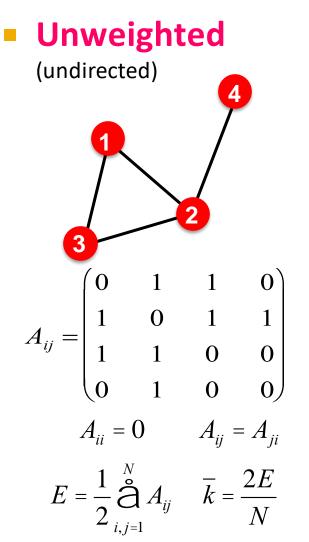
2/16/2023

Node and Edge Attributes

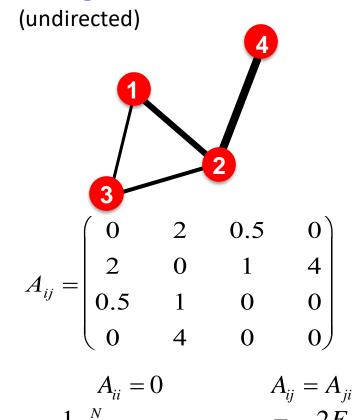
Possible options:

- Weight (e.g., frequency of communication)
- Ranking (best friend, second best friend...)
- Type (friend, relative, co-worker)
- Sign: Friend vs. Foe, Trust vs. Distrust
- Properties depending on the structure of the rest of the graph: Number of common friends

More Types of Graphs



Examples: Friendship, Hyperlink

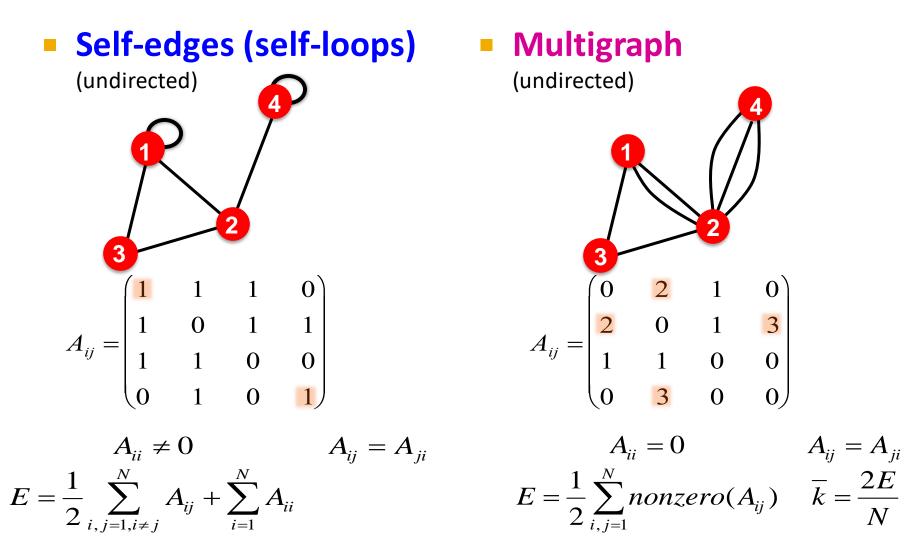


$$E = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij}) \quad \overline{k} = \frac{2E}{N}$$

Examples: Collaboration, Internet, Roads

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

More Types of Graphs



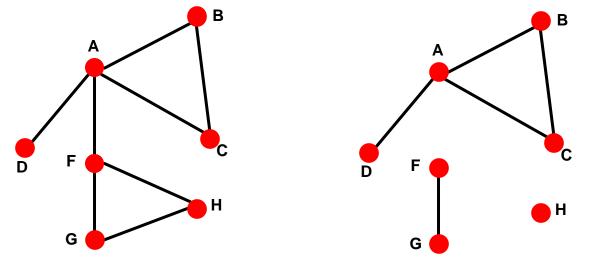
Examples: Proteins, Hyperlinks

Examples: Communication, Collaboration

Connectivity of Undirected Graphs

Connected (undirected) graph:

- Any two vertices can be joined by a path
- A disconnected graph is made up by two or more connected components



Largest Component: Giant Component

Isolated node (node H)

Connectivity: Example

The adjacency matrix of a network with several components can be written in a block-diagonal form, so that nonzero elements are confined to squares, with all other elements being zero:

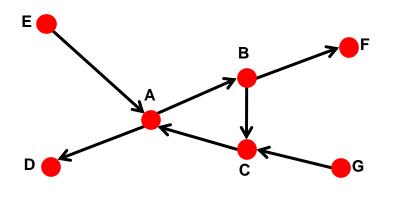
Disconnected	
Connected	

							_	
	0	1	1	0	0	0	0)
	1	0	1	0	0	0	0	
	1	1	0	0	0	0	0	
	0	0	0	0	0	0	1	
	0	0	0	0	0	1	1	
	0	0	0	0	1	0	1	
	0	0	0	1	1	1	0	J
(0	1	1	0	0	0	0	
	1	0	1	1	0	0	0	
	1							
- 1	Ŧ	1	0	0	0	0	0	
	0	1	0	0 0	0	0	0	
	0	1	0	0	0	0	1	

Connectivity of Directed Graphs

Strongly connected directed graph

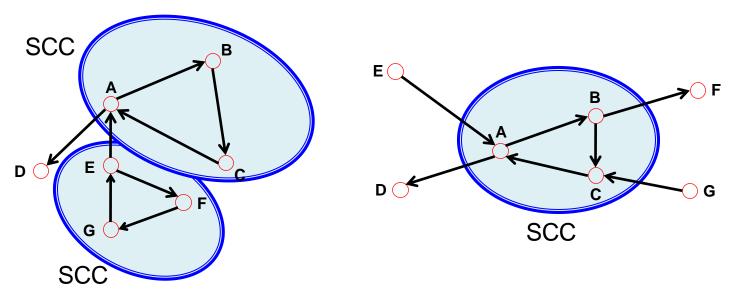
- has a path from each node to every other node and vice versa (e.g., A-B path and B-A path)
- Weakly connected directed graph
 - is connected if we disregard the edge directions



Graph on the left is connected but not strongly connected (e.g., there is no way to get from F to G by following the edge directions).

Connectivity of Directed Graphs

Strongly connected components (SCCs) can be identified, but not every node is part of a nontrivial strongly connected component.



In-component: nodes that can reach the SCC, Out-component: nodes that can be reached from the SCC.

2/16/2023

Summary

Machine learning with Graphs

Applications and use cases

Different types of tasks:

- Node level
- Edge level
- Graph level

Choice of a graph representation:

Directed, undirected, bipartite, weighted, adjacency matrix

Stanford CS224W: Course Logistics

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Prerequisites

- The course is self-contained.
- No single topic is too hard by itself.
- But we will cover and touch upon many topics and this is what makes the course hard.

Good background in:

- Machine Learning
- Algorithms and graph theory
- Probability and statistics

Programming:

- You should be able to write non-trivial programs (in Python)
- Familiarity with PyTorch is a plus

Graph Machine Learning Tools

We use <u>PyG (PyTorch Geometric)</u>:

- The ultimate library for Graph Neural Networks
- We further recommend:
 - <u>GraphGym</u>: Platform for designing Graph Neural Networks.
 - Modularized GNN implementation, simple hyperparameter tuning, flexible user customization
 - Both platforms are very helpful for the course project (save your time & provide advanced GNN functionalities)
- Other network analytics tools: SNAP.PY, NetworkX

CS224W Course Logistics

The class meets Tue and Thu 3:00-4:20pm Pacific Time *in person*

 Videos of the lectures will be recorded and posted on Canvas

Structure of lectures:

- 70-80 minutes of a lecture
 - During this time you can ask questions
- I0 minutes of a live Q&A/discussion session at the end of the lecture

Logistics: Teaching Staff

Instructor

Jure Leskovec

Guest Instructor

Jiaxuan You

Course Assistants

Hamed Nilforoshan Head CA

Mohammad Aljubran

Sharmila Nangi

Serina Chang

Lun Yu (Tina) Li

Feiyang (Kathy) Yu

Aman Bansal

Paridhi Maheshwari

Logistics: Website

http://cs224w.stanford.edu

- Slides posted before the class
- Readings:
 - Graph Representation Learning Book by Will Hamilton
 - Research papers
- Optional readings:
 - Papers and pointers to additional literature
 - This will be very useful for course projects

Logistics: Communication

Ed Discussion:

- Access via link on Canvas
- Please participate and help each other!
 - Don't post code, annotate your questions, search for answers before you ask
- We will post course announcements to Ed (make sure you check it regularly)
- Please don't communicate with prof/TAs via personal emails, but <u>always</u> use:
 - <u>cs224w-win2223-staff@lists.stanford.edu</u>

Logistics: Office Hours

OHs will be virtual

- We will have OHs every day, starting from 2nd week of the course
- See <u>http://web.stanford.edu/class/cs224w/oh.html</u> for Zoom links and link to QueueStatus
- Schedule to be announced by end of week

Work for Course: Grading

Final grade will be composed of:

Homework: 25%

- 3 written homeworks, each worth 8.3%
- Coding assignments: 20%
 - 5 coding assignments using Google Colab, each worth 4%
- Exam: 35%

Course project: 20%

Proposal: 20%; Final report: 70%; Poster: 10%

Extra credit: Ed participation, PyG/GraphGym code contribution

Used if you are on the boundary between grades

Work for Course: Submitting

How to submit?

Upload via Gradescope

- You will be automatically registered to Gradescope once you officially enroll in CS224W
- Homeworks, Colabs (numerical answers), and project deliverables are submitted on Gradescope

Total of <u>2 Late Periods (LP)</u> per student

- Max 1 LP per assignment (no LP for the final report)
 - LP gives 4 extra days: assignments usually due on Thursday (11:59pm) → with LP, it is due the following Monday (11:59pm)

Work for Course: HWs, Colabs

- Homeworks (25%, n=3)
 - Written assignments take longer and take time (~10-20h) – start early!

A combination of theory, algorithm design, and math

- Colabs (20%, n=5)
 - We have more Colabs but they are shorter (~3-5h); Colab 0 is not graded.
 - Get hands-on experience coding and training GNNs; good preparation for final projects and industry

Work for Course: Exam

Single exam: Thursday, March 7 (no class)

Take-home, open-book, timed

- Administered via Gradescope
- Released at 10am PT on Thursday March 7, available until 10am PT the following day
- Once you open it, you will have 100 minutes to complete the exam

Content

- Will have written questions (similar to Homework), will possibly have a coding section (similar to Colabs)
- More details to come!

Work for Course: Project

Details will be posted soon:

Focus is on real-world applications of GNNs

Logistics

- Groups of up to 3 students
- Groups of 1 or 2 are allowed; the team size will be taken under consideration when evaluating the scope of the project. But 3 person teams can be more efficient.

Google Cloud credits

- We will provide \$50 in Google Cloud credits to each student
- You can also get \$300 with Google Free Trial (<u>https://cloud.google.com/free/docs/gcp-free-tier</u>)

Read: <u>http://cs224w.stanford.edu/info.html</u>

Course Schedule

Assignment	Due on (11:59pm PT)
Colab 0	Not graded
Colab 1	Thu, 1/26 (week 3)
Homework 1	Thu, 2/2 (week 4)
Project Proposal	Tue, 2/7 (week 5)
Colab 2	Thu, 2/9 (week 5)
Homework 2	Thu, 2/16 (week 6)
Colab 3	Tue, 2/23 (week 7)
Homework 3	Thu, 3/2 (week 8)
EXAM	Thu, 3/7 (week 9)
Colab 4	Thu, 3/9 (week 9)
Colab 5	Thu, 3/14 (week 10)
Project Report	Thu, 3/21 (No Late Periods!)

Honor Code

• We strictly enforce the <u>Stanford Honor Code</u>

- Violations of the Honor Code include:
 - Copying or allowing another to copy from one's own paper
 - Unpermitted collaboration
 - Plagiarism
 - Giving or receiving unpermitted aid on a take-home examination
 - Representing as one's own work the work of another
 - Giving or receiving aid on an assignment under circumstances in which a reasonable person should have known that such aid was not permitted
- The standard sanction for a first offense includes a onequarter suspension and 40 hours of community service.

Course Logistics: Q&A

Two ways to ask questions during lecture: In-person (encouraged)

- On Ed:
 - At the beginning of class, we will open a new discussion thread dedicated to this lecture
 - When to ask on Ed?
 - If you are watching the livestream remotely
 - If you have a minor clarifying question
 - If we run out of time to get to your question live
 - Otherwise, try raising your hand first!

Course Logistics: Colab o

- Colabs 0 and 1 will be released on our course website at 3pm Thursday (1/12)
 Colab 0:
 - Does not need to be handed-in
- Colab 1:
 - Due on Thursday 10/07 (2 weeks from today)
 - Submit written answers and code on Gradescope
 - Will cover material from Lectures 1-4, but you can get started right away!