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Why Graphs?
Graphs are a general 

language for describing and 
analyzing entities with 
relations/interactions
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Graph
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Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
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Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

https://salientnetworks.com/introductory-guide-understanding-network-infrastructure/
https://en.wikipedia.org/wiki/Food_chain
https://www.pinterest.com/pin/714524297112802250/
https://www.visitlondon.com/traveller-information/getting-around-london/london-maps-and-guides/free-london-travel-maps
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Economic Networks

Citation Networks

Communication Networks
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Social Networks
Image credit: Medium

Networks of Neurons

Image credit: The Conversation

Internet

Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://theconversation.com/deep-learning-and-neural-networks-77259
https://missoulacurrent.com/government/2017/11/tester-net-neutrality/
https://science.sciencemag.org/content/325/5939/422
https://courses.lumenlearning.com/wmopen-introbusiness/chapter/communication-channels-flows-networks/
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Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes

Image credit: Wikipedia

Code Graphs

Image credit: ResearchGate

Molecules

Image credit: MDPI

Scene Graphs

Image credit: math.hws.edu

Regulatory Networks

Image credit: ese.wustl.edu
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https://arxiv.org/abs/1503.00759
https://en.wikipedia.org/wiki/Triangle_mesh
https://www.researchgate.net/figure/Static-call-graph-for-Figure-1-Callsites-are-labeled-with-their-line-number-in-the-code_fig1_220751974
https://www.mdpi.com/2078-2489/1/2/60/htm
http://math.hws.edu/graphicsbook/c2/s4.html
https://www.ese.wustl.edu/~nehorai/research/genomic/grn.html
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Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes

Image credit: Wikipedia

Code Graphs

Image credit: ResearchGate

Molecules

Image credit: MDPI

Scene Graphs

Image credit: math.hws.edu

Regulatory Networks

Image credit: ese.wustl.edu
Main question:

How do we take advantage of 
relational structure for better 

prediction?
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https://arxiv.org/abs/1503.00759
https://en.wikipedia.org/wiki/Triangle_mesh
https://www.researchgate.net/figure/Static-call-graph-for-Figure-1-Callsites-are-labeled-with-their-line-number-in-the-code_fig1_220751974
https://www.mdpi.com/2078-2489/1/2/60/htm
http://math.hws.edu/graphicsbook/c2/s4.html
https://www.ese.wustl.edu/~nehorai/research/genomic/grn.html


Complex domains have a rich relational 
structure, which can be represented as a

relational graph

By explicitly modeling relationships we 
achieve better performance!
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Images

Text/Speech

Modern deep learning toolbox is designed 
for simple sequences & grids
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Modern 

deep learning toolbox 

is designed for 
sequences & grids

2/16/2023
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Not everything 
can be represented as 

a sequence or a grid

How can we develop neural 

networks that are much more 
broadly applicable?

New frontiers beyond classic neural 

networks that only learn on images 
and sequences

2/16/2023
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Graphs are the new frontier 
of deep learning

Graphs connect things.

2/16/2023
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Networks are complex.
 Arbitrary size and complex topological 

structure (i.e., no spatial locality like grids)

 No fixed node ordering or reference point
 Often dynamic and have multimodal features
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vs.

Networks Images

Text
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How can we develop neural networks 
that are much more broadly 

applicable?

Graphs are the new frontier 
of deep learning

2/16/2023
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…
z

Input: Network

Predictions: Node labels, 

New links, Generated 

graphs and subgraphs
2/16/2023
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Each node defines a computation graph

▪ Each edge in this graph is a 
transformation/aggregation function 

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 

http://ieeexplore.ieee.org/document/4700287/
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Intuition: Nodes aggregate information from their 
neighbors using neural networks

Neural networks

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf


Intuition: Network neighborhood defines a 
computation graph

Jure Leskovec, Stanford University 19

Every node defines a computation 
graph based on its neighborhood!



(Supervised) Machine Learning Lifecycle: 
This feature, that feature. Every single time!
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Raw 

Data

Graph 

Data

Learning 

Algorithm
Model

Downstream 

prediction task

Feature 

Engineering
Representation 

Learning --

Automatically 

learn the features
2/16/2023



Map nodes to d-dimensional 
embeddings such that similar nodes in 

the network are embedded close 
together
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representationnode

𝒇: 𝑢 → ℝ𝑑

ℝ𝑑

Feature representation, 

embedding

u
Learn a neural network

2/16/2023
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We are going to explore Machine Learning and 
Representation Learning for graph data:

▪ Traditional methods: Graphlets, Graph Kernels

▪ Methods for node embeddings: DeepWalk, Node2Vec

▪ Graph Neural Networks: GCN, GraphSAGE, GAT, 
Theory of GNNs

▪ Knowledge graphs and reasoning: TransE, BetaE

▪ Deep generative models for graphs: GraphRNN

▪ Applications to Biomedicine, Science, Technology
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Date Topic Date Topic

Tue, 1/10
1. Introduction; Machine Learning 
for Graphs

Tue, 2/14
11. Community Structure 
in Networks

Thu, 1/12 2. Node Embeddings Thu, 2/16
12. Traditional 
Generative Models for Graphs

Tue, 1/17
3. Label Propagation for 
Node Classification

Tue, 2/21
13. Deep Generative Models 
for Graphs

Thu, 1/19
4. Graph Neural Networks 1: 
GNN Model

Thu, 2/23 14. Advanced Topics on GNNs

Tue, 1/24
5. Graph Neural Networks 2: 
Design Space

Tue, 2/28 15. Scaling up GNNs

Thu, 1/26
6. Applications of Graph 
Neural Networks

Thu, 3/2 16. Explainability

Tue, 1/31 7. Theory of Graph Neural Networks Tue, 3/7 EXAM

Thu, 2/2 8. Knowledge Graph Embeddings Thu, 3/9 17. Guest lecture: TBD

Tue, 2/7
9. Reasoning over 
KnowledgeGraphs

Tue, 3/14 18. GNNs for Science

Thu, 2/9
10. Frequent Subgraph Mining with 
GNNs

Thu, 3/16 19. Special topics in GNNs
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Node level

Edge-level

Community 

(subgraph)

level

Graph-level 

prediction,

Graph 

generation



 Node classification: Predict a property of a node
▪ Example: Categorize online users / items

 Link prediction: Predict whether there are missing 
links between two nodes
▪ Example: Knowledge graph completion

 Graph classification: Categorize different graphs
▪ Example: Molecule property prediction

 Clustering: Detect if nodes form a community
▪ Example: Social circle detection

 Other tasks:
▪ Graph generation: Drug discovery

▪ Graph evolution: Physical simulation
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 Node classification: Predict a property of a node
▪ Example: Categorize online users / items

 Link prediction: Predict whether there are missing 
links between two nodes
▪ Example: Knowledge graph completion

 Graph classification: Categorize different graphs
▪ Example: Molecule property prediction

 Clustering: Detect if nodes form a community
▪ Example: Social circle detection
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▪ Graph generation: Drug discovery

▪ Graph evolution: Physical simulation
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These Graph ML tasks lead to 
high-impact applications!





A protein chain acquires its native 3D structure
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Image credit: DeepMind

https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery


Computationally predict a protein’s 3D structure 
based solely on its amino acid sequence
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Image credit: DeepMind

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
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Image credit: DeepMind

Image credit: SingularityHub

https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
https://singularityhub.com/2020/12/15/deepminds-alphafold-is-close-to-solving-one-of-biologys-greatest-challenges/
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Image credit: DeepMind

 Key idea: “Spatial graph”

▪ Nodes: Amino acids in a protein sequence

▪ Edges: Proximity between amino acids (residues)

Spatial graph

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology




Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 34

Items

Users

 Users interacts with items

▪ Watch movies, buy merchandise, listen to music

▪ Nodes: Users and items

▪ Edges: User-item interactions

 Goal: Recommend items users might like

2/16/2023

Interactions

“You might also like”



Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node 
embeddings 𝑧𝑖 such that
𝑑 𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑐𝑎𝑘𝑒2
< 𝑑(𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑠𝑤𝑒𝑎𝑡𝑒𝑟)

𝑧

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

2/16/2023

https://arxiv.org/pdf/1806.01973.pdf


Many patients take multiple drugs to treat 
complex or co-existing diseases:

 46% of people ages 70-79 take more than 5 drugs
 Many patients take more than 20 drugs to treat 

heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict 
adverse side effects

,

Prescribed 

drugs

Drug

side effect

30% 

prob.

65% 

prob.
36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs2/16/2023



 Nodes: Drugs & Proteins
 Edges: Interactions

372/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Query: How likely 
will Simvastatin and 
Ciprofloxacin, when 
taken together, 
break down muscle 
tissue?

Zitnik et al., Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics 2018

https://arxiv.org/pdf/1802.00543.pdf


Evidence foundDrug c Drug d
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Zitnik et al., Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics 2018

https://arxiv.org/pdf/1802.00543.pdf




 a
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 Nodes: Road segments
 Edges: Connectivity between road segments
 Prediction: Time of Arrival (ETA)
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Image credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks


Predicting Time of Arrival with Graph Neural 
Networks

 Used in Google Maps
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Image credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks




 Antibiotics are small molecular graphs

▪ Nodes: Atoms

▪ Edges: Chemical bonds
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Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials: 
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

https://www.cnn.com/2019/01/24/health/antibiotic-resistance-climate-change-gbr-scli-intl/index.html
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Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." 
Cell 180.4 (2020): 688-702.

 A Graph Neural Network graph classification model
 Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

https://www.sciencedirect.com/science/article/pii/S0092867420301021


Graph generation: Generating novel molecules
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Use case 1: Generate novel molecules 

with high Drug likeness value

Use case 2: Optimize existing molecules to 

have desirable properties

You et al., Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation, NeurIPS 2018

Drug likeness

https://arxiv.org/pdf/1806.02473.pdf


Physical simulation as a graph:
 Nodes: Particles
 Edges: Interaction between particles
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Sanchez-Gonzalez et al., Learning to simulate complex physics with graph networks, ICML 2020

https://arxiv.org/pdf/2002.09405.pdf


A graph evolution task:
 Goal: Predict how a graph will evolve over 

time

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 48

Sanchez-Gonzalez et al., Learning to simulate complex physics with graph networks, ICML 2020

https://arxiv.org/pdf/2002.09405.pdf
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https://medium.com/syncedreview/deepmind-googles-ml-based-graphcast-outperforms-the-world-s-best-medium-range-weather-

9d114460aa0c

https://medium.com/syncedreview/deepmind-googles-ml-based-graphcast-outperforms-the-world-s-best-medium-range-weather-9d114460aa0c
https://medium.com/syncedreview/deepmind-googles-ml-based-graphcast-outperforms-the-world-s-best-medium-range-weather-9d114460aa0c
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 Objects: nodes, vertices N

 Interactions: links, edges E

 System: network, graph G(N,E)
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Peter Mary

Albert

Tom

co-worker

friendbrothers

friend

Protein 1 Protein 2

Protein 5

Protein 9

Movie 1

Movie 3
Movie 2

Actor 3

Actor 1 Actor 2

Actor 4

|N|=4

|E|=4



 If you connect individuals that work 
with each other, you will explore a 
professional network

 If you connect those that have a 
sexual relationship, you will be 
exploring sexual networks

 If you connect scientific papers
that cite each other, you will be
studying the citation network

 If you connect all papers with the same word in the title, 
what will you be exploring? It is a network, nevertheless
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Image credit: ResearchGate

Image credit: Euro Scientists

https://www.researchgate.net/figure/A-Figure-from-Bearman-Moody-and-Stovel-47-based-the-Add-Health-Data-Set-A-Link_fig2_331307250
https://www.euroscientist.com/imagine-a-social-network-like-facebook-with-no-facebook/


 How to build a graph:
▪ What are nodes?

▪ What are edges?
 Choice of the proper network representation 

of a given domain/problem determines our 
ability to use networks successfully:
▪ In some cases, there is a unique, unambiguous 

representation

▪ In other cases, the representation is by no means 
unique

▪ The way you assign links will determine the nature 
of the question you can study
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Undirected
 Links: undirected 

(symmetrical, reciprocal)

 Examples:

▪ Collaborations

▪ Friendship on Facebook

Directed
 Links: directed 

(arcs)

 Examples:

▪ Phone calls

▪ Following on Twitter
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 A heterogeneous graph is defined as 
𝑮 = 𝑽, 𝑬, 𝑹,𝑻

▪ Nodes with node types 𝑣𝑖 ∈ 𝑉

▪ Edges with relation types 𝑣𝑖 , 𝑟, 𝑣𝑗 ∈ 𝐸

▪ Node type 𝑇 𝑣𝑖
▪ Relation type 𝑟 ∈ 𝑅

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56



2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

Academic GraphsBiomedical Knowledge Graphs
Example node: ICML
Example edge: (GraphSAGE, NeurIPS) 
Example node type: Author
Example edge type (relation): pubYear

Example node: Migraine
Example edge: (fulvestrant, Treats, Breast Neoplasms) 
Example node type: Protein
Example edge type (relation): Causes
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Node degree, ki: the number 
of edges adjacent to node i

kA = 4

D
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D

E

In directed networks we define 
an in-degree and out-degree.
The (total) degree of a node is the 
sum of in- and out-degrees.

2=in

Ck 1=out

Ck 3=Ck

k = k =
1

N
ki

i=1

N

å =
2E

N

outin kk =

Avg. degree:

Source: Node with kin = 0
Sink: Node with kout = 0 N

E
k =



 Bipartite graph is a graph whose nodes can 
be divided into two disjoint sets U and V such that 
every link connects a node in U to one in V; that is, 
U and V are independent sets

 Examples:
▪ Authors-to-Papers (they authored)

▪ Actors-to-Movies (they appeared in)

▪ Users-to-Movies (they rated)

▪ Recipes-to-Ingredients (they contain)
 “Folded” networks:
▪ Author collaboration networks

▪ Movie co-rating networks
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U V
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Aij = 1 if there is a link from node i to node j

Aij = 0 otherwise
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Most real-world networks are sparse
E << Emax (or k << N-1)

Consequence: Adjacency matrix is filled with zeros!
(Density of the matrix (E/N2): WWW=1.51x10-5, MSN IM = 2.27x10-8)
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Possible options:

▪ Weight (e.g., frequency of communication)

▪ Ranking (best friend, second best friend…)

▪ Type (friend, relative, co-worker)

▪ Sign: Friend vs. Foe, Trust vs. Distrust

▪ Properties depending on the structure of the rest 
of the graph: Number of common friends
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 Unweighted
(undirected)

 Weighted 
(undirected)
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Examples: Friendship, Hyperlink Examples: Collaboration, Internet, Roads



 Self-edges (self-loops)
(undirected)

 Multigraph
(undirected)
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Largest Component:
Giant Component

Isolated node (node H)

 Connected (undirected) graph:

▪ Any two vertices can be joined by a path

 A disconnected graph is made up by two or 
more connected components

D
C

A

B

H

F

G

D
C

A

B

H

F

G
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The adjacency matrix of a network with several 
components can be written in a block- diagonal 
form, so that nonzero elements are confined to 
squares, with all other elements being zero:
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E

C

A

B
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 Strongly connected directed graph

▪ has a path from each node to every other node 
and vice versa (e.g., A-B path and B-A path)

 Weakly connected directed graph

▪ is connected if we disregard the edge directions

Graph on the left is connected
but not strongly connected (e.g.,
there is no way to get from F to G by 
following the edge directions).
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In-component: nodes that can reach the SCC,

Out-component: nodes that can be reached from the SCC.
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 Strongly connected components (SCCs) can 
be identified, but not every node is part of a 
nontrivial strongly connected component.
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 Machine learning with Graphs

▪ Applications and use cases

 Different types of tasks:

▪ Node level

▪ Edge level

▪ Graph level

 Choice of a graph representation:

▪ Directed, undirected, bipartite, weighted, 
adjacency matrix
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CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu



 The course is self-contained.
 No single topic is too hard by itself.
 But we will cover and touch upon many topics 

and this is what makes the course hard.

▪ Good background in:

▪ Machine Learning

▪ Algorithms and graph theory

▪ Probability and statistics

▪ Programming:

▪ You should be able to write non-trivial programs (in Python)

▪ Familiarity with PyTorch is a plus
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 We use PyG (PyTorch Geometric):

▪ The ultimate library for Graph Neural Networks
 We further recommend:

▪ GraphGym: Platform for designing Graph Neural 
Networks.

▪ Modularized GNN implementation, simple hyperparameter 
tuning, flexible user customization

▪ Both platforms are very helpful for the course project 
(save your time & provide advanced GNN 
functionalities)

 Other network analytics tools: SNAP.PY, NetworkX
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 The class meets Tue and Thu 3:00-4:20pm 
Pacific Time in person

▪ Videos of the lectures will be recorded and posted 
on Canvas

 Structure of lectures:

▪ 70-80 minutes of a lecture

▪ During this time you can ask questions

▪ 10 minutes of a live Q&A/discussion session at the 
end of the lecture
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 http://cs224w.stanford.edu

▪ Slides posted before the class

 Readings:

▪ Graph Representation Learning Book by 
Will Hamilton

▪ Research papers

 Optional readings:

▪ Papers and pointers to additional literature

▪ This will be very useful for course projects
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 Ed Discussion:

▪ Access via link on Canvas

▪ Please participate and help each other!

▪ Don’t post code, annotate your questions, search for 
answers before you ask

▪ We will post course announcements to Ed (make 
sure you check it regularly)

 Please don’t communicate with prof/TAs via 
personal emails, but always use:

▪ cs224w-win2223-staff@lists.stanford.edu
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 OHs will be virtual

▪ We will have OHs every day, starting from 2nd week 
of the course

▪ See http://web.stanford.edu/class/cs224w/oh.html
for Zoom links and link to QueueStatus

▪ Schedule to be announced by end of week
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 Final grade will be composed of:

▪ Homework: 25%

▪ 3 written homeworks, each worth 8.3%

▪ Coding assignments: 20%

▪ 5 coding assignments using Google Colab, each worth 4%

▪ Exam: 35%

▪ Course project: 20%

▪ Proposal: 20%; Final report: 70%; Poster: 10%

▪ Extra credit: Ed participation, PyG/GraphGym code 
contribution

▪ Used if you are on the boundary between grades
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 How to submit?

▪ Upload via Gradescope

▪ You will be automatically registered to Gradescope once 
you officially enroll in CS224W 

▪ Homeworks, Colabs (numerical answers), and 
project deliverables are submitted on Gradescope

 Total of 2 Late Periods (LP) per student

▪ Max 1 LP per assignment (no LP for the final report)

▪ LP gives 4 extra days: assignments usually due on 
Thursday (11:59pm) →with LP, it is due the following 
Monday (11:59pm)
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 Homeworks (25%, n=3)

▪ Written assignments take longer and take time 
(~10-20h) – start early!

▪ A combination of theory, algorithm design, and math

 Colabs (20%, n=5)

▪ We have more Colabs but they are shorter 
(~3-5h); Colab 0 is not graded.

▪ Get hands-on experience coding and training GNNs; 
good preparation for final projects and industry
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 Single exam: Thursday, March 7 (no class)

▪ Take-home, open-book, timed

▪ Administered via Gradescope

▪ Released at 10am PT on Thursday March 7, available 
until 10am PT the following day

▪ Once you open it, you will have 100 minutes to 
complete the exam

▪ Content

▪ Will have written questions (similar to Homework), will 
possibly have a coding section (similar to Colabs)

▪ More details to come!
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 Details will be posted soon:
▪ Focus is on real-world applications of GNNs

 Logistics
▪ Groups of up to 3 students
▪ Groups of 1 or 2 are allowed; the team size will be 

taken under consideration when evaluating the scope 
of the project. But 3 person teams can be more 
efficient.

▪ Google Cloud credits
▪ We will provide $50 in Google Cloud credits to each student
▪ You can also get $300 with Google Free Trial 

(https://cloud.google.com/free/docs/gcp-free-tier)

 Read: http://cs224w.stanford.edu/info.html

https://cloud.google.com/free/docs/gcp-free-tier
http://cs224w.stanford.edu/info.html


Assignment Due on (11:59pm PT)

Colab 0 Not graded

Colab 1 Thu, 1/26 (week 3)

Homework 1 Thu, 2/2 (week 4)

Project Proposal Tue, 2/7 (week 5)

Colab 2 Thu, 2/9 (week 5)

Homework 2 Thu, 2/16 (week 6)

Colab 3 Tue, 2/23 (week 7)

Homework 3 Thu, 3/2 (week 8)

EXAM Thu, 3/7 (week 9)

Colab 4 Thu, 3/9 (week 9)

Colab 5 Thu, 3/14 (week 10)

Project Report Thu, 3/21 (No Late Periods!)
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 We strictly enforce the Stanford Honor Code

▪ Violations of the Honor Code include:
▪ Copying or allowing another to copy from one’s own paper

▪ Unpermitted collaboration

▪ Plagiarism

▪ Giving or receiving unpermitted aid on a take-home examination

▪ Representing as one’s own work the work of another

▪ Giving or receiving aid on an assignment under circumstances in 
which a reasonable person should have known that such aid was 
not permitted

▪ The standard sanction for a first offense includes a one-
quarter suspension and 40 hours of community service.
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Make sure you read 
and understand it!

https://communitystandards.stanford.edu/policies-and-guidance/honor-code
https://communitystandards.stanford.edu/student-conduct-process/honor-code-and-fundamental-standard/additional-resources/what-plagiarism


Two ways to ask questions during lecture:
 In-person (encouraged)
 On Ed:

▪ At the beginning of class, we will open a new 
discussion thread dedicated to this lecture

▪ When to ask on Ed?

▪ If you are watching the livestream remotely

▪ If you have a minor clarifying question

▪ If we run out of time to get to your question live

▪ Otherwise, try raising your hand first!
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 Colabs 0 and 1 will be released on our course 
website at 3pm Thursday (1/12)

 Colab 0:

▪ Does not need to be handed-in

 Colab 1:

▪ Due on Thursday 10/07 (2 weeks from today)

▪ Submit written answers and code on Gradescope

▪ Will cover material from Lectures 1-4, but you 
can get started right away!
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