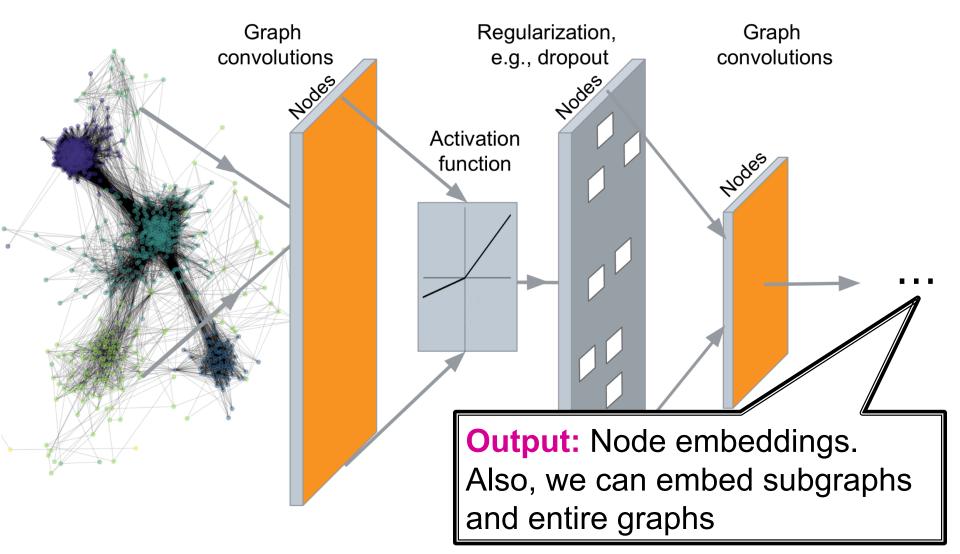
Stanford CS224W: GNN Augmentation and Training

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

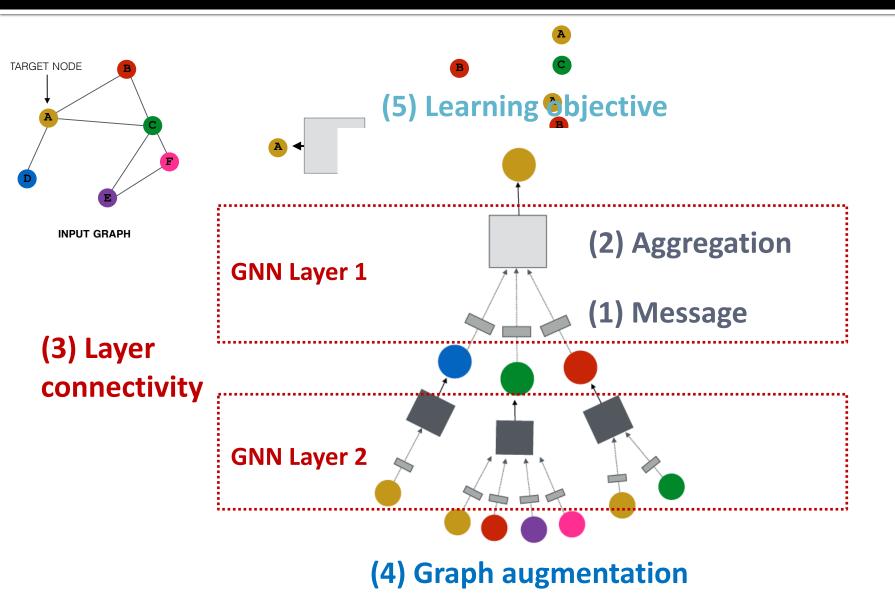


Recap: Deep Graph Encoders



J. You, R. Ying, J. Leskovec. <u>Design Space of Graph Neural Networks</u>, NeurIPS 2020

Recap: A General GNN Framework



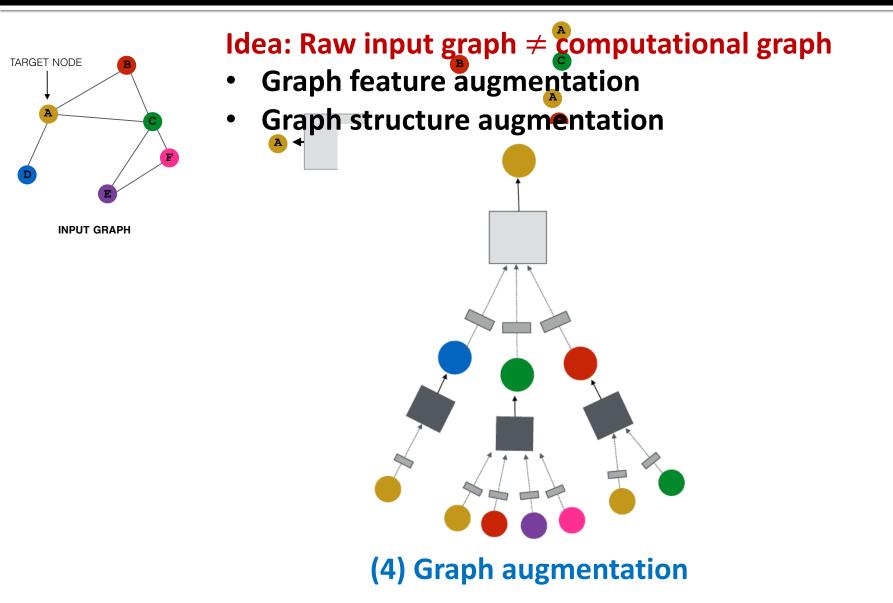
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Stanford CS224W: Graph Augmentation for GNNs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



General GNN Framework



Why Augment Graphs

Our assumption so far has been
Raw input graph = computational graph
Reasons for breaking this assumption

Features:

- The input graph lacks features
- Graph structure:
 - The graph is **too sparse** \rightarrow inefficient message passing
 - The graph is too dense \rightarrow message passing is too costly
 - The graph is too large → cannot fit the computational graph into a GPU
- It's unlikely that the input graph happens to be the optimal computation graph for embeddings

Graph Augmentation Approaches

Graph Feature augmentation

The input graph lacks features
 feature

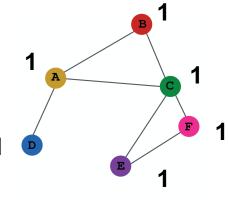
 augmentation

Graph Structure augmentation

- The graph is **too sparse** → Add virtual nodes / edges
- The graph is too dense -> Sample neighbors when doing message passing
- The graph is too large → Sample subgraphs to compute embeddings
 - Will cover later in lecture: Scaling up GNNs

Why do we need feature augmentation?

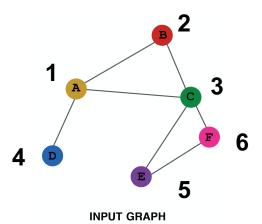
- (1) Input graph does not have node features
 - This is common when we only have the adj. matrix
- Standard approaches:
- a) Assign constant values to nodes



INPUT GRAPH

Why do we need feature augmentation?

- (1) Input graph does not have node features
 - This is common when we only have the adj. matrix
- Standard approaches:
- b) Assign unique IDs to nodes
 - These IDs are converted into one-hot vectors



One-hot vector for node with ID=5 ID = 5 [0, 0, 0, 0, 0, 1, 0]

```
Total number of IDs = 6
```

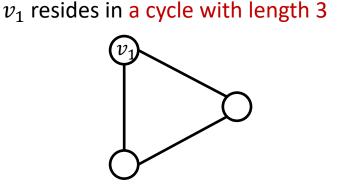
Feature augmentation: constant vs. one-hot

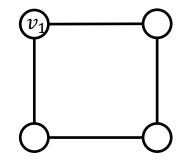
	Constant node feature	One-hot node feature
Expressive power	Medium. All the nodes are identical, but GNN can still learn from the graph structure	High . Each node has a unique ID, so node-specific information can be stored
Inductive learning (Generalize to unseen nodes)	High . Simple to generalize to new nodes: we assign constant feature to them, then apply our GNN	Low. Cannot generalize to new nodes: new nodes introduce new IDs, GNN doesn't know how to embed unseen IDs
Computational cost	Low. Only 1 dimensional feature	High . $O(V)$ dimensional feature, cannot apply to large graphs
Use cases	Any graph, inductive settings (generalize to new nodes)	Small graph, transductive settings (no new nodes)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
- Example: Cycle count feature:
 - Can GNN learn the length of a cycle that v_1 resides in?
 - Unfortunately, no

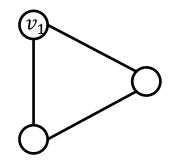




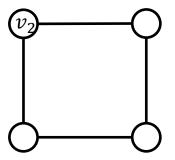
• v_1 cannot differentiate which graph it resides in

- Because all the nodes in the graph have degree of 2
- The computational graphs will be the same binary tree

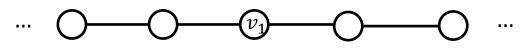
 v_1 resides in a cycle with length 3



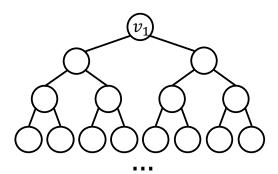
 v_1 resides in a cycle with length 4



 v_1 resides in a cycle with infinite length



The computational graphs for node v_1 are always the same

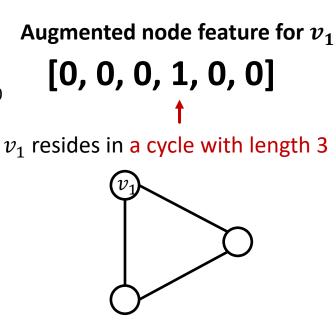


More about this topic later!

Why do we need feature augmentation?

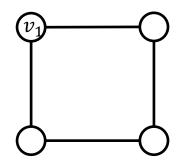
- (2) Certain structures are hard to learn by GNN
 Solution:
 - We can use cycle count as augmented node features

We start from cycle with length 0



Augmented node feature for v_1 [0, 0, 0, 0, 1, 0]

 v_1 resides in a cycle with length 4



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
- Other commonly used augmented features:
 - Node degree
 - Clustering coefficient
 - PageRank
 - Centrality

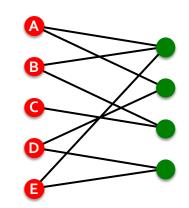
Any feature we have introduced in Lecture 2 can be used!

^{.....}

Add Virtual Nodes / Edges

- Motivation: Augment sparse graphs
- (1) Add virtual edges
 - Common approach: Connect 2-hop neighbors via virtual edges
 - Intuition: Instead of using adj. matrix A for GNN computation, use $A + A^2$

- Author-to-papers (they authored)
- 2-hop virtual edges make an author-author collaboration graph

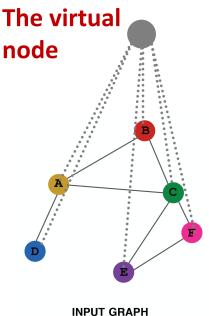


Papers

Authors

Add Virtual Nodes / Edges

- Motivation: Augment sparse graphs
 (2) Add virtual nodes
 - The virtual node will connect to all the nodes in the graph
 - Suppose in a sparse graph, two nodes have shortest path distance of 10
 - After adding the virtual node, all the nodes will have a distance of two
 - Node A Virtual node Node B
 - Benefits: Greatly improves message passing in sparse graphs

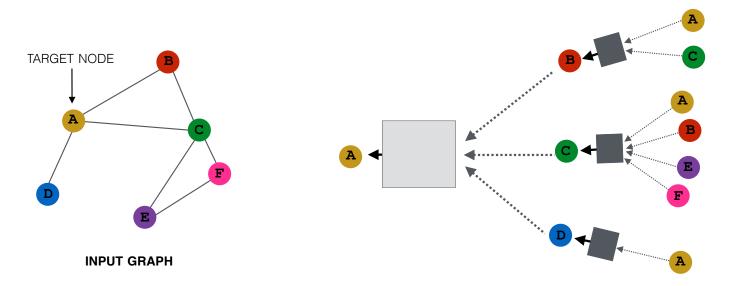


Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

Node Neighborhood Sampling

Previously:

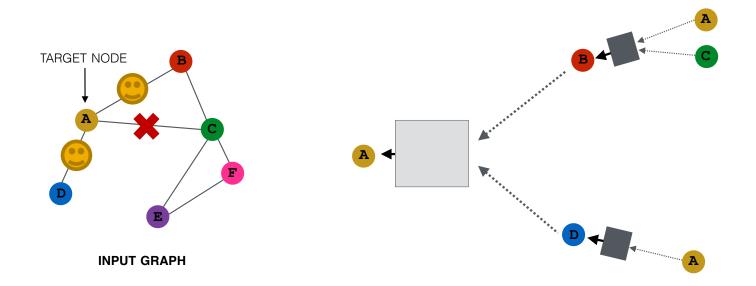
All the nodes are used for message passing



New idea: (Randomly) sample a node's neighborhood for message passing

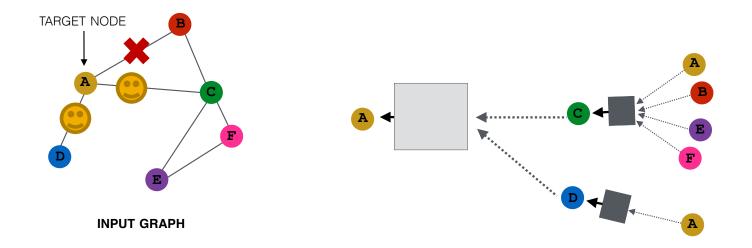
Neighborhood Sampling Example

- For example, we can randomly choose 2 neighbors to pass messages in a given layer
 - Only nodes B and D will pass messages to A



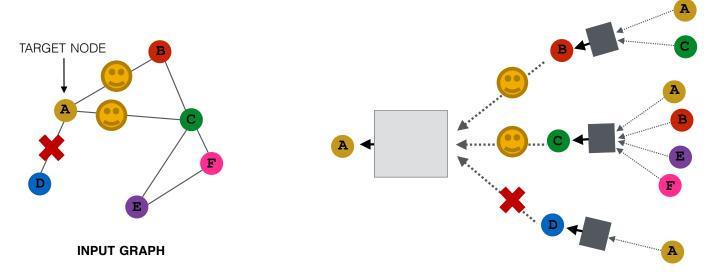
Neighborhood Sampling Example

- In the next layer when we compute the embeddings, we can sample different neighbors
 - Only nodes C and D will pass messages to A



Neighborhood Sampling Example

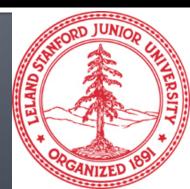
- In expectation, we get embeddings similar to the case where all the neighbors are used
 - Benefits: Greatly reduces computational cost
 - Allows for scaling to large graphs (more about this later)
 - And in practice it works great!



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

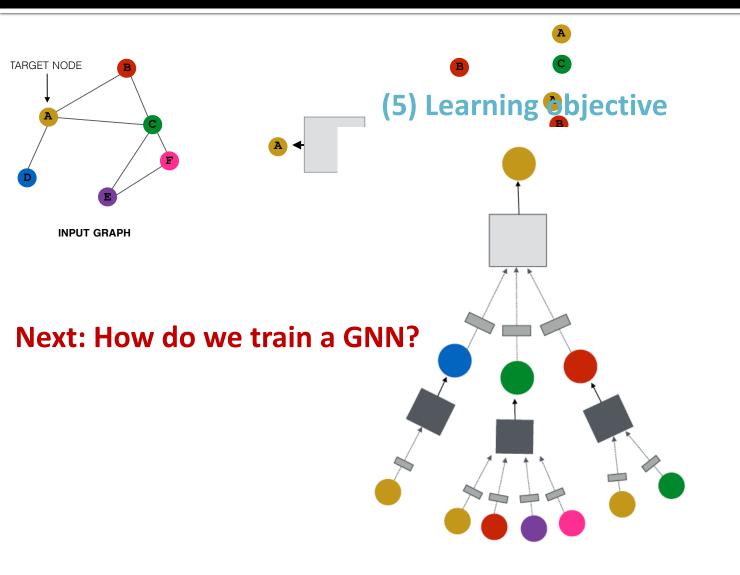
Stanford CS224W: Prediction with GNNs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



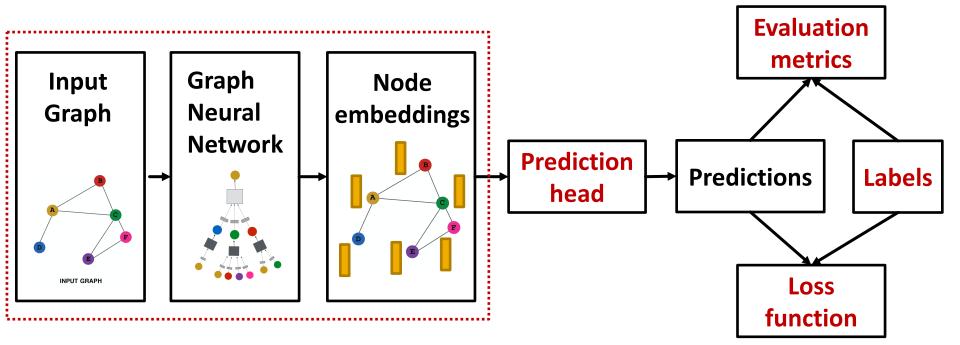
J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A General GNN Framework (4)



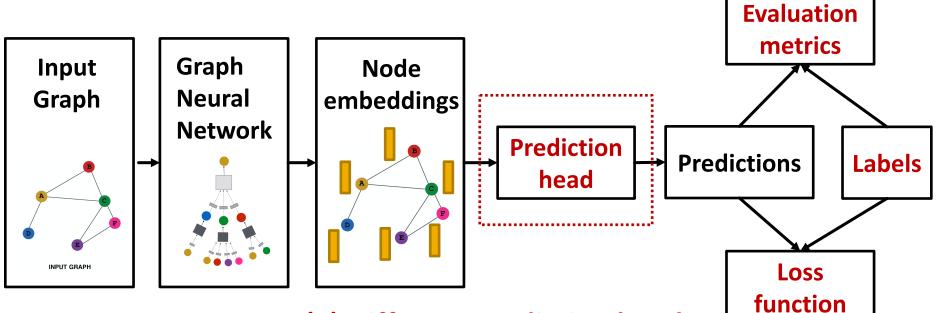
GNN Training Pipeline

So far what we have covered



Output of a GNN: set of node embeddings $\{\mathbf{h}_{v}^{(L)}, \forall v \in G\}$

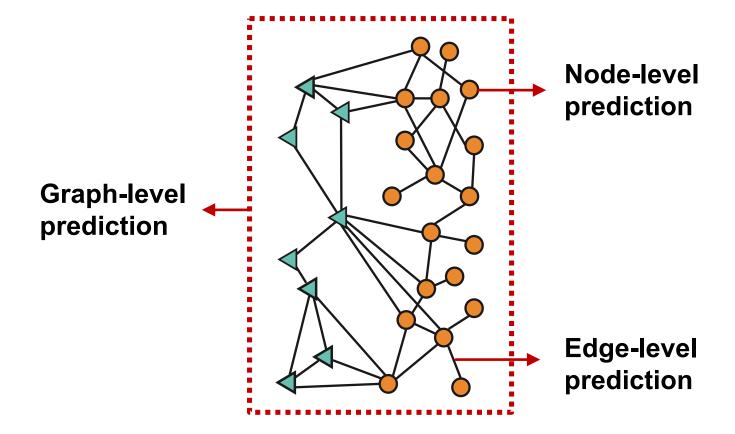
GNN Training Pipeline (1)



- (1) Different prediction heads:
 - Node-level tasks
- Edge-level tasks
- Graph-level tasks

GNN Prediction Heads

Idea: Different task levels require different prediction heads

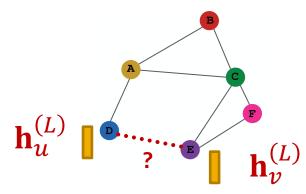


Prediction Heads: Node-level

- Node-level prediction: We can directly make prediction using node embeddings!
- After GNN computation, we have d-dim node embeddings: { $\mathbf{h}_{v}^{(L)} \in \mathbb{R}^{d}, \forall v \in G$ }
- Suppose we want to make k-way prediction
 - Classification: classify among k categories
 - Regression: regress on k targets
- $\hat{y}_{v} = \text{Head}_{\text{node}}(\mathbf{h}_{v}^{(L)}) = \mathbf{W}^{(H)}\mathbf{h}_{v}^{(L)}$
 - $\mathbf{W}^{(H)} \in \mathbb{R}^{k*d}$: We map node embeddings from $\mathbf{h}_{v}^{(L)} \in \mathbb{R}^{d}$ to $\hat{y}_{v} \in \mathbb{R}^{k}$ so that we can compute the loss

Prediction Heads: Edge-level

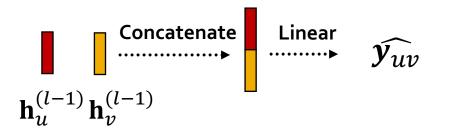
- Edge-level prediction: Make prediction using pairs of node embeddings
- Suppose we want to make k-way prediction
- $\hat{y}_{uv} = \text{Head}_{edge}(\mathbf{h}_{u}^{(L)}, \mathbf{h}_{v}^{(L)})$



• What are the options for $\text{Head}_{\text{edge}}(\mathbf{h}_{u}^{(L)}, \mathbf{h}_{v}^{(L)})$?

Prediction Heads: Edge-level

- Options for $\text{Head}_{edge}(\mathbf{h}_{u}^{(L)}, \mathbf{h}_{v}^{(L)})$:
- (1) Concatenation + Linear
 - We have seen this in graph attention



- $\hat{y}_{uv} = \text{Linear}(\text{Concat}(\mathbf{h}_{u}^{(L)}, \mathbf{h}_{v}^{(L)}))$
- Here Linear(·) will map 2d-dimensional embeddings (since we concatenated embeddings) to k-dim embeddings (k-way prediction)

Prediction Heads: Edge-level

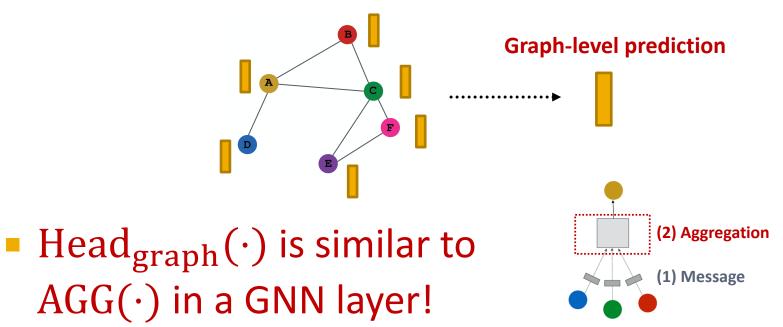
- Options for $\text{Head}_{\text{edge}}(\mathbf{h}_{u}^{(L)}, \mathbf{h}_{v}^{(L)})$:
- (2) Dot product
 - $\widehat{\boldsymbol{y}}_{\boldsymbol{u}\boldsymbol{v}} = (\mathbf{h}_{\boldsymbol{u}}^{(L)})^T \mathbf{h}_{\boldsymbol{v}}^{(L)}$
 - This approach only applies to 1-way prediction (e.g., link prediction: predict the existence of an edge)
 - Applying to k-way prediction:

• Similar to multi-head attention: $\mathbf{W}^{(1)}$, ..., $\mathbf{W}^{(k)}$ trainable $\hat{y}_{uv}^{(1)} = (\mathbf{h}_{u}^{(L)})^T \mathbf{W}^{(1)} \mathbf{h}_{v}^{(L)}$

$$\widehat{\boldsymbol{y}}_{\boldsymbol{u}\boldsymbol{v}}^{(\boldsymbol{k})} = (\mathbf{h}_{\boldsymbol{u}}^{(L)})^T \mathbf{W}^{(\boldsymbol{k})} \mathbf{h}_{\boldsymbol{v}}^{(L)}$$
$$\widehat{\boldsymbol{y}}_{\boldsymbol{u}\boldsymbol{v}} = \text{Concat}(\widehat{\boldsymbol{y}}_{\boldsymbol{u}\boldsymbol{v}}^{(1)}, \dots, \widehat{\boldsymbol{y}}_{\boldsymbol{u}\boldsymbol{v}}^{(\boldsymbol{k})}) \in \mathbb{R}^k$$

Prediction Heads: Graph-level

- Graph-level prediction: Make prediction using all the node embeddings in our graph
- Suppose we want to make k-way prediction
- $\hat{y}_G = \text{Head}_{\text{graph}}(\{\mathbf{h}_v^{(L)} \in \mathbb{R}^d, \forall v \in G\})$



Prediction Heads: Graph-level

- Options for $\text{Head}_{\text{graph}}(\{\mathbf{h}_{v}^{(L)} \in \mathbb{R}^{d}, \forall v \in G\})$
- (1) Global mean pooling $\widehat{\mathbf{y}}_{G} = \operatorname{Mean}(\{\mathbf{h}_{v}^{(L)} \in \mathbb{R}^{d}, \forall v \in G\})$ (2) Global max pooling $\widehat{\mathbf{v}}_{C} = \operatorname{Max}(\{\mathbf{h}_{v}^{(L)} \in \mathbb{R}^{d}, \forall v \in G\})$ (3) Global sum pooling $\widehat{\mathbf{y}}_{G} = \operatorname{Sum}(\{\mathbf{h}_{v}^{(L)} \in \mathbb{R}^{d}, \forall v \in G\})$ These options work great for small graphs
- Can we do better for large graphs?

Issue of Global Pooling

- Issue: Global pooling over a (large) graph will lose information
- **Toy example:** we use 1-dim node embeddings
 - Node embeddings for $G_1: \{-1, -2, 0, 1, 2\}$
 - Node embeddings for G_2 : {-10, -20, 0, 10, 20}
 - Clearly G₁ and G₂ have very different node embeddings
 → Their structures should be different
- If we do global sum pooling:
 - **Prediction for** $G_1: \hat{y}_G = \text{Sum}(\{-1, -2, 0, 1, 2\}) = 0$
 - **Prediction for** G_2 : $\hat{y}_G = \text{Sum}(\{-10, -20, 0, 10, 20\}) = 0$
 - We cannot differentiate G₁ and G₂!

Hierarchical Global Pooling

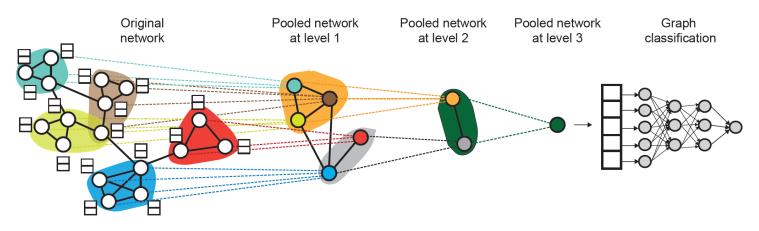
- A solution: Let's aggregate all the node embeddings hierarchically
 - Toy example: We will aggregate via $ReLU(Sum(\cdot))$
 - We first separately aggregate the first 2 nodes and last 3 nodes
 - Then we aggregate again to make the final prediction
 - G_1 node embeddings: $\{-1, -2, 0, 1, 2\}$
 - Round 1: $\hat{y}_a = \text{ReLU}(\text{Sum}(\{-1, -2\})) = 0, \hat{y}_b = \text{ReLU}(\text{Sum}(\{0, 1, 2\})) = 3$
 - Round 2: $\hat{y}_G = \text{ReLU}(\text{Sum}(\{y_a, y_b\})) = 3$
 - G_2 node embeddings: {-10, -20, 0, 10, 20}
 - Round 1: $\hat{y}_a = \text{ReLU}(\text{Sum}(\{-10, -20\})) = 0, \hat{y}_b = \text{ReLU}(\text{Sum}(\{0, 10, 20\})) = 30$
 - Round 2: $\hat{y}_G = \text{ReLU}(\text{Sum}(\{y_a, y_b\})) = 30$

Now we can differentiate G_1 and G_2 ! Ying et al. <u>Hierarchical Graph Representation Learning with Differentiable Pooling</u>, NeurIPS 2018

Hierarchical Pooling In Practice

DiffPool idea:

Hierarchically pool node embeddings

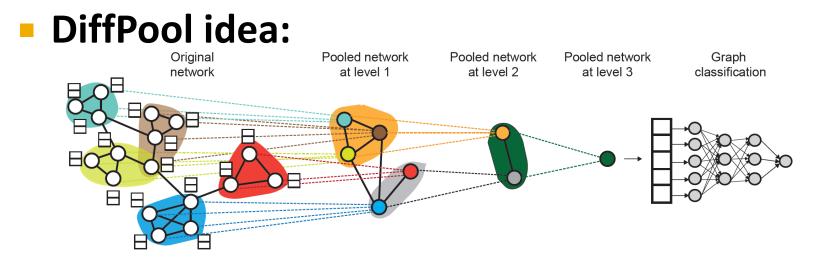


Leverage 2 independent GNNs at each level

- GNN A: Compute node embeddings
- GNN B: Compute the cluster that a node belongs to

GNNs A and B at each level can be executed in parallel

Hierarchical Pooling In Practice

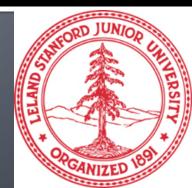


For each Pooling layer

- Use clustering assignments from GNN B to aggregate node embeddings generated by GNN A
- Create a single new node for each cluster, maintaining edges between clusters to generated a new pooled network
- Jointly train GNN A and GNN B

Stanford CS224W: Training Graph Neural Networks

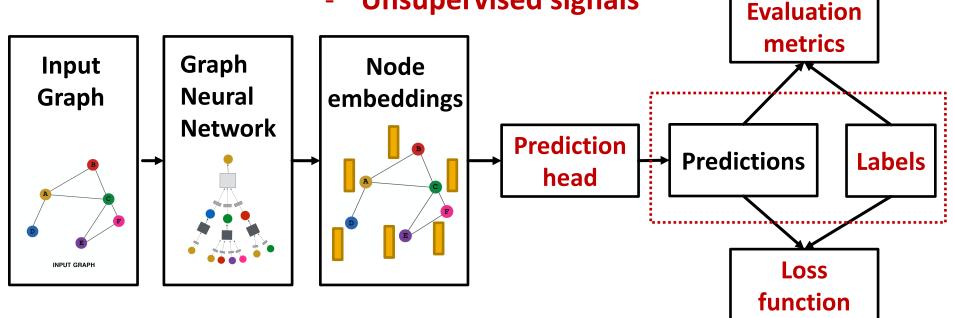
CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



GNN Training Pipeline (2)

(2) Where does ground-truth come from?

- Supervised labels
- Unsupervised signals



Supervised vs Unsupervised

Supervised learning on graphs

Labels come from external sources

E.g., predict drug likeness of a molecular graph

Unsupervised learning on graphs

Signals come from graphs themselves

E.g., link prediction: predict if two nodes are connected

- Sometimes the differences are blurry
 - We still have "supervision" in unsupervised learning
 - E.g., train a GNN to predict node clustering coefficient
 - An alternative name for "unsupervised" is "selfsupervised"

Supervised Labels on Graphs

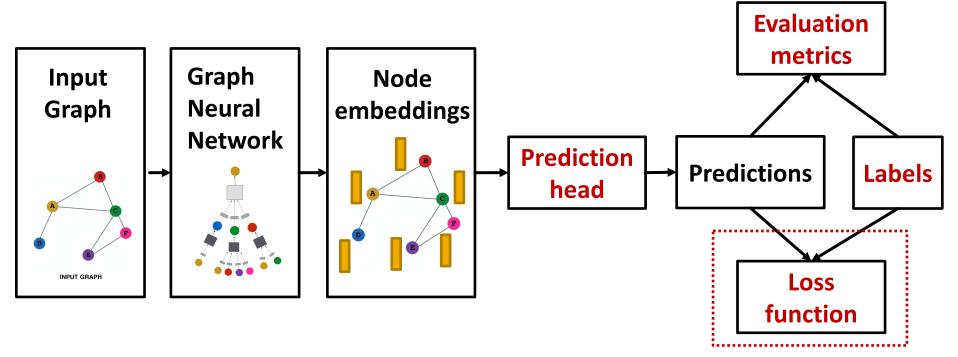
- Supervised labels come from the specific use cases. For example:
 - Node labels y_v: in a citation network, which subject area does a node belong to
 - Edge labels y_{uv} : in a transaction network, whether an edge is fraudulent
 - Graph labels y_G : among molecular graphs, the drug likeness of graphs
- Advice: Reduce your task to node / edge / graph labels, since they are easy to work with
 - E.g., we knew some nodes form a cluster. We can treat the cluster that a node belongs to as a node label

Unsupervised Signals on Graphs

- The problem: sometimes we only have a graph, without any external labels
- The solution: "self-supervised learning", we can find supervision signals within the graph.
 - For example, we can **let GNN predict the following:**
 - Node-level y_v. Node statistics: such as clustering coefficient, PageRank, ...
 - Edge-level y_{uv}. Link prediction: hide the edge between two nodes, predict if there should be a link
 - Graph-level y_G. Graph statistics: for example, predict if two graphs are isomorphic

These tasks do not require any external labels!

GNN Training Pipeline (3)



(3) How do we compute the final loss?

- Classification loss
- Regression loss

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Settings for GNN Training

- The setting: We have N data points
 - Each data point can be a node/edge/graph
 - Node-level: prediction $\widehat{y}_v^{(i)}$, label $y_v^{(i)}$
 - Edge-level: prediction $\widehat{y}_{uv}^{(i)}$, label $y_{uv}^{(i)}$
 - Graph-level: prediction $\widehat{\boldsymbol{y}}_{G}^{(i)}$, label $\boldsymbol{y}_{G}^{(i)}$
 - We will use prediction $\widehat{y}^{(i)}$, label $y^{(i)}$ to refer predictions at all levels

Classification or Regression

- **Classification**: labels $y^{(i)}$ with discrete value
 - E.g., Node classification: which category does a node belong to
- Regression: labels y⁽ⁱ⁾ with continuous value
 - E.g., predict the drug likeness of a molecular graph
- GNNs can be applied to both settings
- Differences: loss function & evaluation metrics

Classification Loss

As discussed in lecture 6, cross entropy (CE) is a very common loss function in classification

K-way prediction for *i*-th data point:

$$CE(\mathbf{y}^{(i)}, \widehat{\mathbf{y}}^{(i)}) = -\sum_{j=1}^{K} \mathbf{y}_{j}^{(i)} \log(\widehat{\mathbf{y}_{j}}^{(i)})^{i\text{-th data point}}_{j\text{-th class}}$$
where:

$$E.g. \circ \circ 1 \circ \circ$$

$$\mathbf{y}^{(i)} \in \mathbb{R}^{K} = \text{ one-hot label encoding}$$

$$\widehat{\mathbf{y}}^{(i)} \in \mathbb{R}^{K} = \text{ prediction after Softmax}(\cdot)$$

$$E.g. \circ 1 \circ 3 \circ 4 \circ 1 \circ 1$$

$$E.g. \circ 1 \circ 3 \circ 4 \circ 1 \circ 1$$

$$E.g. \circ 1 \circ 3 \circ 4 \circ 1 \circ 1$$

$$E.g. \circ 1 \circ 3 \circ 4 \circ 1 \circ 1$$

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Regression Loss

For regression tasks we often use Mean Squared Error (MSE) a.k.a. L2 loss

K-way regression for data point (i):

$$MSE(\boldsymbol{y}^{(i)}, \boldsymbol{\hat{y}}^{(i)}) = \sum_{j=1}^{K} (\boldsymbol{y}_{j}^{(i)} - \boldsymbol{\hat{y}}_{j}^{(i)})^{2} \overset{i-\text{th data point}}{j-\text{th target}}$$

where:

E.g. 1.4 2.3 1.0 0.5 0.6

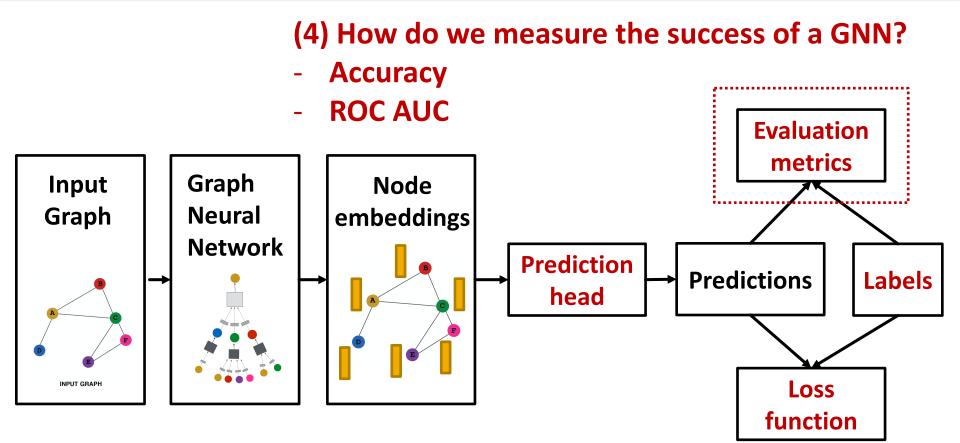
 $y^{(i)} \in \mathbb{R}^k$ = Real valued vector of targets $\widehat{y}^{(i)} \in \mathbb{R}^k$ = Real valued vector of predictions

E.g. 0.9 2.8 2.0 0.3 0.8

Total loss over all N training examples

$$Loss = \sum_{i=1}^{N} MSE(\boldsymbol{y}^{(i)}, \boldsymbol{\hat{y}}^{(i)})$$

GNN Training Pipeline (4)



Evaluation Metrics: Regression

We use standard evaluation metrics for GNN

- (Content below can be found in any ML course)
- In practice we will use <u>sklearn</u> for implementation
- Suppose we make predictions for N data points
- Evaluate regression tasks on graphs:
 - Root mean square error (RMSE)

$$\sqrt{\sum_{i=1}^{N} \frac{(\mathbf{y}^{(i)} - \widehat{\mathbf{y}}^{(i)})^2}{N}}$$

• Mean absolute error (MAE) $\sum_{i=1}^{N} |y^{(i)} - \hat{y}^{(i)}|$

Evaluation Metrics: Classification

- Evaluate classification tasks on graphs:
- (1) Multi-class classification
 - We simply report the accuracy

$$1\left[\operatorname{argmax}\left(\widehat{\boldsymbol{y}}^{(i)}\right) = \boldsymbol{y}^{(i)}\right]$$

(2) Binary classification

- Metrics sensitive to classification threshold
 - Accuracy
 - Precision / Recall
 - If the range of prediction is [0,1], we will use 0.5 as threshold
- Metric Agnostic to classification threshold
 - ROC AUC

Metrics for Binary Classification

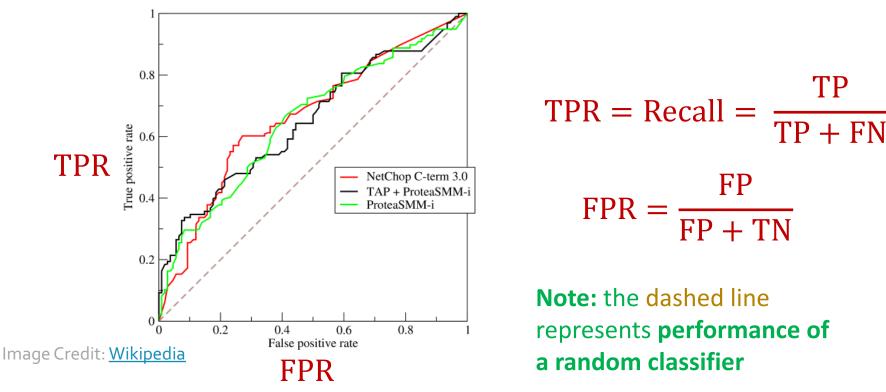
Accuracy:				
-	TP + TN	TP + TN		
	$\Gamma P + TN + FP + FN$	Dataset		
Precision (P):			
	ТР	Confusion matrix		
	$\overline{TP + FP}$			
Recall (R):			Actually Positive (1)	Actually Negative (0)
	TP	Predicted	Positives	False Positives
	TP + FN	Positive (1	(TPS)	(FPs)
F1-Score:	2P * R	Predicted Negative (Negatives	True Negatives (TNs)
	$\overline{P + R}$			

Sklearn Classification Report

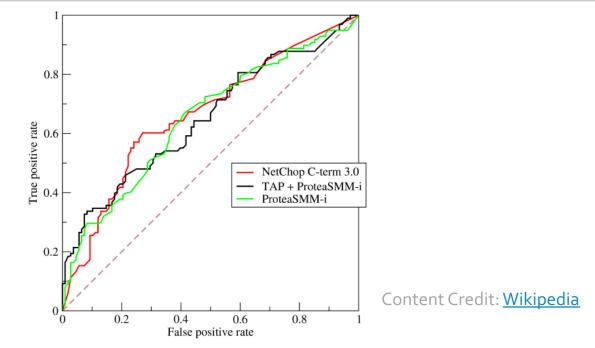
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

(4) Evaluation Metrics

 ROC Curve: Captures the tradeoff in TPR and FPR as the classification threshold is varied for a binary classifier.



(4) Evaluation Metrics

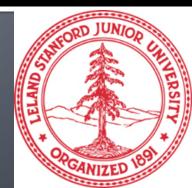


ROC AUC: Area under the ROC Curve.

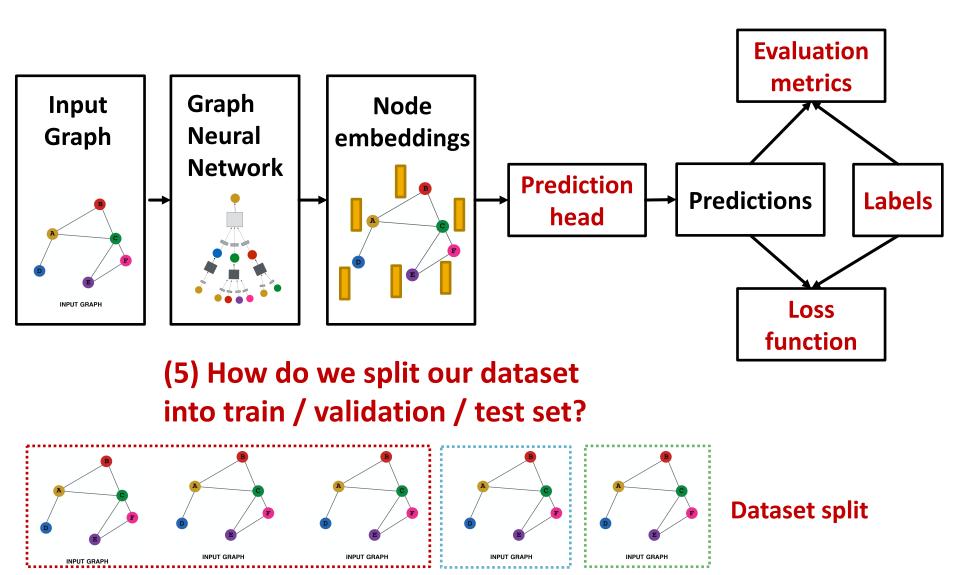
 Intuition: The probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one

Stanford CS224W: Setting-up GNN Prediction Tasks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



GNN Training Pipeline (5)



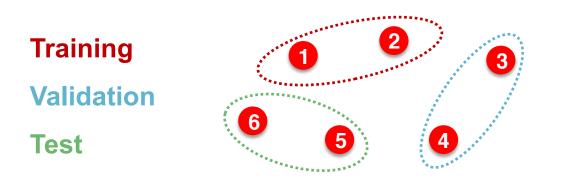
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Dataset Split: Fixed / Random Split

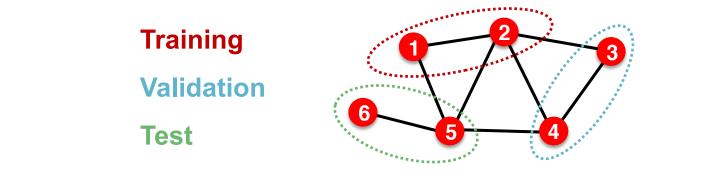
• Fixed split: We will split our dataset once

- Training set: used for optimizing GNN parameters
- Validation set: develop model/hyperparameters
- **Test set**: held out until we report final performance
- A concern: sometimes we cannot guarantee that the test set will really be held out
- Random split: we will randomly split our dataset into training / validation / test
 - We report average performance over different random seeds

- Suppose we want to split an image dataset
 - Image classification: Each data point is an image
 - Here data points are independent
 - Image 5 will not affect our prediction on image 1

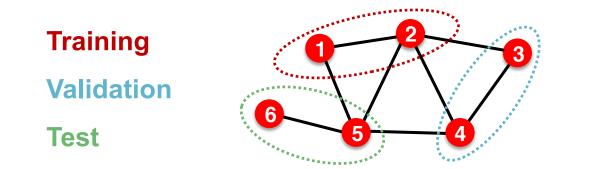


- Splitting a graph dataset is different!
 - Node classification: Each data point is a node
 - Here data points are NOT independent
 - Node 5 will affect our prediction on node 1, because it will participate in message passing → affect node 1's embedding



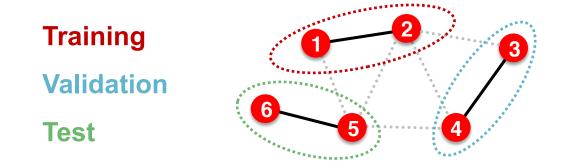
What are our options?

- Solution 1 (Transductive setting): The input graph can be observed in all the dataset splits (training, validation and test set).
 We will only split the (node) labels
 - At training time, we compute embeddings using the entire graph, and train using node 1&2's labels
 - At validation time, we compute embeddings using the entire graph, and evaluate on node 3&4's labels



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

- Solution 2 (Inductive setting): We break the edges between splits to get multiple graphs
 - Now we have 3 graphs that are independent. Node 5 will not affect our prediction on node 1 any more
 - At training time, we compute embeddings using the graph over node 1&2, and train using node 1&2's labels
 - At validation time, we compute embeddings using the graph over node 3&4, and evaluate on node 3&4's labels



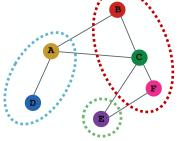
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Transductive / Inductive Settings

- Transductive setting: training / validation / test sets are on the same graph
 - The dataset consists of one graph
 - The entire graph can be observed in all dataset splits, we only split the labels
 - Only applicable to node / edge prediction tasks
- Inductive setting: training / validation / test sets are on different graphs
 - The dataset consists of multiple graphs
 - Each split can only observe the graph(s) within the split.
 A successful model should generalize to unseen graphs
 - Applicable to node / edge / graph tasks

Example: Node Classification

- Transductive node classification
 - All the splits can observe the entire graph structure, but can only observe the labels of their respective nodes

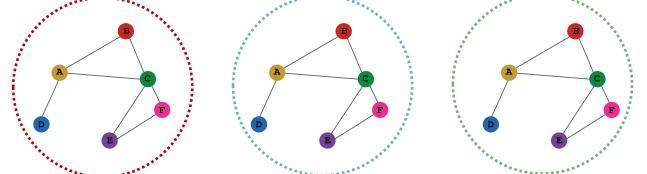


Training

Validation

Test

- Inductive node classification
 - Suppose we have a dataset of 3 graphs
 - Each split contains an independent graph

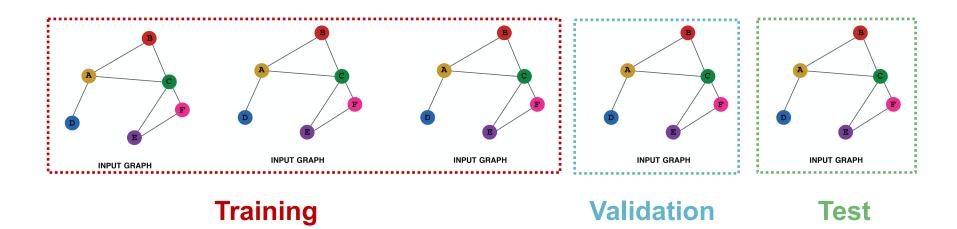


Training Validation Test

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

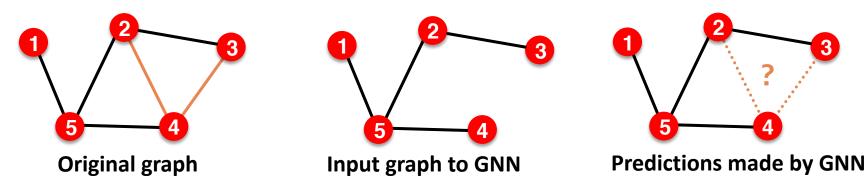
Example: Graph Classification

- Only the inductive setting is well defined for graph classification
 - Because we have to test on unseen graphs
 - Suppose we have a dataset of 5 graphs. Each split will contain independent graph(s).

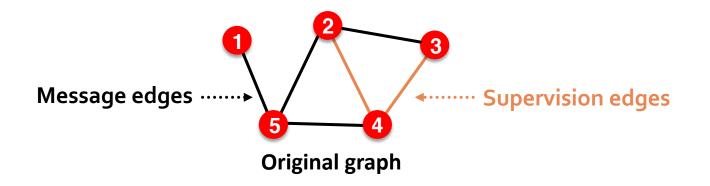


Example: Link Prediction

- Goal of link prediction: predict missing edges
 Setting up link prediction is tricky:
 - Link prediction is an unsupervised / self-supervised task. We need to create the labels and dataset splits on our own
 - Concretely, we need to hide some edges from the GNN and the let the GNN predict if the edges exist

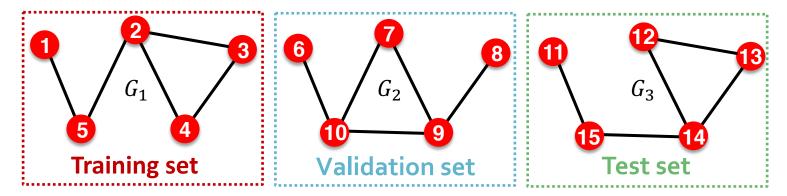


Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



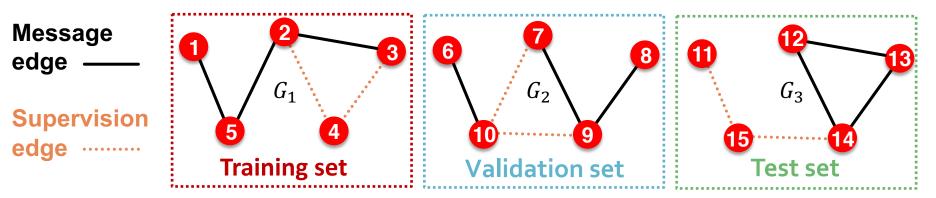
- For link prediction, we will split edges twice
- Step 1: Assign 2 types of edges in the original graph
 - Message edges: Used for GNN message passing
 - Supervision edges: Use for computing objectives
 - After step 1:
 - Only message edges will remain in the graph
 - Supervision edges are used as supervision for edge predictions made by the model, will not be fed into GNN!

- Step 2: Split edges into train / validation / test
 Option 1: Inductive link prediction split
 - Suppose we have a dataset of 3 graphs. Each inductive split will contain an independent graph

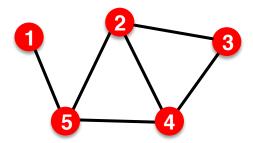


- Step 2: Split edges into train / validation / test
 Option 1: Inductive link prediction split
 - Suppose we have a dataset of 3 graphs. Each inductive split will contain an independent graph
 - In train or val or test set, each graph will have 2 types of edges: message edges + supervision edges

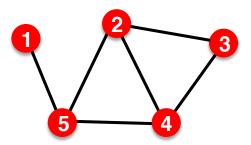
Supervision edges are not the input to GNN



- Option 2: Transductive link prediction split:
 - This is the default setting when people talk about link prediction
 - Suppose we have a dataset of 1 graph



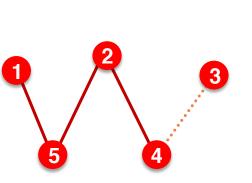
- Option 2: Transductive link prediction split:
 - By definition of "transductive", the entire graph can be observed in all dataset splits
 - But since edges are both part of graph structure and the supervision, we need to hold out validation / test edges
 - To train the training set, we further need to hold out supervision edges for the training set



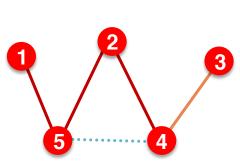
Next: we will show the exact settings

Option 2: Transductive link prediction split:

3



(1) At training time: Use training message edges to predict training supervision edges



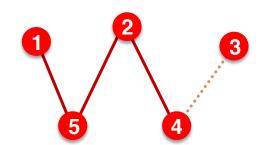
The original graph

(2) At validation time: Use training message edges & training supervision edges to predict validation edges 1 2 3

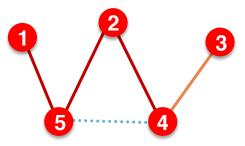
(3) At test time: Use training message edges & training supervision edges & validation edges to predict test edges

Option 2: Transductive link prediction split:

Why do we use growing number of edges? After training, supervision edges are known to GNN. Therefore, an ideal model should use supervision edges in message passing at validation time. The same applies to the test time.



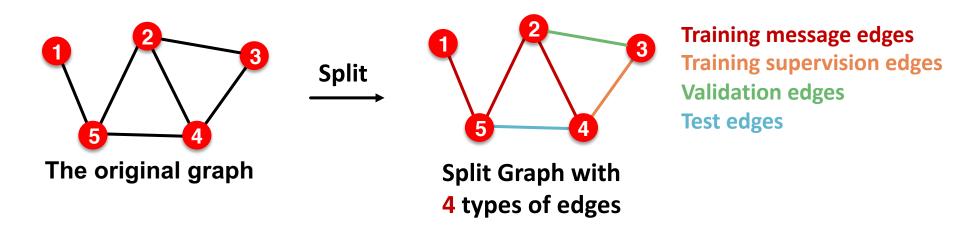
(1) At training time: Use training message edges to predict training supervision edges



(2) At validation time: Use training message edges & training supervision edges to predict validation edges

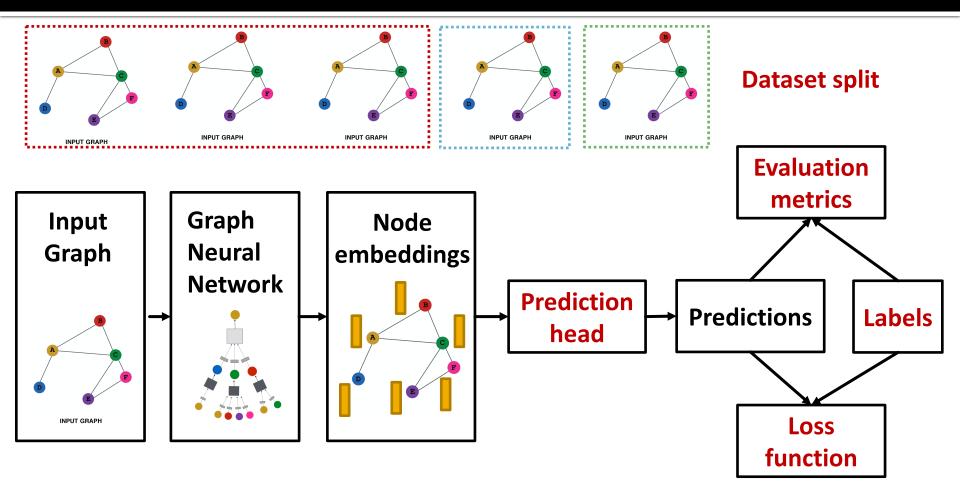
(3) At test time: Use training message edges & training supervision edges & validation edges to predict test edges

Summary: Transductive link prediction split:



- Note: Link prediction settings are tricky and complex. You may find papers do link prediction differently. But if you follow our reasoning steps, this should be the right way to implement link prediction
- Luckily, we have full support in <u>DeepSNAP</u> and <u>GraphGym</u>

GNN Training Pipeline



Implementation resources:

<u>DeepSNAP</u> provides core modules for this pipeline <u>GraphGym</u> further implements the full pipeline to facilitate GNN design

Summary of the Lecture

We introduce a general perspective for GNNs

GNN Layer:

- Transformation + Aggregation
- Classic GNN layers: GCN, GraphSAGE, GAT

Layer connectivity:

- The over-smoothing problem
- Solution: skip connections

Graph Augmentation:

- Feature augmentation
- Structure augmentation

Learning Objectives

The full training pipeline of a GNN