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1 Introduction

Traffic congestion in metropolitan areas is a problem that plagues almost every highly populated city worldwide,
leading to heavy delays in travelling short distances and disruptions in productivity for people working in such
cities. An effective model for predicting when traffic will occur and at what intensity would be a great asset in
both understanding how traffic evolves and designing traffic resistant road networks.

Prior works have focused on modelling traffic flow throughout the day as a spatio-temporal problem, relying
on data about traffic throughout each day to predict how traffic will evolve. In this project, we intend to
develop a system to predict traffic congestion based solely on the road network, relying less on the temporal
aspect of traffic and focusing instead on the topology and attributes. Given the road network and limited
information about each road segment, we will predict how congested each road segment will be. With this
approach we hope our model will be able to generalize well to new street networks that may have differing
temporal characteristics.

2 Related Work

2.1 Analyzing Traffic Congestion

Wen et al. use both the street network topology as well as partial data about real traffic volumes to predict
which segments in the street network of a city are likely to encounter heavy traffic congestion [1]]. The authors
develop a model that accounts for human movement preferences through an attractiveness’ rating for each
street segment and use a dual-graph representation of the street network to account for network structure, with
street segments represented as vertices and intersections represented as edges. A PageRank-like algorithm was
used to determine the congestion level of each street segment while considering the attractiveness ratings.

2.2 Using Community-Based Approaches

Duan and Lu approach the problem of understanding the robustness of city road networks through a community-
focused lens, following the theory that incidents on specific roads will impact roads that are topologically
nearby [2]. The authors use a label propagation-based detection algorithm to find communities in the dual
graph, creating a second graph with communities as nodes and community connections as edges.

Duan and Lu find that the community graph shows more node degree diversity than the dual graph, allowing
for a more nuanced investigation into the importance of different nodes. The authors also find that network
fragmentation is most vulnerable to betweenness-based attacks where connections are severed based on
betweenness centrality. Duan and Lu conclude that city road networks are likely highly clustered, making
community-based approaches valuable when considering city road robustness.

2.3 Relational Fusion Networks

Relational Fusion Networks (RFNs) [3]] are a very recent (2019) alternative to Graph Convolutional Networks
(GCNs) that are specifically designed for road networks. Compared to previous GCNs, a key difference
of RFNss is that they learn embeddings for vertices, edges, and “between-edges”, which are edges between
vertices of the dual graph. The authors claim that RFNs perform better on road networks because these
networks contain important information in edges and between-edges.



2.4 Influence On Our Work

Wen et al. produce a model providing traffic congestion predictions which is developed with very little actual
data about streets and street traffic beyond just the network structure. This shows that prediction of congestion
based mostly on graph structure and some minimal traffic data is at least somewhat feasible.

In this project, we expanded the work done in the paper into a machine learning model trained on an existing
street network with full data. This model would then be able to make predictions by using the data to learn an
association between the topological structure and traffic. We incorporate Duan and Lu’s findings about the
efficacy of community-based approaches and extend their approach to community detection by including other
attributes such as a road’s length or type in addition to purely structural features.

We did not implement an RFN for our project; however, Jepsen et al. provide insight into how attributes from
road networks, like road types, can be effectively used with a graph convolutional neural network. Based on
this, we obtain attributes from OpenStreetMap to aid in training our model.

3 Dataset

We use speed data provided for various cities through Uber Movement [4], combined with map data from
OpenStreetMap [5]].

For each road segment, the Uber Movement data provides mean speed, standard deviation of speed, and 85th
percentile speed. Entries are provided for various hours of the day, aggregated across all days in the second
quarter of 2019. Segments are additionally linked to the corresponding segments in OpenStreetMap, allowing
us to incorporate additional data about each road segment. From the OpenStreetMap data, we will be using the
road type (there are 13 road types, e.g. primary, secondary, residential) and road length.

Since the OpenStreetMap data is contributed by users, the data is incomplete and may be inaccurate.

3.1 Preprocessing

For our project, we preprocessed the Uber Movement data to compute a single traffic value for each road
segment. We ignore all of the Uber Movement data except the entries from 7AM - 10AM; by focusing on
these hours, we will develop a model that predicts likely congestion during morning rush hours. The traffic
value of a road segment is defined as the percent slowdown in average speed during this time period compared
to free-flow speed, defined by Uber as the 85th percentile of all speed values observed on the segment. (Note
that the 85th percentile is a relatively standard metric for the maximum safe speed of a road [6].) This allows
us to generalize for potentially different speed limits, which should allow our model to be effective on different
road networks in various regions.

We form a graph of the road network from OpenStreetMap using the osmnx library [7]]. This graph is initially
a directed multigraph, as roads in OpenStreetMap are directed and parallel roads may exist. For simplicity, we
convert this to a directed simple graph where all parallel edges are combined into a single edge. The Uber
Movement and OpenStreetMap datasets are joined using the OSM way ID, and all edges (road segments) that
are not present in both datasets are dropped. We also drop data about roads outside of the city limits. From
OSM, we pull in attributes for each road such as road type, road length, and number of lanes; roads without a
specified number of lanes are defaulted to one lane.

We also construct the dual graph for each city, where we represent the edges (street segments) as nodes and the
nodes (road intersections) as directed edges. More formally, an edge (i, j) in the dual graph means that it is
possible to navigate from road ¢ to road j. This is not the same as being able to navigate from road j to road ¢
since roads are directed; however, we find that since most roads are bidirectional, the dual graph usually will
have both edges (i, 7) and (j, ¢) for most pairs of road segments ¢ and j.

As an additional step, we run community detection on our original graph using Clauset-Newman-Moore
greedy modularity maximization [8]. This algorithm works by starting with a set of isolated nodes (each in
its own community) and then iteratively adding back the edges between nodes to merge communities and
greedily maximize modularity. Modularity, which measures that there are many edges within communities
and few between them, is defined as the following:
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where m is the number of edges in the graph, A, is an element of the adjacency matrix A of the graph (where
Ay is 1 if nodes v and w are connected and 0 otherwise), k,, is the degree of a node v, and §(c,, ¢, is 1 if
the inputs are equal and O otherwise.

We incorporate the community detection into our models by adding a 0/1 edge attribute describing whether
or not the road connects two different communities. By incorporating communities this way, our model can
work on various graphs that may inherently have different numbers of communities instead of forcing all input
graphs to have the same number of communities.

3.2 Summary Statistics

Data is available for various cities; we will be using the data for San Francisco, New York City, and Seattle.
We will perform 3-fold cross validation by training on two graphs to develop a model and then applying the
model to the third graph to test generalization of the trained model.

Here are some summary statistics about our three graphs:

City # Nodes (Junctions) ‘ # Edges (Road Segments)
San Francisco 15758 33784
Seattle 23799 48841
New York City 69462 138586

We also have summary statistics on the dual graphs:

City # Nodes (Road Segments) ‘ # Edges (Junctions)
San Francisco 33784 86131
Seattle 48841 111659
New York City 138586 322096

As we can see, the number of nodes in the dual graph is the same as the number of road segments in the
original graph. We also note that the number of edges has increased significantly. This is because the same
junction in the dual graph may be represented by multiple edges. For example, at a 4-way intersection, each
road segment can reach every other road segment in the intersection. Then we will have 3 edges representing
the single intersection. If all of the roads are bidirectional, we may even have up to 6 edges representing the
single intersection, to show that we can go through the intersection in the opposite direction.

4 [Initial Analysis
In order to understand our network data before we build our traffic congestion model, we conducted a
preliminary analysis of the San Francisco city road network, which we intend to use for training. Analysis on

the other city road networks (New York City and Seattle) showed similar trends as with our analysis for San
Francisco.

4.1 Node Degree Distribution
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Note that since almost all roads are bidirectional, the in-degree and out-degrees of most nodes are the same.
We will provide a general analysis over both the in-degree and out-degree distribution.

We can see that the highest in-degree/out-degree for a node is degree 3. As much of the city is in a grid
structure, this makes sense; a road segment entering a 4-way intersection often is able to access the three other
streets in the intersection.

Considering the total degree (in-degree + out-degree), we found spikes in the number of nodes with degrees 2
and 4 on our dual graph. This is logical considering what this means in the road network; a road segment on
a straight road would have degree 2 in the dual graph because it connects to the road segment in front and
behind it. Similarly, a node leading to an 4-way intersection (which is common in grid networks) connects to
the 3 other roads in the intersection as well as the road segment behind it. A minor spike was also visible at
degree 6, which similarly corresponds to a road segment between two intersections of a grid.

4.2 Clustering Coefficient

The clustering coefficient C; of a node ¢ in a graph is defined as (twice) the number of edges between the
neighbors of a node divided by the maximum possible number of edges between the neighbors. Conceptually
it represents how well connected that node’s neighbors are with each other.
261‘
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The average clustering coefficient of the San Francisco graph was 0.010028. Such a low clustering coefficient
is to be expected given that in a city road network, only rarely will an intersection’s neighboring junctions
be directly connected to each other. Usually there will be another junction between any two neighbors of an
intersection. After transforming each graph to its dual graph, we observe that the average clustering coefficient
is now 0.3385. In the dual graph we see larger clustering coefficients because at most intersections, each street
is able to reach all other streets; therefore, in the dual graph this becomes a clique where all road nodes are
connected to each other.

4.3 Betweenness Centrality

The betweenness centrality of a node is the number of shortest paths in the graph that pass through that node.
Considering the context of traffic congestion, it makes sense that a road with high betweenness centrality
should be important in our road network and therefore be more likely to have congested traffic.

Figure [I|below shows betweenness centrality computed for edges (purple is low, green is high) in the original
San Francisco graph. Edge centrality could be a useful indicator of traffic demands in the graph; for example,
we see that the highways and some stretches of the road in the main city have relatively high centrality
measures, which indicates that they are likely used more often than others.

Figure 1: Edge betweenness centrality for San Francisco

Comparing betweenness centrality to actual traffic speeds, we can see that although betweenness can identify
some larger roads with slow traffic, overall it is not sufficient to accurately predict traffic congestion.



4.4 PageRank

The PageRank algorithm is an algorithm designed to compute and rank the importance of nodes within a
directed graph. The importance is computed using the graph structure, and provides a relative measure of how
much more likely that node is to be visited than other nodes in the graph. In the algorithm, importance is
initialized uniformly, and iteratively distributed across the graph by the edges.

In our dataset, we compute the PageRanks of each node in the dual graph, representing edges in the original
graph. This importance should give us another feature representing the likelihood that a road segment will
receive high traffic flow; we would expect nodes with a higher PageRank score to be more congested.

Upon computing the PageRanks for our dataset, we find that it is not immediately obvious if the PageRank
represents traffic flow well. The distribution of PageRank values on the city road network does not appear to
match our empirical traffic data very well at all. See figure 2] for the PageRank of San Francisco.

Figure 2: PageRank on the dual graph Figure 3: Communities in SF

4.5 Communities

As described earlier, we ran Clauset-Newman-Moore community detection on our graph as a preprocessing
step. In Figure 3] we can see the communities found in San Francisco. Some of the communities seem
to correspond well to San Francisco neighborhoods; for example, the light blue in the middle left seems
to correspond to Golden Gate Park, while the green in the middle right roughly corresponds to Mission
Bay. However, this is not true of most of the communities found, which in some cases subdivide larger
neighborhoods and in other cases may combine several smaller neighborhoods.

Below, we include a table of the number of communities found in each city, as well as the percentage of edges
that connect different communities:

City # Communities | % Edges Crossing Communities
San Francisco 61 3.47%
Seattle 128 2.84%
New York City 159 2.16%

5 Evaluation

Our model performs 4-class classification on each road of our graph, with the classes being the following:

e 0-20% below free-flow speed

20-40% below free-flow speed
40-60% below free-flow speed
60-80% below free-flow speed



Ties go to the slower class - for example, 20% below free-flow speed counts as 20-40% below. For our three
cities, we have no rows that are more than 80% below free-flow speed. These classes match the ones that Uber
Movement uses, allowing us to easily compare to ground truth.

We perform qualitative evaluation on our model by plotting the actual and predicted traffic for each road on a
map and checking to see if it looks similar and reasonable.

Our classes are relatively imbalanced; for example, around half of the roads are in the first class (0 - 20%
below free-flow speed). Therefore, overall accuracy is not a very useful metric. Instead, we compute per-class
accuracy for each of the four classes and also average the four accuracies as another metric.

The actual traffic of each city is included below:

(a) San Francisco (c) New York

== <100% slower than free flow (0.0% of segments)

(b) Seattle

Figure 4: Actual traffic class distributions for each city

6 Baselines

As baselines, we explored using simple classification models, such as logistic regression and a 1-hidden-
layer neural network, to predict each street’s traffic class from the attributes. As attributes, we included the
number of lanes, the road length, the road type (as a one-hot-vector), whether or not the road connects two
communities, and the dual graph node degree. At first we considered only each particular street’s attributes in
the classification, but we moved to using a slightly stronger network that considered the egonet of each street
in the classification.

Each of our baselines was trained using an Adam optimizer with learning rate 0.01 for 3000 epochs. Since we
have imbalanced classes, our training loss was negative log-likelihood where the weight for each sample was
inversely proportional to the class size.

6.1 0-hop baselines

We had two models that classified the traffic level of a particular street just given that street’s attributes. The
first was a simple softmax network:
The second was a 1 hidden layer neural network with 512 hidden units and ReLU activations:

9i = S(Wamax (0, Wiz; + b1) + ba) = S(N(z))

where N (x) represents the 1 layer network and S(x) is the softmax function. In the 1 hidden layer model, we
also included a dropout layer [9]] with probability 0.5 after the hidden layer to reduce overfitting.

6.2 1-hop baseline

For our 1-hop network we take the means across all neighbor attributes and concatenate the mean vector with
the street’s attributes and pass it through a similar 1 layer neural network:
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where NV (%) represents the neighbors of node .

7 Method

7.1 GraphSAGE

Since we are predicting a traffic level for each node and we would like our model to consider the graph structure
and the attributes of neighbors in its classification, we choose to use GraphSAGE as our classification model.
GraphSAGE is a graph convolutional model for learning node embeddings in a graph. These embeddings can
then be used for classification using any classification network. The embeddings are computed for each layer
k as

hy = o (WxAGG(hL ™!, VYu € N(v)) || BxhE™")

where o is a nonlinearity and AGG is some neighbor aggregation method that takes in all of the attributes of
neighboring nodes and aggregates them into a single attribute vector. (Our specific choices are given below.)
Both the aggregations and the node’s own embedding are transformed by learned linear transformations W,
and By, before concatenation as well.

7.2 Model

Following our preprocessing, we have a dual graph of roads as nodes and junctions as edges; for each node,
we have node attributes corresponding to road type (as a one-hot-vector), road length, number of lanes, and
whether or not the road connects different communities. We also explicitly include the degree of each node,
although our models would probably be able to deduce this anyways.

This dual graph is fed into a GraphSAGE model, where we have chosen the ReLU function as our nonlinearity
and the max function as our aggregation function. The GraphSAGE model included a dropout layer with
probability 0.5 after each convolutional layer and has 128 hidden units. We tried variants of the model with 1,
2, 4, and 8 layers; each model was trained using an Adam Optimizer with a learning rate of 0.01 for 3000
epochs. Once again, since we have imbalanced classes, our training loss was negative log-likelihood where the
weight for each sample was inversely proportional to the class size.

8 Results

8.1 Baseline Performance

The class accuracies for each of our baselines, for each possible cross-validation combination, are listed in
Table[Il

Unsurprisingly, the 0-hop 1-layer model outperformed the 0-hop 0-layer model, but surprisingly the per-
formance of the 0-hop 1-layer model was not much different from that of the slightly better 1-hop 1-layer
model. We noticed that at the 0-hop level, the class accuracies for the 0-20% below free-flow speed class
were relatively similar across cities; however, with the 1-hop model, this class accuracy was relatively low
when tested on San Francisco, but very high when tested on New York. This difference might be because
of differences between the New York graph structure and the San Francisco/Seattle graph structures, which
would cause a difference in the 1-hop baseline but not the 0-hop ones. We explore this idea further in our
model performance results.

8.2 GraphSAGE Model Performance

Likely due to the small amount of datapoints in the 60-80% below free-flow speed class, all of our models
have very low accuracies for this class. This is slightly disappointing, as it means we cannot accurately predict
the roads that are likely to have the slowest speeds. However, the 2-layer GraphSAGE model does perform



Model Accuracy

0-20% 20-40% 40-60% 60-80%  Average
San Francisco | 0.5214 0.2839  0.1621 0.1538 0.2803
0-hop 0O-layer Seattle 0.6097 0.0973 04341  0.0909  0.3080

New York 0.6337 0.0695 0.1339  0.3091 0.2866
San Francisco | 0.6169 0.2669  0.3887  0.1538  0.3566
0-hop 1-layer Seattle 0.6675 0.1047 0.5220 0.1818  0.3690

New York 0.7173  0.1208 0.2688  0.1091 0.3040
San Francisco | 0.4840 0.3453  0.4251 0.1000  0.3386
1-hop 1-layer Seattle 0.6832 0.3288 0.4909 0.0172  0.3800
New York 0.8668 0.1282  0.2063  0.0326  0.3085

Model City Tested On

Table 1: Accuracy of each baseline model for each of the four classes for each city

Model Accuracy

0-20% 20-40% 40-60% 60-80%  Average
San Francisco | 0.3584 0.4477 0.4886  0.0500 0.3362
1 Seattle 0.6738 0.4326 0.4275 0.0000  0.3835

New York 0.8546 0.0468 03944  0.0109 0.3267
San Francisco | 0.7486 0.4085 0.4125 0.0000  0.3924
2 Seattle 0.7416 0.1779  0.6918  0.0000  0.4028

New York 0.8953 0.1218 0.2325  0.0000  0.3124
San Francisco | 0.6223 0.5143  0.3341 0.0000  0.3677
4 Seattle 0.7802 04154 0.0572 0.2414  0.3736

New York 09169 0.1182 0.1136  0.0435  0.2980
San Francisco | 0.9499 0.0000  0.0000  0.0000  0.2375
8 Seattle 09185 0.2008 0.0134  0.0000  0.2832
New York 0.8458 0.0002 0.0322  0.1957  0.2685

# Layers | City Tested On

Table 2: Accuracy of each GraphSAGE model for each of the four classes for each city

admirably on the class with the next slowest speeds (40-60% below free-flow speed), with 69.18% accuracy
when tested on Seattle and 41.25% accuracy when tested on San Francisco.

The 2-layer GraphSAGE model overall performs the best in terms of average class accuracy; on the other hand,
we can see that our 8-layer GraphSAGE model is clearly focusing too much on the 0-20% classes, which is
closest to free-flow speed. The 8-layer model reaches over 90% accuracy on that class when tested on San
Francisco and Seattle, as opposed to the near 0% accuracy in the other classes. This is reflected in the low
average class accuracies.

We notice that the performance appears to decrease as the number of layers in our model goes up. This
may be because increasing the number of layers increases the neighborhood that the network considers in
classifying each street’s traffic level, and traffic data is noisy enough that considering attributes beyond a small
neighborhood can hurt performance by causing some kind of overfitting to noise. There may also be problems
with numerical instability or local optima in larger models.

We also notice that our model performance is always weakest when we train on the San Francisco and Seattle
graphs and then test on the New York graph. This may simply be due to the size of the graphs; the New York
graph is much larger than the other two, having more nodes and edges than the San Francisco and Seattle
graphs combined. The poor performance may be due simply to not having enough training data. In addition,
the traffic distribution is rather different for New York compared than the other two graphs, with the majority
of roads having speeds 20-40% below free-flow speed (as opposed to 0-20% below free-flow speed). This



may make training on SF and Seattle and then testing on New York a poor match; it may be better to train on
Seattle and then test on SF.
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Figure 5: Model predictions for Seattle

We qualitatively compare the performance of our 1-hop 1-layer baseline and our 2-layer GraphSAGE model
when tested on Seattle. In Figure [5] we can see that both models were able to predict general trends in Seattle
speeds, such as slow traffic in downtown Seattle (in the center). The main problem seems to be that our models
are a little over-enthusiastic in predicting very slow speeds (as opposed to speeds that are only a little slower
than free-flow speeds). The baseline model went slightly overboard in predicting slow speeds, as we can see
by the very red roads; the GraphSAGE model did a little better, with more yellow roads overall which more
closely matches the actual traffic. We can also see that the GraphSAGE is better at predicting road speeds
in other areas. Take the long road in the bottom middle of Seattle; it is green in the actual Seattle traffic.
While the baseline predicts that traffic on that road is approximately 40-60% slower than free-flow speed, the
GraphSAGE model accurately predicts that traffic there is close to free-flow speed.

9 Conclusion

Our results show that it is possible to predict city road traffic with only limited information about road segments
and without any actual traffic information. The models achieve accuracies significantly higher than random
chance while predicting traffic that qualitatively seem similar to the real traffic when plotted on a map, even if
that is not reflected in quantitative evaluation.

One direction of future work is investigating alternative accuracy measures. The main issue with our current
accuracy measure is that it may not actually indicate how “good” the traffic predictions are, e.g. in being useful
for a particular task. Also, we treated this problem as a 4-class classification problem, but the traffic classes
have an ordering that should probably be taken into account when considering prediction accuracy.

Additionally, we believe that extracting more useful features about the graph would greatly help our models.
Some of our current attributes are somewhat related to how people would actually behave on those streets
(street type, number of lanes), but more features like this are probably necessary for our model to accurately
predict human behavior.
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