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The dynamics of the brain at rest are not well understood, yet their dysregula-
tion has been linked to psychiatric disease. Even in healthy subjects, everyday
changes in arousal and mood can alter brain dynamics, but their exact impact
is not clear. Current methods to reveal the intricate interplay between brain
regions and networks rely on linear approaches and correlations that may
miss the non-linear structure of these relationships. In this study we apply
Mapper, a tool from the field of topological data analysis, that uses non-linear
approaches to learn the underlying shape of the data. We explore the MyCon-
nectome dataset, which consists of a complete metabolic profile and fMRI
scans of a single subject across the span of an entire year. We construct graphs
comparing the fed/caffeinated state, the fasted/uncaffeinated state, and a ran-
dom graph model using SBM. We found that the fasted state exhibits increased
participation coefficient across almost all resting state networks compared to
fed state. Both real brain graphs showed higher participation coefficient and
higher within-module connectivity across all resting state networks than the
null model, demonstrating the brains ability to optimize the balance between
integration and segregation of function. The results from this study show that
Mapper can reveal important anatomical and functional architecture of the

human brain.

Introduction

The brain is a multitasking machine; while it
manages the effortless heartbeats and breaths that
keep it alive, it is also able to yield intense focus on
reading a paper, performing mathematical calcula-
tions, or driving a car. Neuroscience has explored
the functional repertoire of the brain by pinpoint-
ing the anatomical correlates to hundreds of sim-
ple tasks and imaging the evolution of brain activ-
ity during cognitive demands. Yet, there is still no
certainty on what the brain does when it is at rest,
performing no task at all.

Scientists, philosophers, and the everyday

thinker posit that the mind wanders, daydreams,
ruminates, reflects, and plans. This rich palette of
cognitive behaviour has found some basis within
neuroimaging. For example, functional MR imag-
ing studies have observed correlations between
distant brain regions in spontaneous activity dur-
ing rest, deemed resting state functional connec-
tivity (FC) (Glomb, Ponce-Alvarez, Gilson, Rit-
ter, & Deco, 2017; Hansen, Battaglia, Spiegler,
Deco, & Jirsa, 2015). Across a longer time inter-
val of resting state activity, patterns of correlated
networks and sub-networks form and dissolve in
simulations and in empirical data (Deco, Jirsa, &
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Mclntosh, 2013). In fact, many of these canoni-
cal resting state networks (RSNs) have been found
across many studies and have corresponded to crit-
ical brain functions such as movement, attention,
and vision. Interestingly, these networks and con-
nectivity between certain regions may be impaired
in neuropsychiatric disorders such as Alzheimer’s
disease and depression (Greicius, 2008). Even
outside of psychiatric disorders, the physiological
state of a subject can impact the functional con-
nectivity of the resting brain. For example, a sub-
ject in a fasted state exhibited greater connectivity
within the somatomotor and dorsal attention net-
works (Poldrack et al., 2015). Clearly, explor-
ing the brain at rest could yield key insight into
its function and dynamics.

Current methods to characterize resting state FC
involve timeseries correlations between regions,
sliding-window correlations, deconvolution, tem-
poral Independent Component Analysis, and more.
Many of these are linear methods that may fail to
reveal non-linear relationships between brain re-
gions and resting state networks. To explore the
nuances of these interactions, a tool from the field
of Topological Data Analysis called Mapper has
been proposed. Mapper creates a combinatorial
object from a high dimensional dataset that de-
picts the manifold of the original data. By using
metrics from graph theory, clinically and biophys-
ically relevant insight can be captured from a Map-
per graph applied to resting state fMRI data. This
approach has been previously used to predict indi-
vidual task performance and capture cognitive task
transitions at a faster time scale than other methods
and (Saggar et al., 2018).

In this study, we used Mapper to explore the
structure of RSN in resting state fMRI data. We
used 84 cleaned scan sessions, of which 31 were
of the fed/caffeinated state and 40 were of the
fasted/uncaffeinated state, from the dataset pro-
vided by MyConnectome, which consists of struc-
tural and functional MR scan sessions, metabolic
profiles, mood questionnaires, and daily activity
logs of the same subject for about a year. Specif-

ically, we analyzed the community structure, be-
tweenness centrality, within-module degree, and
participation coefficient of RSNs and compared
them between fed and fasted states. We also
created a null model using the Stochastic Block
Model, which can recreate the community struc-
ture of the Mapper graphs. We hypothesize the
fed and fasted graphs will contain more modular
structure than the null model. We also hypothe-
size that the somatomotor and dorsal attention net-
works will be more central in the fasted graphs,
similar to the results found in Poldrack et al. By
exploring the structure of the brain’s functional
networks in different physiological states, we can
derive insight into the link between the network
properties of the brain and behaviour and become
better equipped to predict, diagnose, and treat neu-
ropsychiatric disorders.

Related Work

Neuropsychiatric disorders exhibit network
dysregulation

Neuropsychiatric and behavioural disorders are
hypothesized to be linked to macroscale brain net-
work dysregulation. Thus, many studies have ap-
plied graph theory metrics to functional connec-
tivity to explore differences in network dynamics
between healthy and patient populations. In the
study by Xu et al. (Xu et al., 2016), the team
investigated network abnormalities in borderline
personality disorder (BPD), which involves symp-
toms such as affect dysregulation, impaired sense
of self, and self-harm behaviours. To this end,
they acquired resting state fMRI data from 20 pa-
tients with BPD and 10 healthy controls. They
created networks for each subject by taking the
correlations between each of 82 cortical and sub-
cortical regions and thresholding to yield a graph
density of 0.1. These graphs were analyzed using
clustering coefficient, characteristic path length,
small-worldness, local efficiency, global efficiency,
and degree and correlated with clinical symp-
tom scores. Finally, the study used network fea-
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tures in a machine learning classifier to distinguish
BPD patients from healthy controls. The team
found that BPD patients exhibited increased size
of largest connected component, amount of local
cliques, clustering coeflicient, local efficiency, and
small-worldness. These network measures demon-
strated high predictive power when implemented
with a classifier.

This study is important in demonstrating the
potential utility of analyzing network measures
of brain activity to predict mental health clinical
symptoms or diagnose neuropsychiatric disorders.
Indeed, the study was able to infer behaviours
characteristic of BPD from the significant network
measure differences. For example, higher levels
of local cliquishness at the amygdala and temporal
poles may suggest a rapid rise in negative affect
that is difficult to regulate in BPD patients. This
type of insight is key to understand the mecha-
nisms behind psychiatric illnesses. However, by
averaging across individuals some individual vari-
ation that may be important for understanding their
behavior is lost. Since the presentation of psychi-
atric disorders varies widely between individuals,
it is worth investigating behavior at the individual
level.

Physiological state can impact functional con-
nectivity

Intuitively, the brain’s functional dynamics
should not be consistent for the same subject
throughout even a single day. Arousal, mood,
and other mental states should alter the functional
topology of the brain. This was investigated in a
study by Poldrack et. al. (Poldrack et al., 2015)
using the same MyConnectome dataset. The au-
thors created networks out of the average func-
tional connectivity matrices, which contains the
correlations between brain regions, for the fed and
fasted states, by binarizing at a 1% density thresh-
old. They found that the somatomotor, dorsal at-
tention, and primary visual networks had greater
within-module and between-module connectivity,
highlighting the importance of physiological states

when interrogating the network structure of the
brain. While this study is important for demon-
strating this fact, its use of Pearson correlation to
create the functional connectivity matrix may miss
some of the nonlinear interactions between brain
regions. Additionally, linear correlations methods
may introduce a lot of spurious correlations from
remaining motion artifacts, noise, or higher-order
relationships between parcels. We aim to elucidate
these true links using the non-linear methods pro-
vided in Mapper.

Mapper can reveal complex topology of the
brain

Mapper has found success in exploring the func-
tional architecture of the brain under task demands.
In Saggar et. al. (Saggar et al., 2018), the inves-
tigators applied Mapper to multitask fMRI data,
where subjects were required to perform work-
ing memory, math, and video tasks in the scanner,
with periods of rest and instructions in between.
They found that nodes with members associated
with tasks with heavy cognitive load (nodes can
have multiple labeled members, see Mapper sub-
section in Methods for explanation) were concen-
trated in the core of the graph and nodes associ-
ated with resting tasks were localized in the pe-
riphery. Additionally, subjects with a more modu-
lar graph, where communities are assigned by ma-
jority vote of the nodes’ members, had better task
performance than individuals with a less modular
graph. The results from this study show that Map-
per can reveal complex functional dynamics of the
brain. The resultant graphs provide a robust visu-
alization that can link brain dynamics with cogni-
tive and behavioral properties of an individual. We
extend this method to resting-state data, where we
may be able to reveal important topological fea-
tures and link them to behavior or cognitive state.
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Methods
Data collection

The specific protocols are detailed on the My-
Connectome website (myconnectome.org/wp/),
but will be discussed here briefly. Resting state
fMRI scans were performed three times a week
(Monday, Tuesday, Thursday), using a multi-band
EPI sequence (TR=1.16 ms, TE = 30 ms, flip angle
= 63 degrees, voxel size = 2.4 mm X 2.4 mm X 2
mm, distance factor = 20%, 68 slices, oriented 30
degrees back from AC/PC, 96x96 matrix, 230 mm
FOV, MB factor = 4, 10:00 scan length). Gradi-
ent echo field maps and spin echo field maps with
AP and PA phase encoding were also collected.
Behavioral/lifestyle measurements were also col-
lected daily and are detailed in Table 1. Other mea-
surements include sleep, exercise, amount of time
outside, blood pressure, pulse, diet, blood sam-
pling, RNA sequencing, and metabolics, though
this list in non-exhaustive and the acquisition will
not be detailed here. We will also note that on
Tuesdays the subject was fasted due to a blood
draw that same day, and other days the subject was
not fasted. The fMRI scans were preprocessed us-
ing fmriprep, an open-source pipeline (Esteban et
al., 2018). Timepoints with excessive head motion
were removed from the dataset. A custom parcel-
lation was applied to the subject’s brain, which can
be used to define anatomical brain regions for each
parcel. Thus, each parcel is labeled with a resting
state network that the brain region typically partic-
ipates in.

Mapper

Details of the Mapper algorithm are described
in (Singh, Memoli, & Carlsson, 2007), but will
be briefly discussed here. Essentially, a lens func-
tion is applied to the original high-dimensional
data to create a low-dimensional representation of
the data, called the cover. The datapoints in the
cover are binned into overlapping windows. Then,
the corresponding original high-dimensional data-
points are clustered based on the binning. These

clusters become the nodes of the resultant graph,
and edges are defined between nodes when clus-
ters share one or more original datapoints, which
is possible due to the overlap. Put very simply, the
structure of the resultant graph depicts the similar-
ity of the original datapoints.

In this study, we used tSNE, or t-distributed
stochastic neighbour embedding (van der Maaten
& Hinton, 2008), for our lens function. tSNE
was chosen because it preserves some of the local
structure in the high-dimensional space, since it is
a non-linear method. The similarity metric used
was Euclidean distance. The perplexity parameter
was varied to observe its changes on the resultant
graphs. The community structure in the graph was
mostly robust to perturbation of this parameter, so
we chose a value of 50 as it had the largest giant
component.

We used HDBSCAN (Mclnnes & Healy, 2017)
as the clusterer. HDBSCAN is a hierarchical clus-
tering algorithm that was used because it does not
require the number of clusters to be specified.

Two other parameters required by Mapper are
resolution, which defines the number of cubes/bins
on the cover, and gain, which defines the amount of
overlap between bins. Roughly speaking, resolu-
tion guides the sizes of the clusters, or the number
of original points in the final nodes of the graph,
and gain guides the connectivity of the graph. We
performed a parameter sweep across resolution
and gain and chose the combination of parame-
ters that yielded the highest modularity in both fed
and fasted states. The resolution was chosen to be
20, which will create 20 bins in each dimension in
the lower-dimensional embedding. This will cre-
ate 400 bins. The gain was chosen to be 8, which
will create a 7/8 or 87.5% overlap between bins.

Mapper was applied to each scan session, gener-
ally represented by a 554 x 500 (number of parcels
x TRs after masking) data matrix. The number of
TRs varied between scans after timepoints with ex-
cessive motion were removed. The lens function
mapped this to a 554 x 2 matrix. Thus, we have
created Mapper graphs in the anatomical space,
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though we are also able to transpose the data ma-
trix and create a graph in the temporal space, which
may provide additional unique insight into the dy-
namics of brain activity.

Resting state network labels

One of the advantages of Mapper is the ability to
annotate nodes with metadata corresponding to the
members of each node. This allows us to visualize
the localization of certain points of interest. For
resting state networks, we can label each original
datapoint with the network that its corresponding
parcel belongs to. Parcels were labeled with 12
known RSNs, which are described in Table 1 (vi-
sual and frontoparietal can be subdivided into two
networks each). The resultant graph contains a pie
chart for each node, which are proportionally col-
ored by the networks of the node’s members.

Table 1
Major resting state networks and their functions
Network

Functions Citation

Emotional processing, self-referential mental

Default Mode 5 0 5
activity, recollection

Raichle (2015)

Covert spatial attention, saccade planning,

Dorsal Attention . :
visual working memory

Vossel et al. (2014)

Ventral Attention Attention to unexpected stimuli Vossel et al. (2014)

Fronto-parietal Selection of stimuli for attention Ptak (2012)

Sadaghiani &

Tonic alertness DiEsposito (2015)

Cingulo-opercular

Selection of stimuli for attention, initiation of

Salience .. .
cognitive control, maintenance of tasks

Ham et al.(2013)

Sanchez-Castafieda
etal. (2017)

Motor planning and execution, processing

Somatomotor ;
sensory input

Visual Visual perception, processing, attention Heine et al. (2012)

Medial Parietal Memory Power et al. (2014)

Hutchison et al.

Parietal Occipital (2015)

Visuomotor planning and control

Community structure

Communities are defined as groups of densely
interconnected nodes with sparse connections be-
tween groups. We can assign nodes into commu-
nities and evaluate the "goodness" of the assign-

ments by calculating a measure known as modu-
larity. Modularity, Q, is defined below, where A is
the adjacency matrix of the graph, & is the node de-
gree, m is the total number of edges, and ¢ returns
1 if both node v and w are in the same community.

_kk
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We defined communities for each node by the RSN
most of its members are labelled by. This allows
us to observe how modular resting state networks
tend to be.

We ran Louvain community detection on the
Mapper graphs to see how well RSNs modularized
on their own. In brief, each node is initially as-
signed to its own community and are reassigned
to new communities if the change in modularity
is greater than the current modularity. This is re-
peated until modularity is maximized. Then the
communities are compressed into supernodes and
the process repeats. The equation for the change in
modularity is calculated by the expression below.
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Betweenness centrality

Betweenness centrality of a node measures the
likelihood of the shortest path between any two
nodes in a graph passes through that node. To test
whether certain resting state networks are impor-
tant for bridging other networks, we calculated the
betweenness centrality value for every node and
averaged the values for each network. Between-
ness centrality is calculated by the expression be-
low.

1 pﬁfj

(n—1)(n-2)

i —_—
h,jEN,h# j,j#i,h#i Phj

The number of nodes in the graph is represented
by n. The number of shortest paths between node
h and node j is p,; and p;; is the number of shortest
paths between £ and j that include node i.
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Within-module degree

Within-module degree is the number of edges
within a community, and was used to determine
how likely a resting state network connected with
itself. It was normalized by the number of nodes in
that RSN community to account for an increased
likelihood of within-module connections with a
greater community size, and it is calculated with
the expression below.

1
we=— > AydC;C))

CR ; iVt

The normalized within-module degree of resting
state network R of size cg is calculated by sum-
ming all edge values A;; between nodes i and j if
they belong to the same community (6 returns 1 if
i and j are in the same community) and dividing
that sum by the community size.

Participation coefficient

The participation coefficient of a node is the ex-
tent to which the node is connected to other com-
munities, bounded between 0 and 1. This is calcu-
lated below, where M is the set of all modules, and
k;(m) is the number of links between node i and all
nodes in module m, and k; is the degree of i.

BIPRIR apN
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We calculated the average participation coefficient
for each RSN to see which networks were more
important for integrating information between net-
works.

Stochastic block model

The Stochastic Block Model (SBM) (Abbe,
2017) is a random graph model with a predefined
community structure, based on the user specified
parameters that guide the size of each community
and the likelihood of edges appearing between and
within communities. Since our Mapper graphs ex-
hibit significant community structure, we used this

as a null model to see which properties arise in
the real graphs but do not arise in the community-
controlled SBM. In other words, do the interac-
tions between and within RSNs arise solely be-
cause of the community structure, or are there
more complex behaviors present?

The parameters for the SBM were estimated
from the scan data. For each scan, a Mapper
graph was created and partitioned into communi-
ties based on the RSN labels. The sizes of these
communities were used as the community sizes in
the SBM. The probabilities were estimated by cal-
culating the number of edges between a node in
community X and any node in community Y, then
dividing by the total number of possible edges, or
essentially the number of nodes in community Y.
This is averaged for all nodes in community A to
get the probability of an edge existing between A
and B. This is calculated by the expression below,
where Ny is the number of nodes in community X,
Ny is the number of nodes in community Y, A;; is 1
is there exists an edge between nodes i and j, and
o0 returns 1 if node i is in community X and node j
is in community Y.

|
NxNy

D Aidleic))

i,jeN
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The result is a symmetric matrix of probabilities
between communities.

ROI adjacency matrix

The nodes of the Mapper graph are the clusters
of the original datapoints (see subsection Mapper).
Each node can contain one or more parcel/region-
of-interest (ROI) and one ROI can be in multiple
nodes due to the bin overlap. We can convert the
adjacency matrix of the graph, which is in the clus-
ter x cluster space, to the ROI x ROI space by
defining an edge of value 1 in the ROI adjacency
matrix (RAM) when two ROIs share the same node
or their nodes are connected in the original graph.
These RAMs are used to explore the properties of
the RSN community structure in the graph, the
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Figure 1. Mapper graphs created by running once on all scans concatenated for fasted state (top-left), fed state (top-right), and the null SBM (bottom-left).

connections between communities, and compare
with the SBM and the correlations between ROIs.

Results

We first generated a Mapper graph across all
fed or fasted scans by concatenating all the ROI
by time matrices in the time dimension and run-
ning the Mapper algorithm one. This generated the
graphs seen in Figure 1. We created one scan-wide
Mapper as a representative example for each state
to look for immediate differences in structure. In
fasted graphs, some networks tended to remain dis-
connected, such as the primary fronto-parietal net-
work and somatomotor network. However, overall
the structure between fed and fasted was largely
similar. Both are highly modular and show that
certain resting state networks tend to connect to the
same neighbors. For example, cingulo-opercular
and somatomotor networks are always connected,

most likely due to the codependent nature of their
functions; movement and sensory perception typ-
ically requires tonic alertness, especially for new
stimuli. The secondary visual network seems to
also preferentially connect to the somatomotor net-
work, highlighting the codependency of vision and
movement. Other networks play more integral
roles in the graph. The ventral attention and me-
dial parietal networks in the fasted graph play a
bridge role between two highly connected seg-
ments, while in the fed graph the secondary fronto-
parietal and dorsal attention networks play this
role, while the ventral attention network is pushed
to the periphery. In both graphs, the default mode
network seems to integrate information from many
different RSNs. The null model shows very dif-
ferent structure from the real brain graphs. RSN
communities seem to be more interconnected, and
there doesn’t seem to be a tendency for certain net-
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Modularity of resting state networks across sessions
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Figure 2. Comparison of graph modularity by using RSN labels as com-
munity assignments. Real brain graphs exhibit a higher modularity than the
random graph model, but the fed and fasted states show similar modularity.

works to connect with other preferred networks.
The structure within each community also seems
to be lacking and uniform across communities. In
fact, the SBM exhibits significantly less modular-
ity than the real brain graphs, as shown in Fig-
ure 2. This demonstrates the brain’s ability to
efficiently segregate function, even at a network
level where these resting-state networks may span
the entire brain and overlap one another. Interest-
ingly, the brain can be modular geographically, but
also in the way information is communicated. No-
tably, the modularity of the fed and fasted states
are no significantly different. This makes intuitive
sense; the brain will likely not reorganize it’s mod-
ular structure with simply fluctuations in arousal
as it may be fundamental to its efficiency. While
these are important structural differences, calculat-
ing network measures of each graph will help us
explore these interpretations.

To assess the structural differences between fed,
fasted, and null graphs, as well as any possible
differences in how brain networks communicate,
we constructed a Mapper graph for each scan in-
dividually. We then calculated betweenness cen-
trality, participation coefficient, within-module de-
gree, and modularity for each graph, and averaged

all the sessions for each state. The results are
shown in Figure 3. Although the random graph
seemed more interconnected, it had a significantly
lower participation coefficient on average across
all networks (Figure 3A). Interestingly, the fasted
graphs had high participation coefficients and the
fed graphs fell in between. Both fed and fasted
states also had higher within-module connectivity
than the null model, which can be visibly seen in
Figure 1. This is corroborated by Figure 4, when
both fed and fasted states show greater structure
within an RSN when compared to the null model,
where the edges within a network seem random.
Betweenness was similar among fed, fasted, and
SBM graphs. Interestingly, none of the RSNs had
significantly higher betweennness than any other
RSN, even though some may seem to play that role
in the Mapper graphs in Figure 1. This may mean
that the brain does not strongly rely on a single
RSN to communicate information.

Lastly, we explored the adjacency matrix of
the graphs in ROI space, averaged across scans.
Seemingly, there is no difference in structure be-
tween fed and fasted states. Even though the func-
tional connectivity matrix implies strong correla-
tive structure between networks, the fed and fasted
RAMs do not seem to show strong connections be-
tween networks. This seems to contradict Figure
3A, where the fasted state exhibited a high partic-
ipation coeflicient, yet this property is not seen in
its RAM. It is interesting to seem that the SBM
RAM shows almost identical structure to the fed
and fasted RAMs, yet its Mapper graph show strik-
ing differences.

Discussion

Previous studies have shown that, in the fasted
state, the somatomotor, dorsal attention, and pri-
mary visual networks show greater within network
and between network connectivity (Poldrack et
al., 2015). Our results show that this is not nec-
essarily the case. The differences between the fed
and fasted states have been less about specific net-
works and have been more of general reconfigura-
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Figure 3. Comparison of participation coefﬁcwnt (A), within-module connectivity (B), and betweenness centrality (C) among the three types of graphs.
Values were averaged across all nodes within an RSN within a scan, and then averaged across all scans. Within module degree was normalized by community
size to remove the possibility that larger communities had a higher chance of created edges within itself.

tions across networks. The increased participation
coeflicient in fasted graphs may indicate elevated
levels of arousal in the brain due to hunger. Oddly
enough, the subject was usually caffeinated in the
fed state, so perhaps this difference is some upreg-
ulation of drive, motivation, focus, or attention that

is necessary when the body needs to find nutrition.

For any network, whether it be the brain or a
social network, efficient flow of information re-
quires a delicate balance between integration and
segregation. Segregation allows specialization of
nodes that can perform certain tasks more effec-
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A ROI x ROI matrix, Fed
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Figure 4. ROI x ROI adjacency matrix (ROI = region-of-interest), where each row or column is a subject-specific parcellated brain region. A matrix element
is 1 if the ROIs corresponding to the row and column are found in the same node or are in two connected nodes. The matrix was averaged across all scans
aAS 31 for fed (A), 40 for fasted (B), all 84 for SBM (D). These are compared to the average correlation matrix of the ROIsAAZ timeseries across all scans,

showing that the Mapper graph can embody these relationships.

tively, yet too much segregation makes it difficult
for specialized modules to communicate. Integra-
tion can unify communication, but too much can
be detrimental for the network to handle diverse
tasks or diverse locations. In the brain networks
literature, there is a notion that the brain has op-
timized both integration and segregation, allowing
it to process information so effectively. The results
presented in this study demonstrate two opposing
physiological states that both show robust segrega-
tion, with a higher modularity and within-module
connectivity than the random graph, and simulta-
neously show strong integration, with a higher par-
ticipation coeflicient than the random graph. These
results support the assertion that the brain balances
integration and segregation.

This study demonstrates the first application of

Mapper and topological data analysis to resting
state fMRI data. The ability of Mapper to capture
important anatomical and functional features of the
brain while corroborating similar findings in the
field demonstrate its effectiveness as a tool to cap-
ture important structure and relationships in high-
dimensional data. Certain parameters can be fur-
ther optimized using persistent homology to cap-
ture the most important topological features of the
data. Additionally, Mapper can be applied to mul-
tiple subjects to see if the network relationships
found in this study hold true across participants.
Most importantly, Mapper can be used to explore
the dynamics of brain network activity, which in-
volves transposing the data matrix and projecting
in the temporal space. This can reveal interest-
ing temporal structure of RSNs that current linear
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methods cannot capture. We hope to continue us-
ing these tools to explore the mechanisms underly-
ing brain dynamics and behavior so that we may be
able to optimize therapy and diagnostics for neu-
ropsychiatric disorders.
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