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1 Introduction

Graph-based learning describes a broad class of problems where response values are observed
on a subset of the nodes of a graph, and the learning objective is to infer responses for the
unlabeled nodes. Inference methods for graph-based learning nearly unanimously derive their
success from an assumption that connected nodes are correlated in their responses, akin to the
social phenomenon of homophily whereby bird of a feather flock together. Many variations
on models derived from this assumption have been studied and applied with great success.
While presented as graph-based methods, the graphs that underlie the typical applications of
these methods are often synthetic in nature. For example, they may be derived from high-
dimensional text or image data. These typical applications begin with a semi-supervised
learning problem studying high-dimensional data points z; € R” associated with response
values y; € R (such as images x; associated with quality scores y;) and then induce a graph
between the data points by taking a k-nearest neighbor graph in the space to obtain a sparse
similarity graph. Despite the synthetic nature of these graphs, graph-based learning methods
have been highly effective for solving machine learning problems. Graph smoothing methods
are an extremely popular family of approaches for semi-supervised learning. The choice of
graph used to represent relationships in these learning problems is often a more important
decision than the particular algorithm or loss function used, yet this choice has not been well-
studied in the literature. In this work we demonstrate that for social networks, the basic
friendship graph may often not be the appropriate graph for the problem of predicting node
attributes. More specifically, standard graph smoothing is designed to harness the social
phenomenon of homophily whereby individuals are similar to “the company they keep.” We
present a decoupled approach to graph smoothing that decouples notions of “identity” and
“preference,” resulting in an alternative social phenomenon of monophily whereby individuals
are similar to “the company they’re kept in.” Our model results in a rigorous extension of the
GMRF models that underlie graph smoothing, interpretable as smoothing on an appropriate
auxiliary graph of weighted or unweighted two-hop relationships.

*This is a joint work with Alex Chin, Kristen M Altenburger and Johan Ugander.



2 Problem Statement

We consider the general problem of learning from labeled and unlabeled data. Given a point
set X = xy---x;;241 @, and a label set L = {1,2---¢}, the first 1 points have labels
{y1,- -y} € L and the remaining points are unlabeled. The goal is to predict the labels
of the unlabeled points. The performance of an algorithm is measured by the error rate on
these unlabeled points only. Here in our work, we will focus on predicting the gender for
individuals in the network, which means that we will have two different components: male
and female in the label set.

3 Related Work

In the project proposal, we discussed four papers in the field of semi-supervised learning and
node or link labeling problem in this report, spanning a time frame of one decades. The first
paper we considered was authored by Zhu, Ghahramani and Lafferty(ZGL) in 2003, entitled
Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions [1]. It is one of
the first few works to use a random walk based method for node labeling problem. Before
their pioneering work, most of the node labeling methods are in the framework of iterative
method [6]. We then consider the paper by Zhou, Bousquet, Lal, Weston and Scholkopf,
entitled Learning with Local and Global Consistency in 2004 [2]. Different from ZGL, the
keynote of their methods is to let every point iteratively spread its label information to its
neighbors until a global stable state is achieved, which can help achieve a better overall
prediction result. The last paper we discussed was about Monophily phenomenon is social
network by Altenburger and Ugander in 2017, which introduced the concept of Monophily.
The author of the paper observed a fundamental difference between similarities with the
company you keep and the company youre kept in in social networks. That work found
that the two-hop similarities implied by the latter can exist in the complete absence of any
one-hop similarities, which served as the fundamental inspiration of the concept of decouple
which is mentioned below.

4 Description of Dataset

We analyzed populations of networks from the FB100 network dataset. FB100 consists of
online friendship networks from Facebook collected in September 2005 from 100 US colleges
primarily consisting of college-aged individuals. Traud et al. provide extensive documenta-
tion of the descriptive statistics of these networks. We will exclude Wellesley College, Smith
College and Simmons College from our analysis, all of which are single-sex institutions with
> 98% female nodes in the original network datasets. For all networks, we restricted the
analysis to only nodes that disclose their attributes, completely removing those with missing
labels. We also restricted the analyses to nodes in the largest (weakly) connected component
to benchmark against classification methods that assume a connected graph.

5 Graph smoothing preliminaries

In this section we review the standard formulations of graph smoothing, the semi-supervised
learning problem of [1], which we refer to here simply as smoothing. We review the closed
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form solutions. Later we will talk about the new concept of decoupled smoothing graph and
will provide its closed form solution.

5.1 Smoothing

The standard formulation of graph smoothing, proposed in [1], is to solve the optimization
problem
mein Z A (0; — 6;)?, subject to 0|y, = 6y. (1)
(i,))eE

The loss function in Equation (1) is 7 L#, where L = D — A is the graph Laplacian.

If we define the transition matrix P = D~'A and identify blocks of P according to the
labeled nodes V; and unlabeled nodes V3, the closed-form solution to Equation (1) for the
unlabeled nodes is then:

él = (I — P11>_1P1090, Where P = (POO POl) . (2)

Py P
This solution has a Bayesian interpretation [3]. Suppose we place a Gaussian Markov
Random Field (GMRF) on the node set by placing a prior § ~ N (0,72(D —vA)~™!) on 6.
This prior is the conditional autoregressive (CAR) model popular in the spatial statistics
literature, and has the property that 6; conditional on the other values of 6 follows the

distribution
TNy T
0; ] (01,...,0;_1,0;41,...,0,) ~N | — = - 3
O icttinnoes) ~ N 3300 ®)
Under this GMRF prior, the Bayes estimator conditional on having observed the labels 6;,
i € Vp, is the solution to Equation (1), when v — 1. The parameter v < 1 is a correlation
parameter that is necessary for the distribution to be non-degenerate. In practice it is
common to add a small ridge to the diagonal of the Laplacian when solving Equation (1) for
numerical stability, which achieves a similar purpose.

5.2 Decoupled graph smoothing

In this work we propose decoupling the true parameter of interest 6; from a target parameter
that is close to the true parameters of the neighbors of .. We now study a model that gives
rise to such a decoupling.

Suppose we have an asymmetric weight matrix W, and denote the row sums by z; =
>_; Wij and the column sums by 2} =, W;;. Consider the Gaussian Markov random field
model

v 72
0il¢p ~ N (Z—i;qubj,;), (4)

TN r?
610 ~ N | =D Wb, — |, (5)
J i=1 J

where v and 72 are constants. We now establish that this model is equivalent to marginally
specifying the joint Gaussian distribution for # and ¢ as follows. A proof of this equivalence
is found in the appendix.



theoremthmgmrf Let W be a weight matrix with row sums z; = ) i Wij and column
sums 2j = Y, Wj;. Let 7> > 0 and € (0,1). Then the conditional specifications

Oilo ~ N (=D Wijey, — G0 ~ N (> Wibi, —
= % & %

Ji=1
define a valid, non-degenerate probability distribution over § and ¢ with marginal distribu-

tion (Z) ~ N(u,Y), where p = 0 and

-1
_ 2 zZ W
=T (_waT 7 : (6)

Because our goal is to obtain predictions for the real attributes 6, we view the target
attributes ¢ as nuisance parameters and marginalize them out. By studying the precision
matrix M = ¥ ~! and applying the standard 2 x 2 block matrix inversion Schur complement

(M~ 1)11 = (Myy — MyaMsy Moy) ™,

we find the marginal prior for 6 is then Gaussian with mean 0 and covariance matrix
72 (Z — ')/21/VZ/_II/VT)_1 . Therefore, minimizing the posterior log-likelihood conditional on
observing values #; for ¢ € Vjy reduces to the optimization problem

m@in 6TL'o, subject to 6y, = g (7)

for the modified Laplacian
L'=(Z-yWZ'Wm). (8)

We call this modified Laplacian the decoupled Laplacian, to emphasize the decoupling be-
tween the real responses 6 and the target responses ¢ in the underlying model.

From this expression for the decoupled Laplacian we can view A = W Z'~'W as a weighted
adjacency matrix for an auxiliary graph that is essentially connecting nodes to their two-
hop neighbors with appropriately weighted edges. With this modified auxiliary matrix, the
solution to the decoupled smoothing objective is then

6, = (I — Py1) "' Pioby, 9)

as before in Equation (2), but now with P = Z=1(Z — ¥*WZ'1WT).

5.3 Combining independent estimators

Consider that the information contributed by each friend j for estimating 6; is in the form
of the “observations” {6y, : k €;}, which are values located two steps away from unit 7. One
way to think about combining this information has been studied extensively in the statistics
literature in the context of estimating a common location parameter from samples of varying
precision. Explicitly, suppose the variables in the set {6y : k €} follow a distribution with
mean ¢; and variance o;. That is, all observations contribute unbiased information for
estimating 6;, but they have varying precisions which are modulated by unit j. Then the
weight matrix entry reduces to W;; = A;;/ 0]2», with row sum z; = > e, 00 2 and column sum
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z; =d;/ 032». In this case, we now show that we obtain a concise recurrence recognizable as a
particular weighting of 2-hop majority vote.

From Section 5.2, the auxiliary graph with this diagonal covariance specification has an
adjacency matrix with entries

A’L_] = Z AzkAjk/(dkglz)’ (10)
k

with the smoothing update rule being 0t = Z-1A0*"1. For an unlabeled node 1, if we employ
the weights derived here we obtain the recurrence:

~

08 = (Z7' A6 = ZAmej !

_ Zee = de Zet . (11)

By viewing the aggregation as performed on a graph, we can in fact turn this standard
estimation procedure into an iterative procedure. As a generic problem of aggregating es-
timators, if we observe Xj; ~ N(@,Cj?), kE =1,...,d;, then the minimum variance, linear
unbiased estimator (MVLUE) of 6 when the 7 are known, is 0 = > w; X; with weights
given by w; = (d;/¢7)/ >, (dr/GR). Our formulation of expert aggregation aligns with this
view, where the expert variances are 6 = (?/d; and higher degree nodes therefore having
appropriately more precise information.

In order to estimate O’JZ we can notice that it essentially represents the standard error for
the expert estimate. Hence we can use the regular standard error estimate for the Gaussian
sample mean, 65 = S7/d;, where (recall that  is the labeled neighborhood and dj = |9] is
the labeled degree)

is the sample variance of the labeled nodes in the neighborhood of j. We then use 5j2, as a
plugin estimate in the update rule in Equation (11), giving

Nt 1 e 1
0= S5 25229 (12)

J€k

Alternatively, we can directly impose homogeneous standard errors, 0? = 02 /d;, in which
case the normalization term reduces to 1/, o2 =1/ > tc, de, the number of nodes in
the two-step neighborhood of i, and we obtain the update rule

Zéel > (13)

kez Jek

For exposition here we have let d, represent the total graph degree of unit ¢, which dis-
regards the number of labeled nodes. We thus see how iterating a simple two-hop majority
vote update can be motivated for graph smoothing, despite initial appearances as defining
a “non-physical” process whereby information bypasses individuals. This simple recurrence
emerges as the MVLUE under the assumption that expert friends contribute independent
opinions, an assumption which appears to be reasonable for the graph-based learning prob-
lems we study.



6 Iterative perspective on smoothing

In this section we outline how the closed form solutions to the smoothing problems discussed
in this work can be formulated as the solutions to the iterative application of recurrence
relations. We first review the known iterative formulation of smoothing. We formulate the
recurrence relation that underlies the decoupled smoothing problem studied in this work.
In the next section, we will show how this recurrence can be interpreted in the language of
expert opinion aggregation, giving us an intuition for how to choose the previously unspecified
weight matrix W in the recurrence we derive here.

6.1 Iterative formulation of smoothing

The closed form solution to the smoothing objective in Equation (1) is known to arise from
a repeated application of majority vote in the following sense: define the time 0 estimate §°
to agree with the true labels on Vj. Take the transition matrix P = D~'A and perform the
updates ) ) )

0! = Pyfo + P67, 6% =6y, (14)

Py Poy
Py P
other words, the time t estimate is the majority vote estimate using the time t—1 predictions,
where after each step we replace the labeled predictions by their original, true labels. In the
limit,

where P = ( ) has been partitioned into labeled and unlabeled blocks, as before. In

él = thrn éi = (I — PH)_IPH)@O, (15)
—00

which is the solution to Equation (1) given in Equation (2).

6.2 Iterative formulation of decoupled smoothing

Examining the decoupled Laplacian in Equation (8) alongside the iterative smoothing for-
mulation provides an iterative algorithm for the decoupled smoother. We define an auxiliary
weighted, directed graph with weighted adjacency matrix A = WZ"'W T, which has edge
weight Azg Zk —Edk Wit " The out- degree of node i reduces to Z Az] = z;, where z; is the

k
same row sum defined in Section 5.2. Hence the degree matrix of A is Z, and the solution

to the decoupled smoothing problem in Equation (7) results from performing the iterative
one-hop majority vote updates, Equation (14), on the auxiliary, directed graph.

By employing the update equations in Equation (14) with the transition matrix P =
Z-'WZ''WT, we can see that decoupled smoothing amounts to an iterative update of a
weighted two-hop majority vote.

6.3 Improving majority vote with regularization

The iterative perspective is not only useful for computational purposes but also gives insights
into how to improve the basic iterated majority vote. Here we describe an improvement to the
basic smoothing algorithm, inspired by the details of implementing the iterative algorithm,
which can be applied in either the standard, soft, or decoupled setting.

Since iterative majority vote is recursively defined, it relies on defining an initial set of
guesses for the unlabeled nodes; when t = 1, equation (14) requires a value for 67 which



can be safely set to random initial labels without compromising the limiting result. Then,
equation (14) can also be written elementwise as

A 1 %
g = EZ&;*. (16)

JEi

for every unlabeled node ¢ € V;. From here, one sees that the performance of the first few
iterations can be quite unsatisfactory, because it depends strongly on the initial noise input
é(f. An alternative strategy is to set the first iteration of the unlabeled nodes to be the
average value of labeled friends only:

a1
0 =50 (17)

(A .
je?

for 7 € V.

This is a reasonable choice because it avoids corrupting the early estimates with noise,
and indeed this modification tends to lead to a slight bump in performance in early iterations;
see Section 7 for example illustrations.

However, we can further generalize this idea of upweighting the true labels when they
should be trusted more than haphazard (random) guesses. Consider the convex combination
update

it — A% S04+ (1- )\ﬁ)% S0, (18)

i R
JEN? JEN]

where Al € [0,1] are weight parameters that control the amount of trust to place in the
guesses of previous iterations. This places weight A\! on the true labels and weight 1 — \! on
the predicted values for iteration ¢ — 1. Most generally A\! may be indexed by both the unit
1 and the time step t, as it is reasonable to expect that this weight should be personalized
to individuals (e.g., vary based on degree) and that estimates of later iterations should be
trusted more (which would have \! decreasing in time t).

Decomposing the sum in equation (16) as

DTSl

jei J€;

we see that equation (18) reduces to the one-hop majority vote iteration for the choice of
weights A\l = d?/d;, which is constant in .

The search space of weights A! is quite large and we leave a formal analysis of this space
to future work, restricting ourselves here to providing intuition for choices of \! that appear
to work well in our empirical experiments. The goal is to place more weight on labeled nodes
in the early stages and less weight on labeled nodes at later iterations, which suggests A!
decaying in ¢t. Consider parametrizing \! = f;(¢) for a function f;(-) that reduces the number
of parameters. For example one may consider the choice f;(t) = (df/d;)*, which represents
exponential decay in t. The choices of \! will lead to different limiting values lim; ., 6" |
some of which appear to outperform the basic version of majority vote.



7 Empirical Illustrations

7.1 decoupled smoothing

We perform experiments on a sample of undergraduate college networks collected from a
single-day snapshot of Facebook in September 2005. We focus on the task of gender classi-
fication in these networks, restricting our analyses to the subset of nodes that self-reported
their gender to the platform. We use the largest connected components from four medium-
sized colleges, amherst, reed, haverford, and swarthmore. Ambherst has 2032 nodes and
78733 edges, Reed has 962 nodes and 18812 edges, Haverford has 1350 nodes and 53904
edges, and Swarthmore has 1517 nodes and 53725 edges. For all plots in this section we at-
tempt classification 10 times based on different independent labelled subsets of nodes. The
plots show the average AUC with error bars denoting the standard deviation across the 10
runs. In Figure 1 we see our experiments with decoupled smoothing, which indicate that
the two-hop majority vote update given by Equation (13) outperforms both the standard
1-hop majority vote estimator and the corresponding (ZGL) smoothing estimator in terms of
classification accuracy, regardless of the percentage of initially labeled nodes. Meanwhile we
also observe that decoupled smoothing performs worse than the much simpler 2-hop majority
vote estimator in some situations (namely amherst and haverford). Recall from Section
4.3 that decoupled smoothing can be interpreted as iterated 2-hop majority vote, but with
randomly initialized guesses. We suspect that the better performance of the plain 2-hop
majority vote is due to the fact that local information is more pertinent for this particular
task than global information, and the smoothing algorithms are inappropriately synthesizing
information from local and global sources.

7.2 Regularized iterations

In Section 6.3 we considered a modified iterated majority vote algorithm that includes a
regularization term \! = (d¥/d;)! for each unlabeled node i. This modification was inspired
by the empirical observation that 2-hop majority vote outperforms the limiting iterated
smoother. As a secondary inspiration, using (17) as the first iteration’s update rule instead
of (16) greatly reduces the number of iterations needed for convergence. In this section,
we present experimental results from applying these modifications for both hard smoothing
and decoupled smoothing on a synthetic stochastic blockmodel graph as well as the on the
Facebook networks.

7.2.1 Improved iterative decoupled smoothing

We first test our modification in an overdispersed stochastic block model (0SBM), an exten-
sion of the stochastic blockmodel that contains an additional parameter to model monophily.
It is thus designed to capture aspects of the network that are particularly well suited for
2-hop estimators. Again, we use two blocks with 500 nodes in each block representing 500
males and 500 females. The expected average degree is 42 and dispersion rate is 0.004,
giving the same edge density and dispersion rate as in [4]. Here we compare the iterative
method results for the original decoupled smoothing method against the regularized iterative
decoupled smoothing method. As shown in Figure 2b, the regularization improves the over-
all prediction accuracy for decoupled smoothing under the overdispersed stochastic block
model.
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Figure 1: Decoupled smoothing performance for classification accuracy of different iterative
estimators of gender, compared with hard smoothing (ZGL) and 1-hop and 2-hop majority
vote. The estimators based on two-step neighborhood information clearly outperform those
based on one-step information, but 2-hop majority vote sometimes outperforms decoupled
smoothing.

On the Facebook Amherst network we use the regularization \! = (d?/(rd;))""?, where r
is the initial percent of labeled nodes. This choice is motivated by the fact that the relative
importance of local to global information should depend on the proportion of labeled nodes;
if there is little local information available, then it makes sense to pull in information from
farther away. We can see that with this particular regularization term, the smoother modestly
improves the overall prediction accuracy for decoupled smoothing. It is encouraging that
from pure intuition we can see better results; with a more careful optimization over the Al
space it is possible that performance can be further improved.

8 Discussion

In this work we investigate the use of graph-based learning problems for social networks,
where a thoughtful understanding of social forces that underlie network formation can help
inform the choice of the smoothing model. Our work is motivated by the investigation into
empirical social phenomena in [4], which highlights the distinction between ”the company you
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Figure 2: Decoupled smoothers, with and without regularization, for classifying gender on
an oSBM and the Amherst dataset.

keep” and ”"the company you’re kept in.” We develop a model for decoupled graph smoothing
that links this empirical observation to graph smoothing, semi-supervised learning, and
diffusion algorithms popularly used for node classification tasks. We provide a Bayesian
viewpoint of this model which is related to the literature on expert opinion aggregation.

As a part of our analysis, we contribute an iterative algorithm for soft smoothing, which
allows us to solve soft smoothing problems efficiently on large datasets. We find that a
close examination into the form of iteration is not only crucial for computational efficiency
but also for efficacy of predictive performance, as the basic majority vote algorithms make
suboptimal choices in the initial iterations. We contribute a generalization that allows one to
place greater weight on and regularize toward labeled values. This method displays improved
performance on some simulated and real datasets. This generalization is flexible enough that
the practitioner has a lot of control over the resulting algorithm. The optimality of such
choices has yet to be fully explored and may well vary depending on the particular domain
of application.
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