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Abstract

This project is to analyze different algorithms’ perfor-
mance on spatial community detection on signed weighted
graph. The weight of link in the graph represents how much
correlation coefficient between two nodes deviates from the
expected correlation coefficient in the graph, where posi-
tive sign of link indicates that the pair of nodes has higher
correlation and vice versa. We look to explore two commu-
nity detection methods, namely, modified spectral clustering
and modified Louvain, to identify areas and stations that
have unusually high or low correlations. Adjustments are
made on both algorithms to accommodate weighted signed
graphs. We evaluate the performance of the algorithms by
visualizing the spatial location of the detected communi-
ties and comparing them with geology map, because the
graph is built of earthquake intensity data which have been
well studied by seismologist and have been proved that it’s
highly dependent on geological condition. We also perform
simulation based on detected communities using Stochastic
Block Model (SBM) to further validate our results. Many
potential applications can derives from this simulation.

1. Introduction

Spatial networks appear in many different fields, such
as seismic networks, road networks, mobile networks and
flight connections. In many applications, properties of
nodes that are spatially closer have a greater probability of
being correlated with nearby nodes. In the case of earth-
quake measurements networks, nodes represent different
stations and edges represent positive and negative deviation
of correlations between stations’ earthquake intensity mea-
surements from the expected correlations. Note that edges
are weighted and signed to represent the strength of the cor-
relation deviation.

The standing empirical model states that this correlation
between stations is a function of distance only. However,
reality is far more complicated than this. We look to utilize
community detection methods to identify areas and stations
that have unusually high or low correlations. Successfully
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detecting communities of earthquake stations allows as to
uncover underlying reasons for measurements. Moreover,
simulating earthquake data is of great practical use for both
scientific research and civil applications.

This project aims to develop and evaluate two commu-
nity detection methods that handle weighted and signed
networks. We implemented two distinct algorithms to de-
tect communities on signed weighted graphs based on spec-
tral clustering and Louvain algorithm. Using this method,
we are able to find the regional communities (i.e., regions
that are abnormally higher/lower correlated compared to ex-
pected correlation) in earthquake measurements network.
Our community detection results coupled with Stochastic
Block Model (SBM) provides a new way to simulate spa-
tially correlated earthquake data.

2. Related Work
2.1. Modularity

The common version of community detection tackles
graphs that does not have weighted edges. One of the most
used techniques in community detection algorithms is to use
a quality function called modularity proposed by Newman
and Girvan (2004).

The modularity is defined as
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where ¢,j € C is a summation over pairs of nodes ¢
and j belonging to the same community C' of partition P,
and A is the adjacency matrix and w is the total weight of
the network. The most popular choice of F;; proposed by
Newman and Girvan (2004) is:
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The weight sum w; is defined as w; = & Wik, Which is
the sum of edge weights around node ¢. The total weights
w =) wk =), ;w;. Larger modularity indicates
better partitioning since it deviates more from the null case



where the edges are generated randomly. However, maxi-
mizing modularity score is a NP-hard problem, and it is usu-
ally approximately solved by the Louvain algorithm (Blon-
del et al. (2008)).

The above notion generalizes naturally to positive edge
weights. However, according to Gomez, Jensen, and Arenas
(2008), naively plugging signed weights into the equations
would result in mistakes. The authors thus generalized the
modularity defined above and refined it into two parts. We
will extend his method and use it in our proposed approach.

2.2. Spectral Clustering

Spectral clustering is a popular method for community
detection tasks. Variations of spectral clustering usually
solve a form of graph cut problem by exploiting the spectral
properties of the adjacency matrix of the graph. However,
the original versions of spectral clustering does not allow
signed graphs. Kunegis et al. (2010) introduced a modified
spectral clustering algorithm and provided some properties
of the algorithm.

The paper shows that the dominant eigenvector of the
Signed Laplacian Matrix L solves the signed ratio cut prob-
lem where (some further explanations are provided in sec-
tion 4)

L=D-A 3)

Here A is the signed adjacency matrix of the graph and
Dji = 3=, |Aij| is the modified degree matrix.

Similarly, the dominant eigenvector of matrix DA
solves the signed normalized cut problem.

3. Data Processing

For every pair of stations (j, k), we select all earthquakes
with suitable recordings at both stations, and use equation
4 to calculate the correlation coefficient in ground motion
intensity measure W .
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where n is the number of earthquakes with pairs of record-
ings at the given stations. Figure 1 shows calculated correla-
tion coefficients. An exponential function model is fitted to
the averaged correlation coefficients to capture the relation-
ship between the correlation coefficient of nodes and their
distance in the graph. This model represents the expected
correlation coefficient of a pair of nodes given their geo-
graphical distance in the graph. It can be seen that the ex-
pected correlation decreases with distance, as expected, al-
though there is significant variation relative to the expected
correlation coefficient at individual station pairs.
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Figure 1: Correlation coefficients of all connected nodes as
a function of nodes geographical distance.

We quantify these site-specific deviation of correlations
relative to the expected correlation coefficient based on
Fisher’s z-transformation:
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where p is the sample correlation coefficient between a pair
of nodes. For a sample of observations, z; is approximately

normally distributed with mean $in (=2 1tp £) and standard de-

. . 1 .
viation T3 where p is the expected correlation coeffi-

cient and n is the number of paired observations.

Then we can define
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as the measure of correlation deviation. Under the above
assumptions, e will follow the standard normal distribution.
Therefore, e will be the weighted signed edge in our graph,
which quantify the correlation deviation a pair of station
relative to the expected correlation correlation in the graph.

Three earthquake datasets at Wellington, Los Angeles
and Japan are used to construct the graphs. There are 18
nodes and 118 edges in the Wellington graph, 335 nodes
and 42144 edges in the California graph and 382 nodes and
3373 edges in the Japan graph.



4. Technical Approach
4.1. Signed and weighted Spectral Clustering

We use a signed version of spectral clustering proposed
by Kunegis et.al for the community detection task Kunegis
et al. (2010). The signed weighted adjacency matrix A is
defined as usual where A;; is the edge weight between node
¢ and j. The signed degree matrix is defined as:

Di; = Z |As;] (7

The signed Laplacian matrix is then defined as L=D-
A, and the signed ratio cut between cluster X and Y is
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where

scut(X,Y) = 2cut™ (X, Y) + cut™ (X, X) + cut™ (Y, X)
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The signed cut scut(X,Y") counts the number of positve
edges that connect X, Y and number of negative edges that
remain each of these groups.

It was shown by Kunegis et al. (2010) that the minimiza-
tion problem for signed ratio cut is equivalent can be solved
by finding the smallest eigenvectors of L.

A similar result shows that to minimize the signed nor-
malized cut, we need to cluster based on the eigenvectors of
D'A. In this project, we implement this algorithm with
K-Means clustering on the eigenvectors.

4.2, Signed Louvain Algorithm

Gomez, Jensen, and Arenas (2008) defined the signed
graph modularity as:
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where

wij = W — Wi (14)
where wj; = max{0, w;; }, w;; = max{0, —w;; }, and

= whwy = wy. (15)
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To optimize the modularity, the modularity gain can be
calculated as:
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where w™ and w™ is the sum of the positive/negative
weight, k2 n and k., is the sum of positive/negative
weights between i and C, k™ and &~ is the sum of all pos-
itive/negative link weights of node k, >, . and ), . is
the sum of positive/negative link weights between nodes in
C,and ), .. and >, . is the sum of all positive/negative

link weights of nodes in C'.

5. Results

We experimented on three datasets from three different
places with different geological characteristics. Our signed
Louvain algorithm performs better on the Japan dataset but
on the other two datasets, spectral clustering obtained re-
sults that fits our prior knowledge better.

5.1. Wellington

The geology at south and north Wellington region are
different. Intuitively, the community detection performed
on this region should be consistent with this geology fact.
From figure 3, the black community and white commu-
nity almost recovered the two communities separated by the
gulf.

As we can see from figure 4, Louvain performs relatively
poorer than spectral clustering and we end up getting mixed
groups that are not exactly mutually exclusive in geographic
sense.
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Figure 2: Edge weights in the Wellington graph. The weight
of the edges are colored according to the value. Positive
weights are displayed in red and negative weights in blue
color
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Figure 3: Nodes community assignment in the Wellington
graph using spectral clustering

5.2. Los Angeles

For this dataset, we already know for a fact there is a
basin at LA county, which can be seen in figure 5.

The original graph can be visualized by figure 6 where
the blue edges are relatively low correlations and the red
edges are relatively high correlations.

For this dataset, the communities detected by spectral
clustering match accurately with the geographic geoplogy.
As we can see from figure 7 when we set the number of
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Figure 4: Nodes community assignment in the Wellington
graph using Louvain

-119°00' -118°30' -118°00" -117°30' -117°00'
34'30' . 34°30' =
. 5
R q " N
e~
o~
34°00' 34°00'
) ~
. 40 km .
33°30'k 33°30"
-119°00' -118°30" -118°00" -117°30' -117°00' —0

Figure 5: Map of basin depth value in south California re-
gion. Data from Small et al. (2017).

communities to 5, the algorithm identifies three major com-
munities, which correspond the basin and the mountainous
region outside. When we increase the number of communi-
ties, we can see from figure 8, the algorithm is also able to
identify more precise community, and it still make geologi-
cal sense.

Signed Louvain algorithm is able to detect two commu-
nities that are separated from the middle. However, signed
Louvain stops before it further identifies any other geologi-
cal structures such as the basin. Therefore, in this case, the
signed Louvain is less flexible and provides less insight into
the data.

5.3. Japan

The third dataset we have is the earthquake intensity
measurements in Japan (figure 10). This graph is much
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Figure 7: Nodes community assignment in LA graph using
spectral clustering, 5 clusters

more complex. Since the data covers a large spatial area, it
potentially contains many communities where correlations
are unusually high or low. We applied the signed spectral
clustering model to the Japan earthquake measurement cor-
relation graph. The result is visualized on figure 11. We
experimented on using both the signed ratio cut and signed
normalized cut as our objective function. It is worth noting
that for different cluster number k, the spectral clustering
algorithm always produces a large community and the al-
gorithm fails to further divide the community.

Figure 12 shows the detected communities using ad-
justed Louvain algorithm. Compared with spectral cluster-
ing results, the number of communities generated by Lou-

Figure 8: Nodes community assignment in the LA graph
using spectral clustering, 15 clusters
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Figure 9: Nodes community assignment in the LA graph
using Louvain

vain is larger. It detected 43 communities and it is notice-
able that most of these communities have similar size and
small extent, which makes more geological sense.

On this complex dataset with many communities, Lou-
vain is able to cluster nodes that are close geographically
without using any distance attributes. Spectral clustering in
this case, however, will group lots of nodes together, giving
less insights.
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Figure 10: Edge weights in the Japan graph

Figure 11: Nodes community assignment in Japan graph
using spectral clustering

6. Evaluation and SSBM

We extended the notion of SBM in Holland, Laskey, and
Leinhardt (1983), instead of computing connection proba-
bility within and between groups, we computed the mean
strength and variances of each blocks, which is similar to
Aicher, Jacobs, and Clauset (2014), and we assumed normal
distribution of edge weigths within and between groups.

6.1. Visualization

We would also like to visually validate the clustering re-
sults based on blocks of the adjacency matrix. We expect
nodes within the same community have higher than normal

Figure 12: Nodes community assignment in Japan graph
using Louvain

correlations. This information can be visualized by plotting
the rearranged adjacency matrix.
6.1.1 Los Angeles

Rearrangging the adjacency matrix based on clustering re-
sults. We have figure 13 and 14.

Figure 13: Block adjacency matrix of LA graph, 5 clusters

From the rearranged block matrix, we observe that
within groups and between groups, there are clearly block
patterns, which can be used to simulate graph using SSBM
model.

6.1.2 Japan

Similarly, we have rearranged adjacency matrix from Japan
data and obtained 15. Comparing with the adjacency ma-



Figure 14: Block adjacency matrix of LA graph, 15 clusters

trix of Los Angeles, we observed weaker within groups and
between groups edge strength.

As seen from 16, the spectral clustering method only
picks up two clusters with no edges or edges has near zero
correlations. However, within groups, the edge values are
randomly distributed.
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Figure 15: Block adjacency matrix of Japan graph, Louvain

6.2. Simulation and Link Prediction

There has been research done on link prediction on
weighted signed networks Kumar et al. (2016). Here we
conduct link prediction and network simulation based on
SSBM models. We extract the parameter estimations of
SSBM model by computing edge means and variances
within groups and between groups based on our clustering
results, and random variable is simulated by the normal dis-
tribution with the extracted mean and variance.

6.2.1 Los Angeles

The simulated SSBM in figure 17 and 18 are similar to their
original counterparts.
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Figure 16: Block adjacency matrix of Japan graph. Spectral
Clustering

Figure 17: Simulated SBM, 5 clusters

Figure 18: Simulated SBM, 15 clusters

6.2.2 Japan

The simulated SSBM for Japan data does not resemble the
original adjacency matrix. An obvious reason is that the
original graph have relatively sparse connections between
nodes, however, when we simulate adjacency matrix from



SSBM, we will generate all edges from each nodes to every
other node.

Comparing the simulated SSBM adjacency matrix from
Louvain and Spectral, we can also observe that spectral
clustering gives a near noise adjacency matrix whereas Lou-
vain is able to find more reasonable groups.
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Figure 19: Simulated SBM, Japan, Louvain, 15 Clusters
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Figure 20: Simulated SBM, Japan, Spectral Clustering

7. Discussion
7.1. Complexity of the underlying spatial network

Both Wellington and Los Angeles datasets have rela-
tively simple ground truth and fewer number of commu-
nities. In such cases, spectral clustering is able to produce
very good result and recovers communities. However, for
a graph like Japan, the underlying community assignment
is much more complex and obscure. It also has many more
communities in the dataset. In this case, spectral clustering
does not produce reasonable results while signed Louvain
is able to detect reasonable communities as illustrated in
the previous section.

It has been shown by Nadler and Galun (2007) that the
first few eigenvectors of adjacency matrices cannot suc-
cessfully cluster datasets that contain structures at differ-
ent scales of size and density. For the Japanese earthquake
dataset, the network have different densities across different
regions. Therefore, spectral clustering is unlikely to pro-
duce optimal result. Since spectral clustering algorithm is
designed to solve a graph cut problem by splitting the graph
into two clusters. When we want to produce more than two
clusters, we use a K-means clustering algorithm with ap-
propriate eigenvectors as features. In this case, it is intu-
itive to assume that when we have relatively few clusters,
spectral clustering will be a good approximation. However,
when number of clusters grows, the information provided
by the eigenvectors is less likely to accurately separate clus-
ters when fed into K-means. However, the Louvain algo-
rithm overcomes this problem as it iteratively maximizes
modularity until a local maximum is found.

7.2. Flexibility of Louvain

One of the downside of Louvain is also revealed from
our experiment. In the Los Angeles dataset, signed Lou-
vain stops after two clusters are identified. However, more
insightful results can be found when we assign more com-
munities. Although we can change the stop condition of the
Louvain Algorithm to adjust the number of clusters, it still
does not give us as much freedom as spectral clustering, for
which we can choose number of clusters manually.

8. Conclusion

In our project, we explored modified spectral cluster-
ing and signed Louvain algorithm’s performance on signed
spatial networks. We identified that for more local and
graphs with fewer communities spectral clustering gives
very good community recovery results. For more global
and graphs with many communities, Louvain outperforms
spectral clustering.

We also provided a way to simulate earthquakes us-
ing community detection results and symmetric stochas-
tic block model(SSBM). This method both validates our
community detection result and has other application in the
study of simulating spatially correlated earthquake data.

The code of this project can be found at
https://github.com/yilinchen0911/cs224wProjectPublic.git
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