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1 Abstract

Node classification and link prediction are classic problems in networks with many applications including
e-commerce and social network recommendation systems. Many graphs, due to its complexity and large
size, are flattened down to a simple graph before being analyzed. While this saves computation power
and yields many good results, networks in real world have heterogeneous interactions with
interdependent structures, which are better modeled as multigraphs.

In the project, we first review state-of-the-art algorithms for the tasks of node embedding, classification
and link prediction in multigraphs. We then analyze GraphSAGE in more detail and extend it to leverage
the multiple edge types and additional node attributes available in our constructed heterogeneous graph
for better performance in the tasks of node classification and link prediction.

2. Problem Definition

Our project is targeting multimodal network node classification and link prediction. There are a number of
recently developed methods to analyze real-world systems as heterogeneous networks. These networks
are often multi partite, have different types of nodes and edges (along with metadata etc.) and might
have temporal aspects associated with them. We apply the ideas from recent algorithms like
GraphSAGE to research collaboration dataset to learn and evaluate node embeddings, perform multi
relational link predictions, and evaluate how different representation and edge dimensions of
heterogeneous networks influences the prediction performance.

3. Background

In this section, we review the existing literature for multi-graphs, node embeddings, node classification
and link prediction.

3.1 Multi-relational Link Prediction in Heterogeneous Information
Networks [1]

To predict the heterogenous relationships, Davis, Lichtenwalter and Chawila first apply variation of
unsupervised common neighbors method called Adamic/Adar measure. Then authors introduce new
multi-relational link prediction (MRLP) method which applies a weighting scheme for different edge type
combinations. The weights are determined by counting the occurrence of each unique 3-node



substructure in the network, called triad census or 3-node graphlets. The 3-node graphlets in
heterogeneous networks have higher number of unique structures. They also provide the probability of
each structure as shown in their Figure 1.

While new MRLP method works best for some interaction types, authors observed that there is no
universally dominant method. Authors explore supervised learning approach by converting the
heterogeneous network into a feature representation. They extend high performance link prediction
(HPLP) approach to multi-relational case (MR-HPLP). The topological features represent potential link
patterns between the node pair and their common neighbors. Experiments on our real-world networks
indicate that the supervised method is dominant, outperforming the best unsupervised methods in all
cases but one.

3.2 Multilayer Network [2]

Multilayer Networks is a survey paper that tries to unify existing disparate terminologies that deal with
complex graphs by presenting and discussing a general multilayer network model. The paper 1) gives
one definition for general multi-layer network, 2) discusses how various existing networks in literatures
can be mapped to this general definition, 3) presents tensor representation & supra-adjacency
representation, representing multi-layer networks as a big adjacency matrix of sorts, 4) shows some
real-world datasets that are applicable to this model, and 5) discusses some models in dealing with
multi-layer network including network aggregation and diagnostics for multilayer networks.

The paper presents the general definition of multilayer network as following. Define the term "aspect" to
be a dimension of the type of an edge, and assume the graph has d aspects. Define Li to be the set of
elementary layers for aspect i, then for the entire graph, we would have L = {L,, L,, ... L} as the set of
layers. V ¢ VxL,xL,x... xL,then defines the set of vertices, and E_ ¢ V, x V_ is the set of edges.
Multilayer graph M is then defined as {V,,, E, V, L}.

3.3 Node2Vec: Scalable Feature Learning for Networks [3]

Node2Vec describes a framework of learning node embeddings/representations by doing a random walk
over the graph. The objective that node2vec tries to optimize is that it tries to preserve the notion of node
neighborhoods in the embeddings, i.e., nodes closer together in the network are also expected to be
closer together in the learnt embeddings space. This is done by doing a “random walk” over the graph,
thus linearizing the graph. Then, the probability of node neighborhood is optimized using SGD similar to
the skip-gram model architecture.

The biased random walk process is described to be more general than the random walk process
described in previous works like DeepWalk (uniform random walk), LINE etc. The added flexibility from
this newly proposed random walk is shown to improve the performance on classification and prediction
tasks. The random walk described in the paper combines BFS and DFS strategies in an elegant way.

The approach is evaluated for the task of multi-label classification. The classification network is a simple
one-vs-rest logistic regression classifier with L2 regularization. The algorithm is able to achieve
state-of-the-art performance compared to previously proposed node embedding approaches.



3.4 GraphSAGE: Inductive Representation Learning on Large Graphs

[41[5]

GraphSAGE is a framework for learning low dimensional vector embeddings for nodes. The framework
builds upon the recently proposed graph convolutional network (GCN) based approaches and makes it
more scalable and general. More specifically, the proposed approach is inductive (thus not constrained to
only nodes seen during training) and leveraged node features and metadata for learning the node
embedding.
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As shown in the figure above (from [4]), GraphSAGE proposes a SAmble and aggreGatE based strategy.

The authors do a uniform sampling of fixed size set of neighbors in order to keep the single batch
running time deterministic and predictable.

The aggregation function is responsible for aggregating the information from the node
neighborhood. The aggregation function is learnt as a part of model training by doing SGD over
positive (nearby nodes) as well as negative examples (far-away nodes). Authors proposed and
benchmarked various aggregation functions like mean, LSTM, pooling etc. and found LSTM to
work best among the tried approaches.

The embedding function is learnt over the node features (like image representation from CNN,
text vector, node features etc.) which helps generalize to previously unseen data. The authors
propose updating the embedding K times (with the node features as input the first time). This
helps capture the neighborhood notion upto depth K.

For training the model parameters, the authors have proposed supervised as well as unsupervised loss
functions.

The algorithm is evaluated on

Predicting post category on Reddit post data where the predictions are made on last month of
data (not used during the training).

Predicting paper category on citation data.

Predicting protein function on protein-protein interaction data (supervised).



4. Technical Approach and Findings

4.1 Data Set

As our primary dataset, we used research collaboration datasets. The research paper network
(https://aminer.org/citation) [7] is a rich citation network that contains information like paper title, authors,
paper venue, published year, citation papers and abstract. This makes it a very interesting network to
analyze. The nodes can be research papers and edges can be papers having the same authors, being
cited by the same papers, appearing in the same publication, etc. Our citation dataset contains a few
metadata about each academic paper, including title, author, publication venue, publication year, list of
references, and abstract.

4 1.1 Data format

#* --- paperTitle
#@ --- Authors
#t ---- Year
#c --- publication venue
#index 00---- index id of this paper
#% ---- the id of references of this paper
(multiple lines, with each indicating a reference)
#! --- Abstract

Paper 2 =

The figure above describes the Research Collaboration multi-graph. Here, the nodes are research papers. The nodes have
abstract and paper title as node features and year of publication as node attribute (for node-classification task). The nodes are
connected if they share a co-author or citation, therefore, creating 2 types of edges in the graph.

4.1.2 Graph Statistics

Basic Statistics
e Number of nodes: 629814



e Number of citation relationships: 631120 (edge density: 3e-6)
e Number of co-author relationships: 5306414 (edge density: 2.6e-5)
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As can be seen from the statistics above, the citation edges are very sparse (number of citation edges
~= number of nodes in the network). The co-author edges are denser and more typical of a real world
network.

4.2 Algorithm

As described in the section above, our research collaboration graph consists of research papers as
nodes, citation and co-author as edges and paper title and abstract as node features. We use Gensim
implementation of Word2Vec[8] and NLTK word tokenizer to featurize the paper title and abstract. For the
word embeddings, we use Google’s pre-trained 300 dimensional word embeddings trained on News
dataset. The word embeddings from all words in the title or abstract are averages to generate the feature
embeddings.

4.2.1 Simple Graph Learning

We first treat the graph as simple (consisting of only one kind of edge) and run the GraphSAGE
unsupervised node embedding training code to train the network embeddings. We experiment with and
tune various parameters while learning the node embeddings. The effect of each parameter on the final
embedding is described below.

e Model: We try various aggregator models like GraphSAGE mean (mean based aggregator) and
GraphSAGE seq (LSTM based aggregator), GraphSAGE maxpool (max-pooling aggregator). We
observe that the mean is the fastest aggregator (as also expected intuitively) in terms of runtime
and the performance is very comparable to the more complex aggregators. For this reason, we
decided to stick with the mean aggregator for the rest of the experiments.

e Identity dimension: We observe that the performance is significantly better when setting identity
dimension to a positive high value. This is also expected as the model can now use the node ID
itself as an additional feature and hence the learnt embeddings are much better. Adding the
identity dimension comes with the trade-off that we can no longer add new nodes during the



validation and testing phase but we did not plan to do that anyway. We decided to set the identity
dimension to 64.
e Weight decay: This parameter controls the weight for L2 loss on embedding matrix. We set the
weight decay to 0.5 in order to ensure that the model does not overfit to the graph.
e Embedding dimension: We find that the default parameter of 128 for each output dimension (and
hence an embedding of size 256) works quite well for us.
We also experimented with other parameters like negative sampling rate, dropout, random walk
parameters etc. but did not find them to significantly impact the embedding quality. The biggest
improvement to node quality was observed from adding node attributes (paper title and abstract). This is
probably because the research collaboration graph is quite sparse and therefore “side-input” in the form
of node features helps learn richer node embeddings.

Training loss v/s number of iterations
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For both citation and co-author edge simple graphs, we saw that the train and validation loss starts around 20
(slight difference based on edge type) and converges around 15.

Collaboration graph with citation edges

We applied t-SNE technique for dimensionality reduction to visualize our learnt node embeddings. Due to
the large size of the graph, random 0.5% nodes were chosen (slightly more than 3K out of 630K). Trying
different perplexity, below graphs are generated with perplexity 30 and 100 respectively:




Collaboration graph with co-author edges

Same t-SNE technique was applied to visualise the embeddings generated from co-author edges. This
time, perplexity of 5 and 50 were used on respective graphs below.

4.2.2 Link Prediction Task on Multi Graphs

Evaluation Methodology

Given the set of node embeddings we generated from training, the goal of link prediction task is to
predict whether a citation relationship exists between two nodes. In order to evaluate our node
embeddings, we randomly omitted and added ~1% of edges into validationEdge set when parsing raw
data into networkx graph. In addition, we randomly selected a set of validationNonEdge that are of the
same size as validationEdge, and not present in the parsed networkx graph.

To make a prediction based on node embeddings, we used the dot product of the two nodes' embedding
vectors, since dot product was used in the loss function of the training phase. To normalize, we randomly
picked 1000 node pairs from the graph and compute the means and standard deviations of their dot
products. Then for every edge in validationEdge set and validationNonEdge set, we computed the dot
product, normalized it against the 1000 random samples to get a z-score, and used it as likelihood of link
existence. For each set, we recorded the mean and area-under-the-curve (AUC) graph of all the z-scores
of edge likelihood.

Baseline Result

As a baseline, we used embeddings trained from featureless citation network alone. We took care to
select and remove validation edges only from nodes that have at least one other edge (thus not making
the node disconnected from the rest of the network). The result was surprisingly unimpressive, almost to
the point where the generated prediction can be interpreted inversely to produce better result. A likely
explanation for this is that our graph is so sparse that each node only contains a very limited amount of
information. With validation edge removed from training network and no information otherwise available,
our model assumes the two nodes are very unlike each other.
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An unsuccessful attempt to improve on this naive model was to pick validation edges only from nodes
that are reasonably well connected to the rest of the network. For example, below is the AUC graph of
validation edges taken only from nodes with degree >= 5.

AUC Curve

1.0 1

0.8

0.6

0.4 1

True Positive Rate

0.2 1

0.0 A

—— Prediction based solely on featureless citation graph

0.0 0.2 0.4 0.6 0.8
False Positive Rate

1.0

This curve only improves ever so slightly on the previous one, showing that when only considering
citation network itself, very limited information can be learnt for most of the nodes in the network.

Evaluation Result

With embeddings learned from coauthor relationships and paper abstract and titles, we tried several
ways to combine different signals and output a single prediction for citation relationships. They performed
significantly better than embeddings trained on simple citation graph. Below we have plotted the AUC
curves for 1) predictions made only using co-authorship graph embeddings, 2) predictions made only
using citation graph embeddings with paper abstract as node feature, and 3) predictions combining

embeddings from 1 and 2.
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Interpretation

As shown by the graph, exploring additional information in our dataset and train embeddings from
heterogeneous sources proved to be essential in link prediction of the very sparse citation network. With
number of citation almost as small as the number of nodes, most of the nodes carry very little information
when we look at them in a simple citation graph. Link prediction made by simple citation graph GCN
downright failed. With co-authorship information added, the prediction task performance got slightly
better than random, but adding in additional node features really helped learning embeddings of
otherwise unknown nodes, and we were able to make link existence predictions with good AUC scores
on such sparse graphs, where majority of training edges come from nodes that have degrees less than
B

4.2.3 Node classification task on Multi Graphs

In this section, we explore how multi edges in graph can be leveraged to improve model performance on
node classification task. For this, we try to predict the year of publication of the paper given the node
features / learnt embeddings. This can be done by learning a linear regression over the embeddings
feature vector. We evaluate the performance by comparing the coefficient of determination.

We evaluated the predictive power of node features for the task of predicting the year of publication and
compared that against the predictive power of embeddings learnt from unsupervised citation and
co-author networks. We find that the citation edges and co-author edges have relatively lower predictive
power than node embeddings. However, concatenating the embeddings from the 2 kinds of edges leads
to better performance compared to using node features. The performance can be further improved by
supervised learning of node embeddings but it might not be possible to run supervised training in many
real world scenarios.

Model Score*
Node features (paper title & abstract) 0.1596
Embedding from graph with citation edge 0.1465
Embedding from graph with co-author edge 0.1031




Combined embedding from citation and co-author edges 0.1692

Score = (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true
- y_true.mean()) ** 2).sum()

5. Future work

There are several directions where this project can be explored more extensively.

From dataset's perspective, we could incorporate more dimensions as node features or relationships
between nodes and see if they can improve our embeddings. One specific dimension of interest is the
publication year of the paper, which can be explored as a temporal dimension and used to study how the
network evolve over time. However, in our network the evolution happens not just with edges, but also
nodes (as opposed to a network with a fixed set of nodes and an evolving set of edges), so it is
interesting to explore which temporal algorithms can apply.

From the application's perspective, we could explore better ways to incorporate different types of edges
into training node embeddings that are capable of wider applications. We scoped our project to utilizing
all edge types and node features into predicting only citation links and year of publication, but using all
heterogeneous information in the network we could potentially predict links of different types as well as
various other node attributes (publication, author, etc), or perform node clustering tasks.
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