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Abstract—This paper introduces the concept of individual com-
petitive networks — a unique model for understanding competitive
individual sports — and analyzes the properties of these networks
in the context of fencing, tennis, and chess.

After a quick review on the relevant mathematical and
algorithmic backgrounds, we present our findings and analysis,
outline our encountered difficulties, and detail exciting areas for
future research.

[. INTRODUCTION

With the rapid development of the internet, social media,
and computing infrastructure, social network analysis has
become increasingly popular. However, this field has also
shown a lot of promising results for a much broader range
of subjects, including as biology or criminology. What about
sports?

Social network analysis has only been recently introduced
to the study of sports, with only a handful of relevant research
papers. Of these, all are about team sports rather than individ-
ual sports. One obstacle to network analysis in sports seems
to be the data collection process. Detailed and specific data
about sports can be hard to get, as experts are needed and the
data collected for now depend really on the sport type and on
the level at which it is played.

However, network analysis in this field has a lot of
room for growth: many social network analysis methods are
applicable to sport disciplines, and new predictive models can
be developed based on competitive network models, leading
to a deeper understanding of competitive dynamics across all
sports.

Exploring the characteristics of individual sports or com-
petitions poses an interesting challenge in a very visible
field. Analyses could provide meaningful insights to various
interested parties within the sports industry — competitors,
coaches, spectators, and bookies alike.

For instance, can a given sport’s competition network be
insightful for evaluating its ranking system or level balance?
Social network analysis can help us identify competition
structures within individual sports, explaining - and hopefully
predicting - key phenomena such as parity and variance in
both overall and individual results.

In this paper, we present an overview as to how social
network analysis can be used to study individual sports’
competition results. More specifically, we look at network
dynamics within one sport, between different sports, over time,
and as a tool for outcome prediction.

We chose to focus on individual sports instead of team
sports, as there are more competitors and therefore data points
relative to team sports. Additionally, analysis of individual
competitors removes the complications of players joining or
leaving teams. Moreover, individual competition analysis is of
personal significance, as one of our authors is a competitive
fencer, himself.

II. RELATED WORK

Social network analysis has already been explored in
the context of team sports, namely basketball, football and
handball. While Korte and Lames characterized different
team sports and their tactical positions in paper [2], Grund
(in paper [3]), and Vaz de Melo, Almeida and Loureiro (in
paper [4]) tried to assess teams’ performance based on the
individual performance and interactions of their players.

In paper [2], a player-interaction network was built for each
team, based on several matches: nodes represent players and
weighted directed edges represent the number of passes from
one player to an other player. From this, various centrality
metrics were computed, each having a definite meaning for
the performance of each player: individual metrics, such as
weighted in-degree (number of successfully received passes
by a player) or weighted betweenness (how often a player is
on a shortest path between other players), as well as team
metrics, such as weighted in-degree centralization (indicator
for the balance of direct interplay).

By emphasizing strong connections between each tactical
positions using minimum spanning tree (subset of the
edges of the graph that connects all the vertices together,
without any cycles and with the minimum possible total
edge weight), Korte and Lames were thus able to find
the most centralized roles in basketball (point guard),
football/soccer (defensive midfielder) or handball (center),
and get “network translations” of the nature of different sports.

In paper [3], the same network structure and metrics were
used, however for football teams only. The goal of the study
was also different, as Grund tried to see how interactions
between team members could impact on the team’s overall
performance. Its main differences with paper [2] were thus
the statistical methods used, which will not be discussed here,
as we mainly focus on network analysis methods.

Grund managed to support two hypothesis, which are:
intense relationships between players (network density)
increases team performance, and too much reliance on a
small subset of players (high network centrality) decreases
performance.
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Paper [4]’s goal was to evaluate how individual perfor-
mance relates to team performance. Using the example of
NBA drafting, each NBA player is evaluated according to
box score statistics (assists, points, ...), but is this individual
performance really representative of his/her influence on the
team performance?

The authors built networks for each year and also time
cumulative networks, with players and teams as nodes, and
edges representing relations between players with teams
they played in and players with players they played together
with. The metrics used were different and several models
were tested. For instance, a clustering coefficient model was
created, as high clustering coefficient for a team means that
this team either has a lot of new players or it frequently
makes player transactions. A degree model was also tested,
as a player with a high degree is probably a player in the end
of his career or a player who is traded frequently (in other
words not wanted).

These papers were very interesting, as they showed how
changes in networks structure or nature have impact on the
sports interpretations we can make. A strong common point
from all these papers is that they all conducted their research
while keeping their knowledge on sports in mind, to get results
as relevant and as insightful as possible. In paper [2], the
researchers involved had all experience with the studied sports
and took role changes when players substitute into account. In
paper [4], the historical evolution of the NBA was very useful
to explain the evolution of some metrics.

II1. MATHEMATICAL AND ALGORITHMIC BACKGROUND

In this section, we give an overview of what methods and
concepts we used for our project.

A. Atemporal metrics/scores

1) Clustering Coefficients: Clustering coefficients are mea-
sures that attempt to capture how nodes in a graph tend to
cluster together. In a directed network, the local clustering
coefficient of the node ¢ is given by:

€

ki(ki — 1)
with k; the degree of node ¢ and e; the number of edges in its
neighborhood. Usually if a node is isolated or a leaf (k; = 0
or 1), we set C; = 0.

We can then also compute the average local clustering
coefficient of the whole graph by taking the mean of these
coefficients.

Ci =

1
C=x2.C

One flaw of this metric is that if the fraction of isolated
nodes and leaves in the network is too large, then the standard
clustering coefficient will be penalized a lot and be very small.

In paper [10], the author introduces an alternative clustering
coefficient given by:

1

T 1-06
with 6 the fraction of isolated nodes and leaves of the network.

This adjusted metric is more robust to network sparseness,
but can also lead to interpretation problems if 6 is too large.

2) PageRank: PageRank algorithm was introduced by
Google’s co-founders Sergey Brin and Lawrence Page (see
[1]) and is used to rank sites based on how referenced they
are. PageRank is indeed a local metric that measures how each
node is being referenced by other nodes.

The PageRank of a node 7 is recursively defined by:
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with TN (i) the nodes pointing to 4, k7“* the out-degree of j,
n the number of nodes, d a damping factor between 0 and 1,
which is needed in order to treat nodes with no out-links fairly.

There have been different adjustments made to PageRank,
which achieve different results. A more common variant is
personalized PageRank, which tailors the PageRank results to
a certain person’s browsing habits.

What interests us in the PageRank, is that it could be used
to rank players in a certain sport, instead of the actual ranking
system. A player being referenced a lot by other players is
indeed a player who won a lot of matches.

3) Authorities and Hubs: Jon Kleinberg developed the
Hyperlink-Induced Topic Search (HITS) algorithm in [6] in
order to rate Web pages. He defines two local concepts, hubs
and authorities, and their associated scores, inspired by the
structure of the Web:

o Hubs are directories that are not authoritative in the
information that they have, but lead users directly to
authoritative pages.

o Authorities are pages linked by many different hubs.

To compute them, three steps are needed:

(i) All hub and authority scores are initialized at 1.
(ii) Authority Update Rule:

ZJEIN(z') hub(j)

2 ke auth(k)?

with V' the nodes of the graph.
(iii) Hub Update Rule:

auth(i) =

EjEOUT(i) auth(j)
V2o key hub(k)?

The two update rules can be repeated an unlimited number
of times (convergence is assured thanks to normalization).

hub(i) =

Similarly as PageRank scores, Hubs and Authorities scores
could help us find interesting roles among competitors.
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B. Temporal metrics

As we have results of competitions for several years in
tennis, it was interesting to study temporal properties of the
networks.

In paper [11], a characteristic temporal clustering coefficient
is defined, which takes time evolution into account, unlike
the standard clustering coefficients.

We consider a sequence of graphs Gy, ,...,G¢ which
all have the same nodes. For a node 7, we define:

max

o N;i(tmin,tmaz) ® set of nodes which have been neighbors
of 7 at least in one of the graphs Gimin<t<tmaz

o ki(tmin,tmaz) = |Ni(tmin,tmaz)| temporal degree of
node i

Ni(tmin tmaz) s -

. (G Jimin<t<tmaz: Sequence of subgraphs in-
duced from (Gy)tmin<t<tmaz With nodes N;(tmin, tmaz)

The local temporal clustering coefficient of node 1 is thus

given by:

tmaz
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e # of edges in G, sl
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We can then compute the characteristic temporal

clustering coefficient by taking the mean of the local temporal
coefficients.

(tmaz

We also define the alternative temporal clustering coeffi-
cient, which takes into account the fraction of isolated nodes
and leaves:

of structural information on their graphs (e.g. sparsest cut
through its second smallest eigenvalue). This new distance
thus reflects more structural similarities between graphs than
the Hamming distance.

We recall that the Laplacian matrix L of a graph G with
adjacency matrix A and degree matrix D is given by”

L=A-D

In our case, as the graphs are directed, D can be the in- or
out-degree matrix with no significant difference.

Let two graphs of node sizes N, N, and the
eigenvectors sorted from smallest eigenvalue to largest
(/\5”‘)19@“), (/\22))13,-51\/(2) of their associated Laplacian
matrix.

We first define the cumulative distribution functions associ-

ated with the 7" eigenvectors (i € (1,2)):

1 N(@D
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Then we can define the Spectral Graph Distance by:

Zd/ (oD, p?)

with N = min(N®1) N®)) and d' a function distance.

P (z) =

dSG((;(l G(Z dl

A few comments on this distance:

(# of edges in G tm”’tm‘”)) e the authors in [7] had some successful results when

comparing the performance of this distance to other more

tmaax
C (t t ) o t=tmin 1
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with 6; the fraction of isolated nodes and leaves of graph

Gs.

C. Network Distance

As one of our main goals is to compare different
competition networks, we took a look at which network
distances were possible in our context.

A first possibility is the Hamming distance defined by the
sum of the simple differences between the adjacency matrices
AM AR of two graphs G G®):

Z [Ag =

However, this distance requires both graphs to have a
similar number of nodes (which we can not ensure, as it
depends on the number of competitors in each sports) and
only focuses on the differences in the number of links, which
we do not find relevant here.

H(Gh,G2) Az,

In paper [7], the authors define a new distance based
on the Laplacian matrices of both graphs. As we already
saw in lectures, Laplacian matrices can help us infer a lot

common network distances, even when graph sizes were
different.
o For d’, they chose the distance:

d'(pM, p?) = /

— 00

| (2) — p2)(2)|d

« This distance is generally not well defined in directed
graphs: the Laplacian matrix is indeed not symmetric and
thus the eigenvectors can be complex vectors.

Concerning the last comment, we could consider
competition networks as undirected graphs, and measure their
Spectral Graph distance. However, we did not feel satisfied,
as it would result in a too big loss of information.

Thus, we thought about a way to generalize the above
definition to complex numbers.

The only change is the definition of the cumulative distri-
bution functions.

To be more precise, the cumulative distribution function of
a real-valued random variable X is the function given by:

Fx({E)

The definition given by the authors is simply the discrete
version of the above defition. We can then do the same thing

=P(X <x)
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with a complex-valued random variable Z, whose cumulative
distribution function would be given by:

Fy(z) = P(Re(Z) < Re(z),Im(Z) < Im(z))

which can be easily made discrete with:

N(@
5 1 i i
#O@0) = g5 2 Hla = RO H( = Imx)

IV. DATASETS
A. Data Collection

Our analysis comprises the following datasets:

o US Senior Women’s Epée fencing results for 2017-2018!

« US Senior Men’s Epée fencing results for 2017-2018"

« US Senior Men’s Saber fencing results for 2017-2018*

o US Senior Men’s Foil fencing results for 2017-2018!

o Tennis ATP Men results from 2000 to 20182

o Tennis WTA Women results from 2007 to 20182

o Chess games results dataset’, with games on a period of
100 months among 8631 players

For each dataset, the desired information is simply a set of
games with a defined winner and loser (except for chess, for
which we dropped the draws, but this will be discussed later).
While some other information is available, such as margin of
victory, we wanted to keep the analysis sufficiently simple
that it could be applied across competitions. While margin
of victory is well defined for fencing and tennis, results for
other competitions such as wrestling or chess might lack this
dimension.

B. Network Structure

The most natural idea to explore the properties of these
competitive datasets is to load them into directed networks,
where:

o Nodes are players’ ID (which we assign arbitrarily)
o Edges (p1,p2) means “p; lost to po”

The first tricky decision we had to make was the type(s)
of graph we wanted to load the files into. Indeed, during the
course of various competitions, one competitor may meet an
other competitor multiple times.

The different solutions would be to load them into either
a directed unweighted simple graph, a directed unweighted
multi-graph or a directed weighted simple graph.

The first solution is too simplistic, erasing significant
information about player quality. For two competitors, there
is surely a difference in their level of play if one has won 9 of
10 matches rather than 5 of 10, which would be information
lost by a simple graph. Our analysis uses thus mostly a
directed unweighted multi-graph, which by most measures is

Uhttps://www.usafencing.org/
Zhttp://www.tennis-data.co.uk/alldata.php
3https://www.kaggle.com/c/chess/data

equivalent to a directed weighted graph.

An other observation we can make is that in some compe-
titions (rarely in sports), there can be no winner (for instance
in our chess dataset). An idea that we did not try, is to include
the number of draws between two players (e.g. by dividing
the weight of their edges by the number of draws) instead
of ignoring them. In the actual chess ELO ranking system,
draws do have significance. As such, this could indeed make
the weighted network more adequate, as 44.1% of games in
the dataset are drawn!

V. METHODOLOGY

We created the networks as described in Section IV
(Datasets) and used a variety of analysis tools to draw
conclusions about the networks. Many descriptive statistics
were computed with built-in SNAP functions, such as graph
size, diameter, and clustering coefficient. Other approaches
to analyzing the data were explored on problem sets, such
as degree distribution. Some further information was gleaned
from more complex functions like PageRank computation and
connected component enumeration.

Some experiments were conducted with our implementa-
tions of different network analysis tools. For modeling how
skill is distributed in the network, we use a plot of the
PageRank distribution. We also implement the approaches
described in Section III (Mathematical and Algorithmic Back-
ground). Ultimately, the combination of traditional metrics and
competition-specific concepts allows us to draw interesting
conclusions from the data.

[shortlabels]enumitem

VI. RESULTS AND FINDINGS

For our research, we had five key areas of interest: intra-
sport analysis, inter-sport analysis, ranking methods, temporal
analysis, and predictive analysis.

A. Intra-Sport Analysis: Fencing

For our intra-sport analysis, we looked at modern compet-
itive fencing. More specifically, the three different kinds of
fencing: foil, épée and saber. We also looked at the difference
between mens and womens épée. One important thing to
note is in the US circuit, all people who compete seriously
specialize in only one weapon. However, they do all share
some important characteristics like footwork, time limits, and
score amounts.

In order to make sense of the network characteristics, it is
important to provide context. Foil and saber are both fenced
with a limited target area, dictated by an electric vest that
people wear when they fence. They also both have right of
way, which is a standardized set of rules to determine who
receives the point after a given action. Epée, like foil, is a
point weapon, but it does not have a specific target area - the
entire body is the target. Moreover, there is no sense of right
of way - the first person who scores, gets the point. If both
fencers score within a short time period, they both get a point,
which is called a double touch.
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As such, people have different preconceptions as to the
unique characteristics of each event. As a general rule, épée
is viewed as having much greater variability due to the lack
of right of way and the existence of the double touch.

Our network data for these four graphs is as follows:

the opposite conclusion which mitigates any conclusions. Both
the diameter and the effective diameter of the womens graph
are slightly larger than the mens graph, which suggest lesser
variability in overall results. In summary, however, we can see
that network characteristics are much more dependent on event
than on gender.

B. Inter-Sport Analysis

For this portion of our analysis, we looked at the unique
characteristics of tennis, chess and fencing competition net-
works. Importantly, for fencing we only looked at men’s
épée fencing in order to reasonably scope this portion of our
analysis.

For our tennis, fencing and chess networks we computed
the following properties for each network:

Saber (M) Foil (M)
Nodes 226 350
Edges 527 595
Size of SCC 76 (34%) | 102 (29%)
Number of WCC 1 2
Clustering Coefficient 0.00408 0.0138
Path Probability 0.344 0.216
Closed triangles 11 7
Effective diameter 114 13.7
Full diameter 21 22
Avg shortest path length 6.0 8.0
Epée (M) Epée (F)
Nodes 270 233
Edges 630 562
Size of SCC 103 (38%) | 91(39%)
Number of WCC 1 1
Clustering Coefficient 0.00310 0.00765
Path Probability 0.39 0.396
Closed triangles 12 10
Effective diameter 6.0 7.27
Full diameter 10 14
Avg shortest path length 4.4 4.9

As we can see, our data actually reflects some of these
commonly held beliefs.

Take the probability that a given node is in a triad
%' For mens épée, we find that this probability is
around 4.4%, and for womens épée around 4.2%. However,
for mens foil we find a probability 2%. Given the explanation
above, this makes sense. A triad, in our competitive graph,
would be a rock-paper-scissors situation where competitor A
beats competitor B, competitor B beats competitor C, but
competitor C beats competitor A. Assuming that the better
fencer strictly dominates, there should be no existence of
triads. However, we see that épée (and saber, to a certain
extent) both have noticeably higher rates of triads.

One could also look at the size of the 90th percentile
effective diameter. In the context of a competitive graph, the
effective diameter would represent roughly the number of
matches between two randomly selected players. In a strictly-
dominating competition scheme, we would imagine this value
to be relatively larger than in a non-strictly-dominating com-
petition scheme, as we would have less short-cuts. Saber
especially exhibited this behavior, as we see an effective
diameter length of 11.4, whereas for mens and womens épee
we see a diameter lengths of 5.9 and 7.2, respectively. (Note:
Foil has an effective diameter length of 13.7, but has roughly
50% more nodes in the graph than the other three, so this
finding is less significant).

Between mens and womens épée, there are no major dif-
ferences. We can observe that the clustering coefficient of the
mens épée network is less than the one of the womens épée
network. However, our alternate clustering coefficient yields

Tennis (M) | Tennis (F)
Nodes 1485 963
Edges 52283 29581
Size of SCC 897 (60%) | 612 (64%)
Number of WCC 3 1
Alt. Clust. Coefficient 0.467 0.421
Path Probability 0.583 0.624
Closed triangles 12275 9602
Effective diameter 3.5 3.5
Full diameter 7 7
Avg shortest path length 29 2.8
Fencing Chess
Nodes 270 6832
Edges 630 36387
Size of SCC 103 (38%) | 4121 (60%)
Number of WCC 1 94
Alt. Clust. Coefficient 0.0344 0.123
Path Probability 0.39 0.58
Closed triangles 12 2778
Effective diameter 6.0 6.8
Full diameter 10 16
Avg shortest path length 44 5.3

From this information, we see that the four networks
have significant similarities that are likely shared by other
competition networks (these similarities would be caused
by the competitive nature of the studied networks), but also
some interesting differences, that we will try to explain.

The first important remark is that the fencing network
is a lot smaller than the other networks. Thus we have
to be careful as to not wrongly over-analyze our results,
as less matches’ information leads to a higher bias of the data.

We also plotted the out-degree distributions of the different
networks on log-log scales. Interestingly, the chess network
shows a different distribution than the other three.

We can immediately see that the men and women tennis
networks are very similar, compared to the chess network.
They both have very few weakly connected components,
medium alternative clustering coefficients and short average
shortest path length.
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Fig. 1. On the left: out-degree distribution of the tennis women network,
which is similar to the tennis men and fencing network. On the right: chess
network

The chess network, on the other hand, has many weakly
connected components, a much lower alternative clustering
coefficient and a longer average shortest path length.

This finding is consistent with the origin of the data for the
different sports. While the tennis and fencing networks are
based on an elimination-style competition, the chess network
likely comes from ”Swiss”-style tournaments, in which players
each play a fixed number of games, but in each round play
games against other competitors with the same or similar
records.

We can explain this because the chess network is less
grouped than the other networks. Its structure is completely
different, and this can be better seen in the distribution plots
(Fig. 1). The distributions of the three sports networks follow
power laws, but the one from the chess network follows a
higher-degree exponential law.

Another interesting property is the number of closed tri-
angles in each network. The one from the fencing network
seems however a bit off, we suppose that this is due to its small
size. Both tennis networks have similar closed triangles ratios,
which are a lot greater than the ratio of the chess network. This
already shows that there are some significant difference in the
structures of the sports competition networks and of the chess
network.

These differences can be explained by how different
sports competitions and chess competitions are. Usual sports
competitions are represented by complete binary trees.
Some chess competitions are also like this, but not always:
there are other systems like the Round-robin or Swiss systems.

The same conclusion can be drawn through the connected
components analysis. Sports networks typically consist of one
giant connected component of highly skilled players and a
few weakly connected components, representing less skilled
players. This is not true of the chess network, which have a
lot weakly connected components. In the chess network, some
highly skilled players have no losses, and thus no out-edges,
and do not belong to the SCC.

The relative size of strongly connected components to the
competitive population is also a valuable metric for measuring
the distribution of talent, as SCC’s represent some upper
echelon of players that are capable of defeating one another.
Because the networks have different edge per node ratios,
differences in size may be simply due to presence of additional

games. To normalize and analyze the standardized SCC size,
we remove edges randomly from each graph except the one
with minimal edge-to-node ratio until they all have similar
edge-to-node ratios. The fencing graph is unchanged, with an
SCC making up 38% of the population. Men tennis sees its
SCC'’s size shrink to 27%, women tennis to 30%, and chess
to 36%.

The proportion of competitors that have demonstrated an
ability to compete with high-caliber players is thus largest
for fencing and chess, and smaller for tennis. This interesting
twist on the raw size of the SCC of each network help us
understand better how the level distribution is among players
in each discipline. The higher relative SCC sizes would be
due to higher level variance in chess and fencing matches,
which would allow weaker players to win matches against
decidedly better players. Indeed, in tennis, the rankings are
very stable above a certain ranking position (the Big Four
and their regular challengers), showing less variance than in
fencing.

Our observations are indeed in accordance with the net-
works’ structures, which we visualized in order to get a better
idea of key differences between networks. Here are the men’s
tennis network and the chess network:

S
L

@
Fig. 2. On the left is the men’s tennis network, and on the right is the chess

w
“%yf
network

L) .%‘Q‘

As observed above from each network’s statistics, the chess
network is less clustered and is actually an union of many
local competitions. This is unlike the structure of the tennis
network, which is largely a concatenation of binary trees that
represent direct-elimination-style competitions.

We also tried to apply the network distance defined in
section III. However, the computational time was too long
and we were not able to get conclusive results to evaluate
how relevant the distance is. (For instance, we have found
a distance of 0.586 between the men tennis and the women
tennis network.)

C. Ranking methods

Looking at each of the networks, we can identify the
competitors with the highest PageRank scores, the network
hubs, as well as network authorities. This information is as
follows:
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Tennis (M) Tennis (W)
PageRank Federer R. Williams S.
Nadal R. Wozniacki C.
Djokovic N. Radwanska A.
Hubs Ferrer D. Radwanska A.
Berdych T. Cibulkova D.
Verdasco F. Jankovic J.
Authorities Federer R. Wozniacki C.
Nadal R. Williams S.
Djokovic N. Radwanska A.
Fencing Chess
PageRank Kaull J. #7848
Ewart S. #64
Hoyle J. #158
Hubs Thein-Sandler A. #1594
White S. #1286
Moore S. #7848
Authorities Kaull J. #7848
Ewart S. #1286
Fayez A. #1594

Concerning the tennis rankings, the top players are indeed
the most dominant players during the data period.

For instance, for the men rankings, the top PageRank valued
players are also the best authorities (which is consistant), and
hubs are indeed the next best top players.

Concerning US Fencing rankings, there is a serious discrep-
ancy between strength of fencers on the US circuit relative to
their PageRank rankings: there is an average ranking position
difference of 5.4 for fencers in both the top 32 US points and
top 32 PageRank values).

We can see that 6 fencers are in the top 32 PageRank values,
but not in the top 32 of US results. Moreover, we can see that
fencers of national rank 1, 2, 3, and 4 in the US, are ranked
with PageRank values by 4, 1, 7, and 16 respectively.

An explanation is that US National Fencing rankings are a
product of both domestic and International events. Removing
international results and only factoring in the highest two
domestic results adds thus a significant bias to our ranking
predictions. Important to note, however, that only 11 of the
270 analyzed competitors have results that actually affect
national rankings. Looking forward, we will attempt to obtain
national ranking information sans international points.

However, this also means that certain players are being
undervalued (and overvalued) on the US circuit for fencing,
relative to their PageRank scores. This has widespread impli-
cations, namely for recruiting and national team selection in
the United States.

Importantly, there is a lot of randomness inherent in
sports competitions. Elimination rounds’ results that we had
were seeded according to pool rounds, which are randomly
assigned. As such, if competitors have a weak pool, they
can have a relatively high seeding in the next round, leading
to easier opponents, overall. In order to decrease the bias
associated to randomness, we need to increase the size of our
fencing dataset.

Because of these reasons, the rankings are most reflective
of player level in the tennis rankings, less so in the chess
ranking (smaller edges per node ratio), and much less so in
the fencing rankings.

To get a better picture, we also plotted the cumulative
distribution of PageRank scores in Fig. 3.

Cumulative PageRank vs. Node Fraction

1049 =« Fencing Network

Men's Tennis Network
Women's Tennis Network
Chess Network

o S 4
S o ©

Cumulative PageRank

o
N

0.0 4

T T
0.0 0.2 0.4 0.6 0.8 10
Node Fraction

Fig. 3. The distributions of PageRank scores among competitors suggest that
fencing is a higher-variance competition than tennis, and chess has a smaller
set of elite players than either.

Cumulative Normalized Win Percentage vs. Node Fraction
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Fig. 4. This figure serves as a counterpoint to the graph of PageRank

distribution, plotting an integrated, normalized version of win percentage
against node fraction as an alternative metric.

The chess curve deviates from the linear initial trajectory
first, suggesting that there is a less distinct division between
good and great players than in sports competitions. The other
curves appear to sharply increase in slope around the same
time, suggesting a rough equivalence in network structure, as
stated above.

Interestingly, while chess diverged first, it also stayed at a
low value for a larger portion of the nodes, which suggests
a significant difference in quality between the great and elite
players.

The relative positions of the graphs furthermore agree with
the previous observation that chess and fencing have higher
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variance in games’ outcomes than tennis, with both of them
being above the other curves.

The graph of integrated PageRank differs from the graph of
integrated win percentage in a few important ways. Although
the win percentage scores are normalized to sum to one, win
percentage seems to be less descriptive. Especially towards
the right-hand side of the graph, it becomes apparent that
the difference in PageRank scores is more pronounced than
the difference in win percentage scores, suggesting that it
might be a less arbitrary, more insightful method for ranking
competitors.

Based on the competition networks, tennis performance
exhibits less variance than both fencing and chess performance
in the selected competitions, while chess exhibits a greater
concentration of talent in the hands of a few top competitors.
Ultimately, this type of analysis may be more helpful when
comparing different leagues of a given sport or different sea-
sons of a given league to identify trends in skill concentration
and outcome variance.

D. Temporal Analysis
For this analysis, we used the following networks:

e Men tennis: time-period of one year per network (19
networks from year 2000 to 2018)

o Women tennis: time-period of one year per network (12
networks from 2007 to 2018)

o Chess: time-period of ten months (10 networks)

We computed the alternative characteristic temporal cluster-
ing coefficient of the three sequences of networks:

Men tennis Chess
0.153 0.0254

As expected, over time, the chess network is much less clus-
tered than the tennis networks, which have similar temporal
clustering coefficient.

We can also note that this metric is more realistic than
the atemporal alternative clustering coefficients seen above
(which consider the networks as static). For instance, the men
tennis network had an alternative clustering coefficient of
0.467 and has an alternative characteristic temporal clustering
coefficient of 0.153.

Women tennis
0.129

We also plotted the variation of some metrics over time like
the number of active nodes (not isolated) or the alternative
clustering coefficient.

The clustering coefficients stay roughly in the same order
of magnitude over time, which is in accordance with the fact
that competition rules stay the same.

For the chess network however, the alternative clustering
coefficient seems to be not relevant: it contains a too big
fraction of isolated nodes and leaves for the first months,
leading to a much higher alternative clustering coefficient. This
can lead to misinterpretation.

By looking at the plots of edges and active nodes over
time of the tennis networks, we can observe two opposite
development.

sterng coeffcientof chess graphs.

Fig. 5. Alternative clustering coefficient over time.
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Fig. 7. Active nodes over time.

The men competition in tennis seems to have become more
“elitist” over the last years: with the same number of matches,
less nodes are active, meaning that the same tennismen play
against each other more often.

It is the opposite for the women competition in tennis, which
has gained a lot in tenniswomen diversity over the last years.

This is in accordance to the current state of tennis, where
men tennis is dominated by a small pool of players, and where
women tennis is becoming more and more popular and less
predictable than men competitions.

E. Predicting Outcomes With PageRank

One question of interest related to how players are ranked,
is which of two competitors is more likely to win a match
between them. We tried using the PageRank scores to develop
a model for outcome prediction. The men’s tennis data is used
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for this purpose, as results can be compared to bookmakers’
odds to get a point of comparison.*

The data used to compare our results to are the bookmaker’s
odds for the 2018 US Open, Round of 32 and above (31
matches, a fairly small data set). The bookmaker accurately
predicted 23 of 31 of those matches, for an accuracy of 74.2%.
The odds also imply a probability, assuming any bet has
an expected value of zero. This is an approximation, as an
oddsmaker will usually aim for negative expected value. The
average predicted probability (i.e. for each match, the implied
probability that the winner would win) is 67.6%.

The simplest model is a classifier that predicts the player
with the higher PageRank score will win. During the specified
US Open data, the player with higher PageRank won 67.7%
of the time. This is not as strong as the bookmaker’s accuracy
but is better than random.

In order to get an estimate of our confidence in that
accuracy, we built a logistic regression model where each
sample is a match with four features: the favorite’s PageRank,
the underdog’s PageRank, the difference between the two, and
the ratio between the two. The labels corresponded to whether
the favorite won.

On both a random held-out test set and the US Open data,
the logistic regression predictions exactly match the linear
classifier. This is expected, as the difference in PageRank
is essentially the only input to the model. It does, however,
associate a probability with each prediction, which can be used
to compare these predictions to the bookmaker’s odds.

With only the PageRank information, the logistic model
achieves an average predicted probability of 55.5%. While this
is better than random, it isn’t close to the prediction ability of
the bookmakers. One thing to note is that the probabilities for
favorites in the logistic model all fall in the range of 65.5%
to 66.4%, while we observe favorite probabilities of 53.7%
to 97.1% in the bookmaker’s data. So our model tends to
keep its estimates in a very conservative range; good for big
upsets (such as when Millman beat Federer, an outcome with
6.5% probability according to the bookmaker) and bad for
most other scenarios. For matches where the winner is almost
guaranteed (like that Federer match) we would like to see
larger probabilities and we would prefer to see probabilities
closer to a coin flip for more uncertain matches. The average
of the predictions is good, but the predictions are too narrowly
distributed, likely due to the lack of expressiveness available
with this single metric.

Ultimately, the bookmaker ends up with better accuracy and
average predicted probability. This is likely due to their ability
to base predictions on a much larger range of factors. Using
PageRank as a catch-all statistic generally produces better
predictions than random, but likely won’t give you any edge
at the betting counter.

VII. CONCLUSION

Individual competitive networks provide an exciting oppor-
tunity for exploration and analysis. In our research, we were
able to analyze these networks in a variety of different ways —

“https://www.oddsportal.com/tennis/usa/atp-us-open/results/

intra-sport, inter-sport, and over time — in order to answer
a variety of different questions — including the efficacy of
network ranking systems, the fidelity of competitive networks
as a model for competitive fields, and the similarities between
different competitive disciplines.

Our results are consistent with our understandings of each
sport. This consistency not only validates our process for
information retrieval and network modeling, but also provides
a rich body of information from which we can draw insights.
With our findings, we can infer the structure of a competitive
network given the rules of competitive discipline. We can
see pertinent differences between each discipline’s level
distribution and competition process. We can even provide
predictive power, albeit not Vegas-tier.

There is still much room for future analysis in this
field, especially concerning motif detection (which shows
interaction between players) and temporal analysis (e.g.
temporal PageRank). Looking forward, as researchers,
athletes, and sports-enthusiasts, we are excited and optimistic
as to the future of network analysis in the context of sports.
Not only does this analysis provide new and interesting
insights to an already mature field, but it also provides a
whole new paradigm through which to view sport.

We feel this was a very interesting and insightful project,
and we all learned a lot from it. Thank you!
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