Predicting News Source Bias Through Link Structure

Maximilian Chang (mchang4), Jiwoo Lee (jlee29) !

Abstract

With the proliferation of online news media
sources, society has been increasingly struggling
with methods of detecting fake news and under-
standing the biases behind their news sources.
Existing methods have largely involved natural
language processing techniques and human mon-
itoring/flagging. However, natural language pro-
cess techniques generally lack due to its inabil-
ity to reason about factors outside an article’s
text and human methods are largely not scalable
given the immensity of news content on the in-
ternet today. In this paper, we seek to resolve
this issue through examining news bias through
the link structure (how sites link to each other)
of online news. We first begin by extracting fea-
tures from this link structure to predict political
bias and using those features to predict the polit-
ical leanings of websites based on their roles in
the graph. We then use this prediction model to
label the political leanings of nodes in the graph
and draw conclusions around bias and polariza-
tion through a broader analysis of graphical fea-
tures.

1. Introduction

In light of recent political events, fake news has risen to
the forefront of modern society as an issue that must be
addressed [10]. With the internet enabling massive news-
feeds through such online sources as Twitter, Facebook,
Wikipedia, and Flipboard, people must sift through tons of
websites and determine which news to trust. Existing so-
lutions include external sites where journalists separately
mark the reliability of sites (e.g. snopes.com). Facebook
also recently added a feature on their newsfeed where users
can easily obtain more information about the news source
of articles on their feed. Other social media sites have also
began a crackdown of social media through user-reports
which are in turn evaluated by an employee. Much work

“Equal contribution 'Stanford University. Correspondence to:
<mchang4 @stanford.edu>.

has been done in the way of analyzing the phenomenon of
the spread of fake news; Srijan et. al [11] use feature en-
gineering and graph mining algorithms to develop a com-
prehensive model of how and why fake news spreads so
quickly. However, what is missing is a system similar to
spam detection that can determine fake news from more
trustworthy sources end-to-end, without human interven-
tion. Such a system would provide scalability (since there
is no reliance on human journalists), as well as incorporate
some level of fairness, in which any single human may not
bias the results of the system to favor one perspective over
the other. Ideally, this system would also overcome the
huge challenge of missing labeled data. In our dataset, we
did not have ground-truth political bias leanings for over
99% of political sources, and our prediction task can only
leverage information about less than 1% of the nodes.

In this paper, our main contributions will be methods
around predicting political bias from link structure (which
to our knowledge has never been done before), and based
on our predictions, a method for quantitatively looking at
polarization and bias in news, enabled by this ability to pre-
dict political bias for all news sources computationally.

2. Related Work

Credibility and political bias go hand-in-hand when it
comes to media sources, as biased media tends to frame
fact in an unfair light. Additionally, finding an authorita-
tive source of a particular leaning can uncover the leanings
of sources that depend on it. Much work has already been
done in the way of establishing authoritative sources in a
network. Among the established algorithms like PageR-
ank is the Hyperlink-Induced Topic Search algorithm [3]
proposed by Kleinberg that establishes the Hubs and Au-
thorities of a network of Web Pages. More recently, Fair-
banks and his team approach bias detection using a variant
of a belief propagation algorithm called the “loopy” belief
propagation [4]. They compare the relative performances
of content-based models, which work with the actual con-
tents of the website, and structure-based models, which in-
fer the credibility of the website from the graphical struc-
ture of each website. However, these works revolve around
computing some broader idea of general importance in the
graph and none address bias in sources. Nonetheless, we

draw inspiration from these works as we determine the left
and right biases of news sites in our dataset.

3. Dataset and Representation
3.1. Dataset

For our data, we mainly rely on a private dataset provided
by Srijan Kumar, a postdoc at Stanford. This dataset is a
100GB text file, containing every time a website includes
a hyperlink to another website. Each row in the data set
contains a source web page, a timestamp of when these
links were posted, and a list of all the hyperlinks on the
page. A sample line of the data is provided below.

http://10news.com/news/national/china-forced-to-close-
record-breaking-glass-bridge-too-many-visitors 2016-09-
02 15:03:01 http://www.cnn.com/2016/09/02/travel/china-
zhangjiajie-glass-bridge-closed/index.html
http://www.cnn.com/2016/09/02/travel/china-zhangjiajie-
glass-bridge-closed/index.html

This indicates that on September 2nd in 2016, the link
above was published, and there were two hyperlinks that
both linked to the CNN article about the glass bridge. The
dataset contains some quirks that we work around in our
preprocessing step. There are some impossible timestamps
in the data (i.e. dates in the future: ”8059-06-30 14:51:56”
and dates before the internet was started: ~1901-01-01
06:00:00”), and links sometimes include foreign characters
as well as obvious spam. We downsampled this text file to
4% its original size for the scope of this project.

To evaluate our algorithms’s ability to predict news bias,
we needed a set of ground truth labels for conservative
and liberal sources. As a second dataset, we supplement
our dataset by scraping labels from Media Bias/Fact Check
(MBFC News). MBFC News is a comprehensive media
bias resource that identifies media sources with a left, left-
center, unbiased, right-center, and right bias. We match the
sources in the intersection of our data and MBFC News’
compiled list and label accordingly. From scraping this
site, we attain 294 sources for the left, 439 sources for the
left-center, 257 for the right, and 208 for the right-center.

3.2. Processing into a Graph

To reduce the number of nodes and consolidate each
source, our preprocessing algorithm first extracts the do-
main name and truncates the rest of the web address from
the full links of the source page and all the target pages.
Our sample line of data (mentioned in the previous section)
would be processed into

http://10news.com/ 2016-09-02
http://www.cnn.com/ http://www.cnn.com/

15:03:01

We then transform these lines into an unweighted, directed
graph, where each node represents a domain and each edge
between nodes a and b indicate that a page from domain a
referenced a page from domain b.

To reduce noise in the graph, we decided to filter out major
social media sites (i.e. facebook.com, twitter.com, tum-
blr.com) as these sites had heavy roles but we do not deem
to be news sites. We wanted to focus primarily on the
structure of news-first sites. Filtering out these sites re-
moved roughly 10% of all edges in the graph. After this,
we filter out the lines with nonsensical timestamps (as pre-
viously defined) to keep our working data as consistent as
possible. The resulting graph contains 380815 nodes and
671713 edges.

3.3. Understanding the Graph

Because the nature of our dataset is experimental and
largely unprocessed (we created our own edge list), we
wanted to first ensure that our graph contains useful infor-
mation in its graph structure. We run the HITS algorithm
[3] straight out of the box to see what the top authorities
and hubs are in our network. The Hyperlink-Induced Topic
Search Algorithm, created by Kleinberg, is a recursive al-
gorithm which works on the assumption that networks have
strong authorities and hubs. Roughly speaking, the author-
ity value of a page is indicative of the quality of the content
on the page, whereas the hub value of a page indicates the
quality of the links from the page. The idea is that a good
hub will point to many good authorities, and good authori-
ties will be pointed at by many good hubs. In each iteration,
the algorithm updates the authority value of a node by sum-
ming the authority score of the hubs pointing to it, and the
hub value is calculated by summing the authority scores of
sources pointing to it. This process is repeated until conver-
gence. The results shown below (in table 1) roughly bring
up top news sources, indicating that our created graph has
useful signal.

Authorities Hubs
nytimes.com article.wn.com
washingtonpost.com reddit.com

en.wikipedia.com
theguardian.com

huffingtonpost.com
10thousandcouples.com

amazon.com msn.com
cnn.com abosy.com
wsj.com rationalwiki.org

bloomberg.com
reuters.com

learningandfinance.com
nytimes.com

Table 1: Top Authorities and Hubs in original, unpruned
graph.

- Node Degree Distribution

10°

10°

Count

10°

10!

10°

0 5000 10000 15000 20000 25000
Node Degree

Figure 1: Distribution of Node Degrees in Original, un-
pruned graph

3.4. Graph Decomposition

With nearly half a million nodes and more than half a mil-
lion edges, many graph algorithms are not computation-
ally feasible with our resources. To remedy this, we apply
a sort of decomposition of our graph by removing nodes
with a relatively small number of in-links. It turns out that
the majority of the nodes in our web graph are relatively
unimportant as 328108 of the 380815 total nodes have 1 or
0 in-links (as seen in figure 1). We reasoned that we had
very little signal into nodes with very edges. We decided to
prune our graph by removing nodes with fewer than 6 in-
links, giving us a graph with 8517 nodes and 79051 edges,
which makes running various algorithms much more feasi-
ble. We call this the ”pruned” graph and the original graph
with 380815 nodes as the “unpruned” graph. The resulting
graph is visualized in figure 2, with red nodes represent-
ing conservative sites, blue nodes representing liberal sites,
and grey nodes representing unknown sites, as determined
with our MFBC ground-truth dataset. On first glance, this
graphical structure seems to indicate that the graph has two
main structures, an inner center of sources that a ring of
external sources surround. We use the pruned graph for all
subsequent experiments.

4. Predicting Bias From Graphical Features

Based on our compiled graph, we sought to extract features
from it in order to predict the polarity of the various nodes
in our graph (namely conservative or liberal). Because of
the sparsity of data, we decided to group our 4 categories of
ground truths from MFBC into two (left, left-center = left;
right, right-center = right), providing us a framework for
binary classification. After joining the left-center and left,
as well as right-center and right, we had 733 sources on the

Figure 2: Graph visualization removing nodes with fewer
than 6 In-links (pruned graph). Blue dots represent lib-
eral nodes, red represent conservative, and grey repre-
sents unknown, as determined with our MFBC ground-
truth dataset.

left and 464 sources on the right. After cross-referencing
these domains with ones that still remained in our pruned
graph, we had 382 data points for liberal sources and 195
sources for right. To explicitly state our prediction task: we
want to be able to predict the political bias of certain nodes,
given that we know the political bias of a separate, distinct
group of nodes.

4.1. Relational Classification

As a baseline, we performed relational classification on the
pruned version of the graph, initializing nodes with one of
three probabilities. If the node is known to be of a far right
or right center bias, we assign it a probability of 1. If the
node is known to be of a far left or left center bias, we as-
sign it a probability of 0. We assign all other nodes with a
probability of 0.5, and run 100 iterations of the probabilis-
tic algorithm. The nodes are updated at each iteration with
an average of the probabilities of all the nodes that link to
the current node. We found that the algorithm converged
after 100 iterations.

One feature about our dataset is that we have more left-
leaning ground truth labels than right-leaning ground truth
labels. This may unfairly bias this algorithm since infor-
mation is spread through neighborhoods and having more
items on the left will likely result in more predicted left
nodes. To counteract this imbalance, we undersample the
left training set. We take 80% of the right nodes as train-
ing data to seed the relational classification, and randomly
sample the same number of left nodes as our training data.
The remaining 20% of our right nodes and the left nodes

are used to test the accuracy of our model. We found
that the prediction of left leaning media sources yielded a
88.9502762431% test accuracy, while the right leaning me-
dia sources yield a test accuracy of only 30.7692307692%.
This might suggest that left leaning websites have more
structural connectivity in the graph, while right leaning
websites are dispersed more randomly.

4.2. XGBoost Models

As a second model, we wanted to use a predictive model
that can reason about different components and properties
of the graph beyond just its neighbors. We decide to use
an XGBoost Classifier [8]: this model generally represents
the state-of-the-art (as good/better than deep learning mod-
els) for simple feature representations such as the ones we
used above and gives us the additional benefit of being able
to view importance of features. XGBoost Classifier is a
gradient-boosted, ensemble-based classifier model. This is
done through providing a series of weights over regression
trees. The algorithm minimizes over log loss and optimizes
over the combined convex loss function across trees, using
Gradient Descent. We can view the importance of relative
features by measuring the weight on each regression tree
and the variables involved in those trees.

4.2.1. FEATURES

To understand the different signals/properties of a graph
that can help us predict bias, we introduce several feature
sets.

1. Hand Crafted Features: we sought to create an ini-
tial set of features based on very explicit graphical
features. This provided us with a reasonable, inter-
pretable baseline; further, because of its explicit fea-
turing, it would allow us to see which features of the
graph are most predictive of bias. For each data point
in our set, we first start off by determining the degree
and clustering coefficient.

We also hoped to encode some signal around its rela-
tion to well-known news sources on both the right and
left. We took foxnews.com to represent the right and
nytimes.com to represent the left as these are generally
understood in the mainstream to be the authoritative
source for the right and left respectively, on a global
level. We then define several other features commonly
used in link prediction. Namely, we add features for
graph distance, common neighbors, Jaccard’s coef-
ficient, Adamic, and preferential attachment against
both the nytimes.com and foxnews.com.

Finally, we also wanted to factor in the importance of
each node in the graph. We calculated the global page
rank score for each node and added that to our feature

vector.

2. Implicit Features: In addition to explicit features,
we wanted to capture latent features of the graph.
As such, we ran node2vec [12] across our graph.
Node2vec is an algorithm that generates embeddings
for each node in the graph based on nodes it visits on
random walks. Nodes that cooccur on a walk tend to
have higher cosine similarities. For our training we
run node2vec twice to generate two sets of parame-
ters: p =10, q =0.1; and p = 0.1, q = 10, so that
we could interpret the effects of more structure ori-
ented features and more neighborhood oriented fea-
tures. Based on these parameters, we expect p =
10, @ = 0.1 to capture breadth, neighborhood features
and p = 0.1, q = 10 to capture depth, structural fea-
tures. As such, we name the first set of parameters
the breadth node2vec features and the second set the
depth node2vec features. For both sets of embeddings,
we set num-walks to be 10 and the length of a random
walk to be 80. Our resulting embeddings were of size
128.

4.2.2. EXPERIMENTS AND RESULTS

Because we need to tune hyperparameters for XGBoost, we
split our MFBC dataset into 70%/10%/20% for the train,
validation, and test set. To account for the label imbalance
(there are significantly more liberal labels than conserva-
tive labels), we upsample the conservative sources for the
training input during our training process.

For our experiments, we run the classifier over our hand-
crafted features, breadth node2vec features, and depth
node2vec features independently. We then attempt com-
binations of these feature sets, looking at models trained
over the concatenation of the breadth and depth features,
the sum of the breadth and depth features, and the the hand-
crafted features with the sum of the breadth and depth fea-
tures. We note that we do not pair the concatenation of the
breadth and depth features because we could not receive
strong results for this (as we will see later). We evaluate our
models by classification accuracy, auc roc scores, and f1
scores. We also break down accuracy by liberal and conser-
vative. Log-loss plots of the models (post-hyperparameter
tuning) can be found in the appendix.

F1 AUCROC Accuracy

Left Sources N/A N/A 0.741/0.631
Right Sources N/A N/A 0.745/0.461
Overall 0.744/0.545 0.845/0.547 0.743/0.545
Table 2: Values for XGBoost Model Trained Only

over Hand-Engineered Features.
train/test.

Values are reported as

F1 AUCROC Accuracy
Left Sources N/A N/A 0.853/0.684
Right Sources N/A N/A 0.427/0.538
Overall 0.813/0.583 0.923/0.664 0.813/0.610

Table 3: Values for XGBoost Model trained over Depth
Node2Vec embedding. Values are reported as train/test.

F1 AUCROC Accuracy
Left Sources N/A N/A 0.801/0.737
Right Sources N/A N/A 0.823/0.667
Overall 0.815/0.693 0.924/0.754 0.813/0.701

Table 4: Values for XGBoost Model trained over Breadth
Node2Vec embedding. Values are reported as train/test.

F1 AUCROC Accuracy
Left Sources N/A N/A 0.865/0.684
Right Sources N/A N/A 0.760/0.615
Overall 0.809/0.682 0.925/0.789 0.813/0.650

Table 5: Values for XGBoost Model trained over Breadth
and Depth (summed) Node2Vec embeddings. Values are
reported as train/test.

F1 AUCROC Accuracy
Left Sources N/A N/A 0.865/0.684
Right Sources N/A N/A 0.760/0.615
Overall 0.802/0.640 0.925/0.748 0.813/0.649

Table 6: Values for XGBoost Model trained over Breadth
and Depth (concatenated) Node2Vec embeddings. Values
are reported as train/test.

F1 AUCROC Accuracy
Left Sources N/A N/A 0.831/0.631
Right Sources N/A N/A 0.794/0.743
Overall 0.809/0.707 0.925/0.800 0.813/0.688

Table 7: Values for XGBoost Model trained over the sum
of the Breadth/Depth Node2Vec embeddings, and Hand-
Engineered Features. Values are reported as train/test.

Tables 2 through 7 show the train/test accuracies across
these metrics. Additionally, we plot the auc roc curves
against each other in figures 3 and 4. From these tables and
plots we can see that node2vec feature sets graphs signif-
icantly outperform the hand-crafted feature sets. Further,

10

08
z
& 06l
z
"ﬁ
§ 04k — all features
= — hand features

— breadth and depth features
02f
0.0 " " L L
0.0 02 04 0.6 08 10

False Positive Rate

Figure 3: AUC ROC Chart For XGBoost Models. Blue
is the one trained over the sum of the Breadth/Depth
Node2Vec embeddings, and Hand-Engineered Feature.
Green is the one trained only over the hand-engineered
features. And Red is the one trained over just the
breadth/depth node2vec embeddings summed with one an-
other.

the node2vec embeddings focused more on breadth outper-
formed depth; however, as is clear in figure 6, the infor-
mation for breadth and depth is somewhat complementary:
combining the two sets of features provides positive classi-
fication beyond just one or the other. Finally, we may point
out the same thing with the hand-crafted features. Hand-
crafted features seem to provide a sliver of additional ben-
efit beyond the two embeddings together.

From a more disappointing perspective, the concatenation
of the embeddings performed worse than breadth by itself.
Theoretically, this concatenation should perform no worse
than breadth by itself. This suggests a need for stronger
hyperparameter tuning over the model.

We close by noting that all XGBoost Models significantly
outperform the relational classifier we set as our initial
baseline.

4.3. Feature Importance/Analysis

With our gradient-boosted model, we can then look at what
are the strongest signals that our models used for predict-
ing news bias: figures 7 and 8. Figure 7 contains the feature
vector with the first 128 indices representing the latent em-
bedding from the node2vec embeddings and the final fea-
tures being from our hand-crafted vector. Looking at the
feature importance plots, we see that the hand-crafted vec-
tors have non-zero contributions to the plot but remain gen-
erally less important than the others (i.e. implicit features
from node2vec).

As for our hand-crafted model, we see that features 1, 10,

10
08|
]
& 06l
2
€ o4t — breadth features
o
8 — depth features
5 — breadth and depth features
0.0

00 02 04 0.6 038 10
False Positive Rate

Figure 4: AUC ROC Chart for XGBoost Models. Blue is
the one trained over just the node2vec embeddings opti-
mized for breadth. Green is the one trained over just the
node2vec embeddings optimized for depth. Red is the one
trained over the sum of the breadth and depth node2vec
embeddings.

and 12 have the most importance in the graph. These fea-
ture map to clustering coefficient, Jaccard to fox news, and
Adamic to fox news. Thus, both intrinsic properties of
the node (like clustering coefficient) and its relation to key
nodes in the graph are strong indicators of bias.

— Importance of Various Features

0.020

0015

0.010

Relative Feature Importance

0.005

0.000
0

40 60 80 100 120 140 160
Feature Number

Figure 5: Importance Weights for XGBoost Models
Trained over All Features. First 128 are implicit features
from node2vec while the remaining our hand-crafted fea-
tures.

5. Post-Classification Analysis

We note that all figures referenced in this section are down-
samples to 1000 points (from an original 8000 nodes), for
clarity. However, correlation coefficients mentioned in the
plots are all computed over all original 8000 nodes.

020 Importance of Various Features

0.15

0.10

0.05

Relative Feature Importance

0 2 - 6 8 10 12 14
Feature Number

Figure 6: Importance Weights for XGBoost Model Trained
over Only Hand-Crafted Features. Features 1, 10, and 12
map to: clustering coefficient, Jaccard to fox news, and
Adamic to fox news.

5.1. Polarity

From our previous classifiers, we are now able to apply
conservative and liberal labels to every node in our graph.
This allows us to make observations around the polarity of
various nodes. To measure polarity, we look at a metric in-
spired by Garimella et. al. [13]. Here we model the neigh-
borhood of each graph with a beta distribution with uniform
prior « = 3 = 1, where « is the left leaning and /3 is the
right leaning. Then for every outgoing node, we change
the distribution adding to o of an outgoing edge goes to
liberal and 8 when it goes to conservative. We define the
“leaning” 1 = /(e + 3) and normalize this value between
0 and 1 with a polarization metric p = 2%|0.5 —[|. We note
that a source with equal number of outgoing edges towards
conservative and liberal will have a polarization score of 0,
while as the gap between liberal and conservative goes to
infinity, polarization approaches 1. We compute statistics
over the set of liberal and conservative sites and provide
the aggregate values below:

Median Mean Std
Left 0.5 0474 0.202
Right 0.3055 0.319 0.201

Table 8: Polarity Scores (as defined in 5.1.) Split by Left
and Right Leanings

These initial numbers suggest that liberal sites tend to be
more one-sided in the links they reference than conserva-
tive sites. We may reasonably infer liberal sites are more
likely to link to liberal sites than conservative sites to other
conservative ones.

4000

3000

Count

2000

1000

00 02 04 06 08 10
Polarity

Figure 7: Distribution of Polarity (as defined under 5.1)
across all nodes in unpruned graph.

5.2. Polarity Metrics

To gain more insight, we plot the overall distribution of po-
larity over a histogram (in figure 7). Surprisingly, the vast
majority of websites are actually very non-polar (i.e. they
link evenly to conservative and liberal sites). We further
plot polarity by page rank, clustering coefficient, authority
score, and hub score, in figures 11, 12, 13, 14 respectively
(in the appendix) but found relatively little correlation be-
tween polarity and those metrics. This suggests how po-
larizing something is has little relation to its importance in
the graph. Most illustratively, we plotted polarity score by
the average polarity of each node’s neighbors (in figure 8).
Although the correlation coefficient is very low, this seems
to be more likely a product of the distribution as we can see
a gradual linear relationship between nodes and its neigh-
bors. One can also observe how websites that are them-
selves not polar (0.0), link to sites across the spectrum of
polarity and not just sites with little polarity.

10

08

0.6

04

02

Average Polarity of Neighbors

0.0

-0.2
-0.2 0.0 02 04 0.6 08 10 12

Polarity

Figure 8: For each nodes in the graph, we compute the aver-
age polarity (see 5.1) of all of its neighbors. The correlation
coefficient across these points is: 0.052.

5.3. Margins-Based Analysis

In the section, we assume the larger the magnitude of the
binary classification margin (which is a measure of classi-
fication confidence) of our XGBoost Model, the more ex-
treme the leaning of a site is. Explicitly, classification mar-
gin is the difference between the classification for the true
class and the false class. We note, that this is not necessar-
ily the case as confidence does not necessarily translate into
our conception of extremities. But depending on data dis-
tributions that may sometimes be the case and our test sam-
ples provide evidence this may be the case in our dataset.
We note the margin scores (for our test set) on left-center,
left, right-center, and right in the table below.

Median Mean Std
Left -0.183 -0.294 0.590
Left-Center -0.025 -0.149 0.611
Right-Center 0.511 0.364 0.546
Right 0.695 0.837 0.966

Table 9: Margin Scores (see 5.2) vs Political Lean-
ing/Extremity

From the table we can see that there is correlation be-
tween the extremities of sources with the magnitudes of
their scores.

As a first experiment we plot the margin of each node by
its polarity in figure 9, to try to detect if certain leanings
are more polar than others. We had earlier established that
liberal sites, as a whole, tend to be more polar than con-
servative ones, and this plot seeks to further confirm this as
the polarity seems to decrease as the margin increases.

08

06

Polarity
o

04

02

00

-0.2
-4 -3 -2 -1 0 1 2 3 4

Figure 9: Plotting Margin, as defined under 5.3 against Po-
larity, as defined under 5.1. Correlation Coefficient of plot
is -0.347.

Through further experimentation, we plot margin against
the same metrics we used for polarity: namely: cluster-
ing coefficient, page-rank score, hub-score, and authority
score. This suggests the leaning of a site has little rela-
tion to its importance in the graph. The plots can be seen

Average Margin
(=]

-3 -2 =] 0 1 2 3 3
Margin

Figure 10: Average Margin (as defined under 5.3) of
Node’s Neighbors by Node’s margin. Correlation Coeffi-
cient of: 0.679

in figures 12, 16, 17, and 18 (in the appendix). For these
metrics we saw no correlation between margin (and there-
fore extremity/political leaning) and these metrics. As a
final step, for each node, we compute the average mar-
gin across all outgoing neighbors and plot this in figure
10. We find there is a reasonably high correlation coeffi-
cient here, which seems to indicate someone what unsur-
prisingly, sources of a similar margin (which we can inter-
pret as polarity) tend to link to other sources with similar
margins (and political leanings), as we can observe through
the fairly linear relationship.

As a final comment we note that we labeled 2945 as conser-
vative nodes and 5572 as liberal indicating that there tend
to be more liberal than conservative sites on the web.

6. Conclusion

From our results, we can see that each newspaper’s position
in the link structure of websites on the web can serve to
heavily inform the political leanings of each website.

The biggest contributions of this paper is to provide ways
to quantitatively verify and disprove some of our assump-
tions. For example, we were able to show that polar-
izing sites tend to link to polarizing sites and that lib-
eral/conservative sites tend to link to liberal and conser-
vative sites, respectively. We were also able to quantita-
tively suggest that liberal sites tend to be more polarizing
than conservative sites, a point that many individuals have
rejected or claimed, without any real evidence. We were,
however, able to disprove that most sites are polarized since
our histogram demonstrated that the vast majority of sites
had polarity scores of 0.

In our day-to-day, political bias and polarization is a prob-

lem and many people throw around assumptions around po-
litical bias and polarization. Without factual evidence, this
makes solving the problem head-on very difficult. This pa-
per provides a framework for thinking about this in a more
quantitative, objective manner. This sort of thinking may
lead to help us to more effectively tackle the underlying
problems of political bias and polarization in our society.

7. Future Work

The primary areas to extend is making our graph repre-
sentation more robust. We represent the graph as an un-
weighted graph which loses a lot of signal and can be re-
ductive. We also would like to incorporate more of our
link dataset and grow the number of sources in our ground-
truth news label set. This the largest limiting factor to our
performance and evaluation of our graph. We also ignored
temporal features in our prediction models.

Finally, we can do more hyperparameter tuning as we noted
earlier, some XGBoost underachieved on certain metrics;
we could also experiment more with different p and q val-
ues to generate the node embeddings.

8. Appendix

GitHub Repo can be found here:

https://github.com/jlee29/FakeNewsGraph.

10°?

Page Rank Score

10*

-0.2 00 02 04 06 08 10 12
Polarity

Figure 11: Page Rank of Node in Graph vs. Polarity (see
5.1). Correlation Coefficient: 0.191.

12

08

06

04

02

Clustering Coefficient

00

Figure 12: Clustering Coefficient of Node in Graph by

Margin

Margin, see 5.3. Correlation Coefficient is: -0.025.

025

020

015

010

Auth Score

0.05

0.00

-0.05

S

if ‘0". o ° e

-0.2

Figure 13: Authority Score (as calculated by HITS algo-
rithm) versus Polarity, as defined under 5.1. Correlation

00

Coefficient: 0.091.

014

02

04 06

Polarity

08 10

12

012

010

0.08

0.06

Hub Score

004

0.02

0.00

-0.02

2

. .
L]
.

b) ‘o

.
o0
0"

\.'.‘l’ .

-0.2

Figure 14: Hub Score (as calculated by HITS Algorithm)
versus Polarity, as defined under 5.1. Correlation Coeffi-

cient: 0.225.

00

02

0.

«®
.
4

06
Polarity

08 10

12

Clustering Coefficient

Auth Score

12

10 o %
.
08 .
06
04
02
00
-0.2
-0.2 00 02 04 06 08 10 12
Polarity
Figure 15: Clustering Coefficient of node vs. Polarity of
node (see 5.1). Correlation Coefficient: 0.139.
014
Ll
0.12
010 ° e
0.08 °
Y B
006 °. & »
0.04 . ¢ . ® e
° N ® ® o pe -
002 e 0% g% e & ®
0.00 "mw % 4o
-0.02
- -2 -1 0 1 2 3 4

Margin

Figure 16: Auth Score (as calculated by HITS) vs. Margin
(see 5.3). Correlation Coefficient: -0.035.

Hub Score

016
014
. L]
012
010
L ° .
008 .
.
0.06 * LI
* .
004 . ¢ f .]
B ’ ®o00 © .
0.02 W | oo o 0,0
"o"ﬁw e ® %
0.00 . ® o 0
-0.02
-3 -2 -1 0 1 2 3 4
Margin

Figure 17: Hub Score (as calculated by HITS) vs. Margin
(see 5.3). Correlation Coefficient: -0.016.

Page Rank

10?
2 L]
10¢
.
0
3 ... o
10 e % %a® ‘s 0 °
Ll
e ‘q*&él. %
®oe) ®
s O ° % o
10 .
oo ©
s
10—3 -2 -1 0 1 2 3

Margin

Figure 18: Page Rank vs. Margin (see 5.3). Correlation
Coefficient: -0.001.

9

Log Loss for Hand Features Models

— Train
— Test |

.

20 40 60 100

Iteration

Figure 19: Train vs. Test Log-Loss for XGBoost Model
(post-hyperparameter tuning) trained over hand-features
only.

Log Loss for Breadth Features Models

— Train
— Test

200

200 300 500

Iteration

100

Figure 20: Train vs. Test Log-Loss for XGBoost Model
(post-hyperparameter tuning) trained over features for
breadth-based node2vec embedding.

Log Loss for Depth Features Models

M\x

— Train
— Test

0.40
0

20 40 100

Iteration

60

Figure 21: Train vs. Test Log-Loss for XGBoost Model
(post-hyperparameter tuning) trained over features for
depth-based node2vec embedding.

10

Log Loss for Breadth Depth Concat Models

e

070

— Train
— Test

200 300
Iteration

50 100 150 250

Figure 22: Train vs. Test Log-Loss for XGBoost Model
(post-hyperparameter tuning) trained over features for

breadth and depth node2vec embeddings concatenated with
one another.

670 Log Loss for Breadth Depth Sum Models

— Train
— Test

\/*m‘,ﬁ_

065

0.60
055

Log Loss

040}

300
Iteration

100 200 200 500 500

Figure 23: Train vs. Test Log-Loss for XGBoost Model
(post-hyperparameter tuning) trained over features for

breadth and depth node2vec embeddings summed with one
another.

B Log Loss for All Features

— Graph Features Train
— Graph Features Test

0.65

0.60
055
050

045

Log Loss

040}
035

030

300 400
Iteration

100 200 500 00
Figure 24: Train vs. Test Log-Loss for XGBoost
Model (post-hyperparameter tuning) trained over all fea-
tures (breadth and depth node2vec embeddings summed,

and hand-engineered features).

References
[1] Daniel Tunkelang. A twitter analog to pagerank, 2009.

[2] Han Woo Park and Mike Thelwall. Link analysis: Hy-
perlink patterns and social structure on politicians Web
sites in South Korea (Springer Science + Business Me-
dia), 2007.

[3] Jon M. Kleinberg. 1999. Authoritative sources in a
hyperlinked environment (J. ACM 46), 1999.

[4] James Fairbanks, Natalie Fitch, Nathan Knauf, and Er-
ica Briscoe. Credibility Assessment in the News: Do
we need to read?. In Proceedings of WSDM work-

shop on Misinformation and Misbehavior Mining on
the Web (MIS2), 2018.

[5] JS Weng, Ee-Peng Lim, Jing Jiang and Zhang Qi. Twit-
terrank : Finding Topic-Sensitive Inuential Twitterers
(WSDM), 2010.

[6] Mathias Niepert, Mohamed Ahmed, and Konstantin
Kutzkov. Learning Convolutional Neural Networks
for Graphs. In International Conference on Machine
Learning ICML), 2016.

[7] Sergey Brin and Larry Page. The Anatomy of a Large-
Scale Hypertextual Web Search Engine (Proc. 7th In-
ternational World Wide Web Conference), 1998.

[8] Tianqi Cehn and Carlos Guestrin. XGBoost: A Scalable
Tree Boosting System. ArXiv e-prints, 2016.

[9] Srijan Kumar, Robert West, and Jure Leskovec. Dis-
information on the Web: Impact, Characteristics, and
Detection of Wikipedia Hoaxes. In Proceedings of the
25th International Conference on World Wide Web,
WWW 16, pages 591602, Montreal, Qu ebec, Canada,
2016. International World Wide Web Conferences
Steering Committee.

[10] Vosoughi S, Roy D, Aral S. The spread of true and
false news online. Science. 2018;359:11461151. doi:
10.1126/science.aap9559

[11] S. Kumar and N. Shah. False information on web and
social media: A survey. In Social Media Analytics:
Advances and Applications. CRC, 2018.

[12] A. Grover, J. Leskovec. node2vec: Scalable Feature
Learning for Networks. In ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining (KDD), 2016.

[13] K. Garimella, I. Weber. A Long-Term Analysis of Po-
larization on Twitter. In ICWSM , 2017.

11

