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1. Overview

Natural language processing still heavily relies on vec-
tor space word representations as a key to understand-
ing meaning and differentiating texts. While these
representations remain important, especially as they
are well suited for machine learning problems, recent
work has looked to other possible representations of
text, notably language as a network. Through identify-
ing meaningful schemes to construct natural language
as graphs, we hope to generate higher-level linguis-
tic analysis focusing on more than just lexical mean-
ing. Understanding how and when words or sentences
interact and especially how these interactions change
over time can generate key insights into often arcane
questions such as “what makes a ‘good’ work good?”

2. Introduction

Much of NLP work has focused on techniques for text
summarization, sentiment analysis, and textual sim-
ilarity identification. Nevertheless, NLP techniques
have incredible potential to answer fundamental ques-
tions about how people interact with language, and
therefore, each other. For example — how to charac-
terize different writing styles, especially across eras,
subjects, or personal bias.

Although traditional NLP tools have relied on word
embeddings to generate depictions of meaning, newer
research has explored the potential for graphically rep-
resenting text. Graph representations permit richer
and more structured comparison of textual works, and
might help supplement traditional semantic features
with elements of syntactic information. This graph
construction problem can be challenging: there are
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endless possible methods of representing text in a
graph and it is critical to pick an algorithm that results
in a meaningful graphical representation. Potential ex-
amples include connecting words with directed edges
if they occur in sequence or connecting similar lexical
substructures by similarity (for example, sentences).
We hope to demonstrate the potential for combining
network-based analysis schemes with traditional word
embeddings to produce more robust and differentiated
representations of texts.

3. Related Work

We discuss three papers that leverage graph algorithms
to generate insight into natural language problems. In-
terestingly, all three papers propose applying network
constructions to text summarization. Consequently,
our intuition is that these graph construction meth-
ods might generate networks which better represent
semantic content than syntactic content.

3.1. LexRank: Graph-based Lexical Centrality as
Salience in Text Summarization (Erkan et. al)

[4]

Erkan et. al address the challenge of text summa-
rization, a classic natural language processing prob-
lem. Similarity metrics are taken between all sen-
tences with sentences represented as one-hot vectors
with dimensionality equal to the vocabulary size. We
then treat sentences as nodes and construct edges be-
tween sentences based on similarity, with an edge ex-
isting if the similarity result is > k, a threshold hyper-
parameter. The edges are undirected, as similarity is a
symmetric relation.

Two variants on PageRank are applied. First, the



authors construct a stationary distribution which rep-
resents the “importance” of each node. They call this
base version “LexRank”, although they further present
an alternative called “continuous LexRank” which
incorporates the previously discarded edge weights
(similarity scores).

As the authors note, a poor choice of £ could lead
to a graph that is too dense or too sparse. This is
a concern for us in our “bag-of-words” construction
method, which we discuss further below. Furthermore,
this graph construction scheme intuitively seems to fo-
cus more on semantic meaning than syntactic charac-
ter; after all, the constructed graphs are ultimately re-
lationships between similar “sets of meaning”, and we
might simply imagine a dense graph to indicate that the
author repeatedly used different structures with similar
meanings.

3.2. TextRank: Bringing Order into Texts (Mihalcea
and Tarau) [6]

TextRank applies the “random surfer model” and
scoring system from PageRank to graphical represen-
tations of text. For smaller lexical structures like
words, the authors use co-occurrence to build the
graph. The group experimented with the types of
nodes included — creating graph of only certain syn-
tactic elements (e.g. adjectives, nouns, etc.) or bi-
partite graphs of nouns to verbs. For larger structures
like sentences, the group uses the system of “similar-
ity” between sentences as applied by Erkan et. all’s
LexRank [4] to generate the graph.

We noted considerable opportunities for modifica-
tion to better suit this algorithm to our task. Firstly,
building a graph structure on the basis of co-occurance
is naive. Related words may not be co-located (may
be noun and object) and hence the hyperparameter
of window size has an unduly large impact on the
model performance. Considering the construction of
the graph on the basis of sentence similarity, we further
see that this approach is somewhat limited to sentence
applications.

3.3. An Approach to Graph-based Analysis of Textual
Documents (Bronselaer et. al) [2]

Bronselaer et. al also address multi-document sum-
marization (MDS), although the focus of the paper
rests primarily on considering schemes to construct

networks from text in general. First, a piece of text
is tokenized and a part-of-speech tagger is run. Then,
the tokenized text is filtered by a “reclassifier”, which
eliminates words that don’t strongly contribute to the
information content of a sentence (determiners and ad-
verbs per their heuristic). A graph is constructed such
that “relationship” parts of speech (verbs, prepositions,
and conjunctions) are edges and other words are nodes.
Every node-edge-node in the text is added to the graph.

Significant semantic information is lost because
connective words (e.g. verbs) are not represented as
nodes in the graph. Despite the intuition between us-
ing them to connect objects in the graph, these words
are also important to the overall meaning of the sen-
tence (or document). In implementing this algorithm
ourselves, we considered a variety of ways to incorpo-
rate this information.

4. Data

We are using two main datasets for our textual
analysis, one of political speeches and another of
politically-based sentences. We hope that by consid-
ering two document classes with significant size dif-
ferences, we will be able to draw conclusions about
the robustness of our approach across different snip-
pets of natural language. For all of our analyses, we
use 300 dimensional global word vectors (GloVe vec-
tors [7]) trained on Wikipedia article text with a vo-
cabulary size of 40000 unique tokens. Preprocessing
for all datasets involves tokenizing the word files using
the python package n1tk. For each word, we check
if there exists a valid embedding in the 40000 x 300
embedding matrix, and if not, we record the word as
an UNK token.

Our first dataset is an archive of speeches delivered
by presidents from Washington through Obama. The
speeches are taken in plaintext form from [3]. The
dataset consists of roughly 3.5 million words split be-
tween 962 speeches. Each president has roughly the
same number of unknown words present (average of
0.002% of tokens were UNKS for each president).
Given that records are better for newer presidents and
older presidents have on average shorter speeches, we
only considered speeches with less than 400 unique
tokens, which yielded 312 speeches roughly evenly
distributed across all presidents (when the number of
speeches is normalized by speech length). This had the



secondary benefit of greatly increasing our processing
time; running node2vec on the larger speech graphs
was often intractable.

Our second dataset consists of sentences from the
Ideological Book Corpus (IBC) [8]. The corpus con-
tains 4,062 sentences selected from US congressional
floor debates in the year 2005 annotated by politi-
cal ideology. Of these 4,062 sentences, we consid-
ered 2,025 liberal sentences and 1701 conservative
sentences, dropping the 600 neutral sentences. The
mean number of unique tokens for each sentence in
the dataset is 34.74.

Finally, one of our graph generation algorithms re-
lies on the presence of part-of-speech tags on the text
to construct relationships between nodes. For this task,
we leverage NLTK’s part-of-speech tagging function-
ality [1] which implements an off-the-shelf tagger us-
ing tags from Penn’s Treebank tag-set [5].

5. Graph Models

We implemented 4 approaches to graphically represent
our data, each aiming to capture different dimensions
of the text meaning.

5.1. Text Bag Algorithm

This algorithm treats the input text as a bag of words
with each unique word as a node. We calculate the
similarity matrix S where S[i, j] is the cosine similar-
ity of nodes 7 and j using word2vec embeddings. For
each pair of nodes (u, v), we draw an edge if the cosine
similarity of their embeddings is in the 75th percentile
of similarities in the document. Although this param-
eter was initially chosen arbitrarily, we found that mi-
nor variations from it did not substantially change the
sparseness of the baseline graph (and thus the results
of this baseline model). The initial value was selected
given the example set from [4].

5.2. Sliding Window Algorithm

This graph generation scheme aims to better capture
the sentence-level sequential relationships between
words. We construct a graph with n nodes where n is
the number of discrete tokens. We then iterate through
the tokenized document, sliding a window of size 2
across the tokens; at each window step, the first and
last element of the window are connected to each other.
When the window encounters the end of a sentence, no

Algorithm 1 Text Bag Algorithm

V' < each unique word in document
G« (V,0)

FE < word embeddings

fori,j € Vdo

S[i, 51 ERTRTELT
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fori,j € Vdo
if S[i, j| > 75% of all similarity scores then
G.AddEdge(i,j)

e RF

connection is formed, meaning words are only con-
nected by the window if they are in the same sen-
tence. The intuition behind this technique is to link
co-occurring word based on how we might read the
text (from left to right); furthermore, sentences which
share words will intersect through the shared word
nodes, suggesting that more common words might be-
come more central in this graph construction scheme.

5.3. Part-of-speech Algorithm

The baseline algorithm uses word similarity, but it
completely ignores other relevant features of a word,
such as part-of-speech. We directly implement the
algorithm from [2] as a competitor to the baseline.
Importantly, [2] builds a directed graph incorporat-
ing the temporal nature of the sentences. However,
our node2vec implementation only handles undirected
graphs which prompted us to ignore this temporal fea-
ture during construction.

5.4. Sentence Chain Algorithm

The above approach uses parts of speech, but discards
information about the meanings of the words that are
being turned into edges. Additionally, it fails to main-
tain the higher-level chronological organization of a
given work. Furthermore, although the window al-
gorithm captures some element of word chronology,
it oversimplifies this feature by ignoring the ordering
of sentences, paragraphs, and other higher-level struc-
tures. To remedy these failings, the sentence chain al-
gorithm first splits the work into its constituent sen-
tences. It then connects the words within a given sen-
tence both sequentially and using the same part-of-
speech information as the above approach. We also
create a meta-node for each sentence that connects to



Algorithm 2 Sentence Chain Algorithm

: T < POS tagged document

: G+ (@, @)

: E + word embeddings

: for each sentence ¢ in 7" do

W < all unique non-determiner words in %

G.addNodes(W)

connect words in sentence sequentially

connect words that are separated by verbs

G.addN ode(meta;)

for word in sentence ¢ do
G.addEdge(meta;, word)
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: S + (num_sentences x embedding size) matrix
for each sentence ¢ in 7" do
S[i] + mean(E[neighbors(meta;)])
G.addEdge(meta;, meta;;1)
. sim + SST
: for each pair (i, j) of metanodes do
if sim[i,j] > 75% of all similarity scores
then
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each of the words in the sentence, and we connect
these meta-nodes sequentially according to the sen-
tence order of appearance in the work. As a final step,
we then then approximate a “meaning” for each sen-
tence by averaging the word embeddings of the words
in the sentence. We reasoned that the mean would be
more robust to sentence lengths, since length could be
captured by the degree of the sentence’s meta-node.
We connect the meta-nodes of sentences that have a
similarity (measured by dot product) in the 75th per-
centile or above of sentence similarities within the doc-
ument.

6. Analysis Techniques

We present two elementary analysis techniques to ex-
tract meaning from the constructed graphs. We also
include a third scheme which simply concatenates the
vectors from the following two schemes.

6.1. Meta Node Embedding

Once the graph is generated, we insert a supernode
into the new graph that is connected to every other

node. We then take the node2vec vector of that node
to represent a style vector for the overall graph. The
node2vec parameters were determined after a short
empirical search and involve 10 random walks with
p =1, ¢ = 3, of length 80. The output dimension is
128. In constructing this feature vector, we also tested
the addition of both average clustering coefficient and
average degree (sampled from 100 randomly selected
nodes) as metrics in our style vector. However, these
measures, having little variance across the data, were
dropped from consideration as part of the style vector.
Intuitively, we want our calculated style vector to
somehow extract relevant style information from the
constructed graph. A “‘supernode” connected to part
of speech components might do this, as a node2vec
representation of this supernode will incorporate in-
formation about the directional relationship (or lack
thereof) between different textual objects. Given our
aim to capture a vector representation of the general
graph structure, we chose our node2vec parameters to
encourage the random walker to explore further away
from the supernode and deeper into the true graph.

6.2. Node Centrality Featurization

Another graph featurization we developed used eigen-
vector centrality to compute the top 5 most central
nodes for each document graph. We then averaged the
embeddings of these central words, resulting in a 300-
dimensional feature vector. Among all the possible
centrality measures (harmonic, between-ness, etc.), we
chose eigenvector centrality to better emulate the out-
put of PageRank style random walks on our generated
document graph. Our intuition was that these random
walks might parallel how an individual would read
a document, especially on the non-Text Bag models
which incorporate word order in graph generation.
We were initially concerned that centrality might be
less meaningful simply because of inherent language
variation over time (making any set of 5 words rea-
sonable features). For example, if presidents in 1800
used a radically different vocabulary set from modern
ones, the least central nodes in a graph might be just as
telling. However, our intuition about the contribution
of centrality was justified when testing against a null
model (described more in subsequent sections).
Importantly, we ran a modified version of the node
centrality scheme on the Sentence Cluster graphs.



Given that these graphs included additional ’sentence
nodes’ which were connected, we selected the top 5
word nodes by centrality after filtering out all non-
word nodes in the centrality rankings. Furthermore,
across all graph types, the node centrality featuriza-
tion was calculated before the meta node featurization
(to avoid the centrality effects of the meta node).

7. Experimental Methodology

We took several steps to analyze the generated
“style vectors” in light of the underlying cluster dis-
tribution in the datasets. For the key analysis, we clus-
tered variants of the feature vectors above and com-
pared these results to our underlying ground truth.
Specifically, we ran a K-means clustering algorithm
(the sklearn implementation) on an array of docu-
ment features while specifying the underlying number
of clusters; this was determined from our knowledge
about the datasets.

We ran this K-means clustering approach for each
dataset across 4 different feature representations: just
meta node featurization, just node centrality featuriza-
tion, random node embedding featurization, and a fea-
ture vector concatenating meta node and centrality fea-
tures. This selection was designed to confirm or refute
our hypothesis that some combination of structural
and meaning-based features would best capture cluster
style (with meta node representing syntactic structure
and centrality representing meaning). In the random
selection scheme, we randomly selected 5 nodes from
the graph to construct a meaning embedding, as op-
posed to selecting the 5 most central nodes; this served
as a null model against which we could validate the
contribution from the centrality features.

For both the IBC and presidents datasets, we chose
to search for k = 2 clusters in our text data. This was
a clear choice for IBC, as we hoped to expose differ-
ences in left-leaning vs. right-leaning sentences. Of
the possible cuts of data in the presidential speeches,
we initially considered three options: president, po-
litical party, and time of presidency. With respect to
the former, we felt there might not be a strong inher-
ent clustering — after all, many presidents likely don’t
have profoundly different topical focuses and syntax
across their full repertoire of speeches (e.g. George
H.W. Bush and Ronald Reagan might be similar, or
Jefferson and Madison). We felt political party might

also be less promising for several reasons. The history
of political parties in America is complicated - some
parties no longer exist (e.g. the Whigs), and a strange
phenomonena post-labeled the party switch happened
during the end of the 19th century and beginning of the
20th century where the major parties came to adopt
each others’ values. Furthermore, we suspected syn-
tax changes might be less evident across party lines;
there’s no reason to suppose Democrats holistically
use shorter sentences or more nouns for example. We
felt a party clustering scheme might force us to place
more weight on speech meaning in direct contradic-
tion to our original curiosity regarding the addition of
stylistic or syntactic structure.

On the other hand, we felt time clustering was well
suited to leveraging the combination of syntax and se-
mantics; after all, we might imagine speech meaning
to change greatly locally despite the fact that syntax
changes gradually. Nonetheless, these gradual syntax
changes aid to differentiate speeches on common top-
ics (e.g. the economy) which might occur in any time
period. We opted to try and identify two speech clus-
terings — before and after the year 1900. This was not
an arbitrary choice, as the median year in our dataset
(labeling each president by the year they took office)
was 1898. 1900 seemed a reasonable choice in this
context given that it was also an election year. Fur-
thermore, in hindsight, this specific clustering problem
is especially interesting given the events of the early
20th century during which America became a more in-
fluential power abroad (likely reflected in the dataset).
Potential future work (fleshed out in a subsequent sec-
tion) might investigate more granular clusterings (per-
haps via historic era).

We also learn a t-distributed Stochastic Neighbor
Embedding (t-SNE) for each speech style vector in
two dimensions. Before the t-SNE, we perform PCA
dimensionality reduction to 10 principal components.
This initial dimensionality reduction is recommended
as part of the pre-processing before t-SNE [9]. Al-
though this does not leave a quantitative measure, the
t-SNE visualizations captured the clustering we were
looking for and helped us fine-tune our model param-
eters as we worked toward a final model.

Finally, we note that we filtered out graphs with
|N| > 400 during the main phase of experimentation,
leaving us with in total 312 presidents graph (having



eliminated 650 graphs). However, we present a small
experiment utilizing the node centrality featurization
on the full dataset (all graph sizes) as well.

8. Results

We used all 4 described graph generation algo-
rithms to construct graphs for every speech in our
corpus. The structures for one particular speech,
President Franklin Delano Roosevelt’s “Declaration of
War on Germany”, delivered on December 11, 1941,
are presented below in Figure 1 using a basic force-
directed layout for visualization:

T o

®
(a) Bag of Words (b) Text Windows
(c) Text Parts of Speech (d) Sentence Chains

Figure 1: Graphical representations of FDR’s decla-
ration of war on Germany using different graph con-
struction algorithms

We can see that each algorithm generates a visually
distinct structure for the same speech. In particular,
the bag-of-words and text windows algorithms appear
to result in tightly clustered components, whereas the
parts of speech and sentence chain algorithms have a
more spread out patterns of connection and clustering,
as expected.

From general observation, we see that the Textbag
tends to create a graph with several (on average 7-8)
strongly connected components. There is one central
strongly connected component surrounded by satel-
lites which typically consist of 10-20 nodes. The text
windows graphs appear to generally be strongly con-
nected; in rare cases, one or two nodes orbit the central
SCC. Our intuition is that these nodes represent short

sentences which minimally intersect the main content
of the speech - perhaps exclamations or strong inter-
jections. The graphs generated using parts of speech
universally consist of a single strongly connected com-
ponent. Finally, as expected, the sentence chain graphs
are all single strongly connected components; this is
unsurprising as the algorithm explicitly connects each
sentence meta-node together in sequence; even a min-
imal number of extra similarity connections will link
any two words through the sentence node chain.

Figure 2: t-SNE plotting of supernodes derived from
a graphical representation of each presidential speech
(generated using the baseline Text Bag algorithm).
Each individual colored point is a speech

As we can see from Figure 2, the baseline graph
generation algorithm does not show any organization,
clustering or otherwise, when the meta-node analysis
is used. This result is not entirely unsurprising — by
connecting nodes with high cosine similarity within a
speech, we are only capturing information about how
often a given author uses related terms within a single
speech. We get no information about the actual con-
tent of the speech, nor do we necessarily capture any-
thing about how the words are connected and related to
each other. In short, this approach is not conducive to
extracting a meaningful graphical representation of a
written work, despite receiving endorsement from [4].

Table 1 displays our accuracy results on predicted
clusterings of the Presidents dataset using three dif-
ferent node centrality measures. Each of the central-
ity measures (eigencentrality, between-ness central-
ity and harmonic centrality) were implemented from
networkx. Our goal for testing all three features de-
spite the theoretical fit of eigencentrality was to ex-
plore the viability of different centrality metrics on



different graph structures. Unfortunately, we see no
clear winner, with each centrality measure perform-
ing the best on a different graph model. Nonetheless,
between-ness centrality and eigencentrality typically
performed the best. We were surprised at the sen-
tence chain result indicating that between-ness central-
ity yielded the greatest improvement over the random
node features and was holistically the best; intuitively,
high-betweenness nodes on the sentence chain graph
should be the discarded sentence meta-nodes.

We were further interested to see the overall per-
formance with regards to clustering accuracy of the
different graph models. Unsurprisingly, both sliding
window and text bag yielded the worst results, which
in effect were only slightly better than a random clus-
ter assignment (intuitively the worst case assignment
would mis-classify roughly half of the speeches, es-
pecially given that we selected the dividing line based
on the median speech year). We expected that cen-
trality might be less meaningful on these graphs, and
especially the text window graph, as this graph scheme
did not eliminate determiners or other frequently used
generic words (e.g. ’to’) that would typically be cen-
tral given their high usage.

On the other hand, the part-of-speech and sentence
chain model both performed better, yielding equiv-
alent best scores of 0.708. Comparing the central-
ity results against the featurization from 5 randomly
selected nodes, it was clear that centrality informa-
tion was meaningful in the clustering. Furthermore,
the better performance of part-of-speech and sentence
chain even in the random node scheme indicated these
graphs were more information-rich. We felt the sen-
tence chain graph was at a disadvantage with respect
to the centrality featurization, as much of its structure
came from the meta-nodes which have no previously-
determined embeddings. Consequently, we were not
surprised to see lower eigen-centrality and harmonic
centrality performances here, as these metrics are in-
herently biased toward selecting central nodes (meta-
nodes) which we then discarded from the sorted cen-
trality list.

Given the above results, we elected to continue us-
ing eigen-centrality as our centrality featurization met-
ric. We felt it better represented how a human might
read text, and we felt less confident about the perfor-
mance of between-ness centrality in the sentence chain

model overall. We applied a Borda scoring rule to
the performance placements of each metric under each
graph scheme, which further reinforced our choice of
eigen-centrality in the face of these inconsistent re-
sults.

Having seized upon eigen-centrality as our central-
ity measure, we proceeded with our more complete
analysis regarding the utility of combining centrality
and meta-node node2vec to separate speech style. The
results of our analysis is presented in Table 1.

As we can see, the node2vec representation of the
graph meta-node appears to add little value to separat-
ing the presidential speeches by time. Its exact value
varies with the graph representation — it has minimal
impact for graphs generated using parts of speech and
text bags, however it has a much more substantial im-
pact on graphs generated by considering sliding win-
dows over the text or sentence chains. Regardless, tak-
ing the mean of the word vectors of the 5 most cen-
tral words (by eigenvalue centrality) in the the parts
of speech representation of the speeches produced the
cleanest separation of speeches by time. Adding the
node2vec vector of the metanode adds a marginal
0.5% on the classification accuracy, making it the most
effective analysis technique for each graph generation
algorithm. These numerical results can be corrobo-
rated by visual inspection. In Figure 3 we present the
t-SNE embedding of the vectors generated from each
of the analysis techniques (eigen-centrality, meta-node
node2vec, etc.) on the text graphs generated with parts
of speech, with each speech being colored according
to its presentation date.

We see that the vector representation of text graphs
produced from eigenvalue centrality carry valuable in-
formation regarding the style (proxied by time period)
of the speeches. The centrality vectors, without and
in combination with the metanode node2vec vectors,
have embeddings that order with regards to time. In
particular we see a gradient with regards to time of
speech along t-SNE axis 1; this occurs in both the plot
with only eigenvalue centrality and the one using the
concatenated vector of metanode node2vec and cen-
trality.

We also ran experiments on the IBC (Ideological
Books Corpus) sentence dataset, testing all four graph
construction methods with 4 featurization schemes.
Table 3 displays these results, which, unsurprisingly,



| Part-of-speech [ Text Bag ‘ Sliding Window ‘ Sentence Chain ‘
Eigen Between-ness Harmonic | Eigen Between-ness Harmonic | Eigen Between-ness Harmonic | Eigen Between-ness Harmonic
Centrality 0.708 0.689 0.696 0.558 0.548 0.587 0.529  0.567 0.526 0.660 0.708 0.590
Random nodes | 0.657 0.593 0.622 0.542  0.583 0.545 0.561 0.542 0.593 0.587 0.615 0.587

Table 1: Accuracy of the k-means clustering on nodes chosen through centrality measures vs. the null model,

using 3 different centrality measures.

Part-of-speech

Text

Eigen-centrality 0.71
Meta-node node2vec 0.52
Random node selection | 0.64
Node2vec + centrality | 0.71

0.52
0.55
0.51
0.58

Bag | Sliding Window | Sentence Chain
0.53 0.66
0.56 0.58
0.51 0.57
0.58 0.70

Table 2: Accuracy of k-means clustering on different graph featurization schemes for the presidential speeches

dataset.
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Figure 3: t-SNE plots of the style vectors derived from the 4 clustering methods. Each dot is a speech, and is
colored by the start year of the president who delivered it

are relatively poor. IBC documents were each sen-
tences, so the graphical representations were likely too
small to extract significant meaning for the clustering.
Interestingly, there was no clear feature scheme which
yielded the best results; however, it is clear that the

combining the node2vec and centrality features was
less meaningful on the IBC texts, a result that contra-
dicted the outcome from the presidential speeches. We
suspect this may be because stylistic textual informa-
tion is less dense at a sentence level, or less consistent



‘ Part-of-speech ‘ Text Bag ‘ Sliding Window ‘ Sentence Chain

Eigen-centrality 0.57
Meta-node node2vec 0.51
Random node selection | 0.54
Node2vec + centrality | 0.57

0.52 0.5 0.54
0.52 0.54 0.59
0.54 0.51 0.5

0.51 0.5 0.54

Table 3: Accuracy of k-means clustering on different graph featurization schemes for the IBC dataset.

across different data points in a given cluster.
9. Discussion

The main challenge in this project was, naturally,
finding a good way of formalizing human intuition for
what constitutes style. There are many different poten-
tial approaches for connecting words in a document to
turn it into a graph, but only some of these approaches
are appropriate for our problem.

Our experiments showed that graph construction
approaches that relied more on grammatical structure
outperformed approaches that simply relied on word
vector similarity. Additionally, the accuracy of our ap-
proaches increased with the size of the input speeches
(IBC vs. presidential speeches), most likely because
longer speeches were naturally able to exhibit a greater
diversity of grammatical structure which led to a richer
graphical representation.

In particular, we saw that node centrality measures
worked particularly well with the part-of-speech graph
generation algorithm. This result can likely be at-
tributed to the emphasis that the algorithm puts on
words on either side of connective strings — it makes
sense that if we treat connective words (e.g. verbs and
verb phrases) as edges, then the most central or im-
portant words will be the ones that are proximal to the
most trafficked connectives.

On the other hand, meta-node embeddings were not
as impactful as we had originally anticipated. The ap-
proach actually led to worse accuracy than the null
model with the part-of-speech algorithm, and it pro-
vided only small improvements for the other models.
The results do show a slight synergistic effect between
meta-node embedding and centrality on the presiden-
tial speech dataset with all algorithms except for part-
of-speech. Likely the embeddings had a larger im-
pact on the non-grammatical graph generation algo-
rithms (text bag and sliding window) simply because
the graphs themselves were less reflective of the un-

derlying structure, making centrality approaches less
effective by comparison — note that the absolute im-
provement over the null still remains fairly small. It is
also possible that the node centrality measures outper-
formed meta-node embeddings due to the mismatch
in dimensionality — since the eigencentrality vector is
300 dimensional (based on the word embedding size)
while the node2vec embedding is only 128, there is
a potential mismatch in expressivity. This could have
propagated through the K-means clustering implemen-
tation we used to yield better results for centrality. We
might compare the performance of a PCA of centrality
against node2vec in the future to examine this possi-
bility.

Ultimately, our approach did manage to capture
a shift in the rhetoric of the presidential speeches
pre- and post- 1900. Interestingly, the most cen-
tral/between words in the pre-1900 speeches were
words such as “State” or “united” whereas many of the
corresponding words in the post-1900 speeches had to
do with overcoming adversaries. We speculate a few
possibilities for this shift: perhaps pre-1900 speeches
relied on appeals to central authority, but as institu-
tional trust began to falter closer to the present day,
speech makers found that unification against a com-
mon enemy was more compelling. Alternatively, it
may be the case that America engaged in more bel-
ligerence post-1900: World Wars I and II, the Cold
War and its resulting proxy wars, the Korean and Viet-
nam Wars, and the War on Terror are all examples
that readily come to mind. It may have been the case
that America’s legitimacy needed no internal valida-
tion once it became a major player on the global stage.

Investigating cases of misclassification yielded in-
teresting insights. One commonly mis-classified
speech was Zachary Taylor’s “Message Regarding
Newly Acquired Territories” delivered in 1850. Al-
though we might suspect this speech to greatly dif-
fer from more modern ones, sample sentences con-



tradict this intuition. For example, Taylor said “It is
undoubtedly true that the property, lives, liberties, and
religion of the people of New Mexico are better pro-
tected than they ever were before the treaty of cession.”
This rhetoric is not fundamentally stylistically differ-
ent from that of a modern president; furthermore, it is
not implausible to imagine some of these words (e.g.
property, lives, liberties, protected) present in recent
political dialogue. From inspecting these failure cases,
we suspect the clustering scheme was unreliable when
both syntactic and meaning based features overlapped
across the time split. Perhaps the history of presi-
dential rhetoric is not as diverse as we might expect;
Americans today likely want similar guarantees from
their government as those in previous eras.

While this observed divide in content is intriguing,
whether or not it reflects a true shift in “style” remains
in contention. Our sense was that the approaches we
laid out captured important content information, but it
seems doubtful that the extracted information was par-
ticularly stylistically idiosyncratic with respect to any
of the individual speech writers. Linguistic style rep-
resented in the graphs was certainly valuable as the
basis for identifying meaning through centrality, but
the lack of strong results from the node2vec metanode
suggests that our style graphs were not strongly dis-
tinct independent of node meaning.

10. Conclusion

We have presented several different graph gener-
ation and analysis techniques that aim to capture a
meaningful representation of authorial style. As we
expected, the approaches that incorporated both syn-
tactic (using grammatical structure) and semantic (us-
ing word embeddings) information were strongly able
to detect meaningful clustering in the input data. These
techniques perform better on larger input speeches,
and they are able to find important words that align
with human intuition; the method was robust enough
to identify reasonable clusters without supervision.

It was inherently difficult to measure success for
this endeavor, as there does not seem to be much con-
sensus on what even constitutes style. Our approaches
did capture style in a broad sense — we were able to
see that the particular appeals to authority or emotion
made in the speeches we analyzed changed over time.
However, this rough conception of style mostly serves
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as a vehicle to present meaning, as opposed to treating
style as an equal facet of the full text.

To that end, we would be interested to see how these
approaches might cluster works by a range of literary
figures, who we suspect could produce more differ-
entiated graph structures. Alternatively, this analysis
could be pushed further through a greater focus on re-
lationships between authors or themes across time pe-
riod; investigation into this area could help uncover
attribution or influence links or help define better fea-
tures to strengthen the K-mean clusterings. In general,
our original goal of pinning down a satisfying repre-
sentation of a particular author’s writing style through
networks has eluded us, leaving much room for fur-
ther study. The full source code for this project can be
found at https://github.com/amanjuna/textnet.
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