Predicting the star rating of a business on Yelp using graph

convolutional neural networks

Ana-Maria Istrate
Department of Computer Science

Stanford University
aistrate(@stanford.edu

Abstract

Social media platforms have been rising steadily in
recent years, influencing consumer spaces as a whole
and individual users alike. Users also have the power
of influencing the popularity of businesses or
products on these platforms, driving the success level
of different entities. Hence, understanding users’
behavior is useful for businesses that want to cater
to users’ needs and know what market segment to
direct efforts towards. In this paper, we are looking
at how the star rating of a business on Yelp is
determined by the profile of users who have rated it
with a high score on Yelp. We are defining a graph
between users on Yelp and businesses they gave high
ratings to, and using graph convolutional neural
networks to find node embeddings for businesses, by
aggregating information from the users they are
connected to. We show how a business’s star rating
can be predicted by aggregating local information
about a business’s neighborhood in the Yelp graph,
as well as information about the business itself.

1 Introduction

Social media platforms have become
prevalent in recent years, making it easier
for users to engage with other people, as
well as give and get feedback on services,
businesses and products. Yelp, in particular,
gathers people interested in food-related
services, businesses most of which include

restaurants. People have a chance to write
reviews and give businesses a star rating
from 1 to 5. We are looking into how the
profiles of users who like a certain business
are influencing the star rating of that
business. Knowing this information could
help businesses better cater their needs to
specific categories of users, or know what
types of user profiles they should direct their
marketing efforts towards. In tackling this
problem, we are using graph convolutional
neural networks to compute embeddings for
nodes m the Yelp graph, which 1s
determined by wusers and businesses,
connected by edges if a user gave a high star
rating to a particular business. Graph
convolutional neural networks (GCN) is a
method that applies a convolution around a
node to gather that node’s neighbors’
information and combine it with its own
information. In the end, the Ilearned
convolutions are applied on nodes in order
to compute node embeddings. The
embeddings can then be used as input for
node classification. In our case, we are

looking to classify a given business into one
of the star-rating categories.

J:- user 1 'I
f‘ . /
A2 L"UI

{' usw? |
[——=|0.2, 023, _... O]
] ;]4 (-11 Firal
amibedding for

e businass
5, 0.3, [l7|3| I user 3 '| prafile
Buslmass g
mmbedding \ o

I:-I’i'lﬁ_\.'li‘ I'.IF.{!
L -4

028, 0.5, .07
Liscal
nesghporhosd
ambadding

Figure 1. Basic convolution around a business node

We show that simple information about a
user’s profile can lead to meaningful
embeddings for users and businesses alike,
and that graph convolutional neural
networks are an exciting area of research in
the field of understanding and modeling
consumer profiles and behavior.

2 Benefits of GCNs

Graph convolutional neural networks have
been shown to give good results on link
prediction and node classifications tasks
([1], [3]). One of the main benefits of GCNs
1s that there is a lot parameter sharing: more
shallow approaches usually train one unique
embedding vector for each node, which
means that the number of parameters grows
linearly with the number of nodes in the
graph. Moreover, most other approaches that
compute node embeddings (Node2Vec [4],
DeepWalk [5]) are transductive, which

means that they can only generate
embeddings for nodes seen doing training.
Hence, these methods require retraining
every time that new nodes are added to the
graph. Especially in a graph defining a
social media platform, similar to Yelp,
where users are being added daily, this 1s
unfeasible, as training can be expensive. In
contrast, GCNs generalize very well and are
inductive, meaning that they can compute
embeddings for nodes that have not been
seen during training by simply applying the
aggregator functions.

3 Relevant Work

Related papers are in the field of graph
convolutional neural networks. One of the
first papers to introduce graph convolutional
neural networks is Semi-supervised
Classification With Graph Convolutional
Neural Networks, where Kipf et al. show the
success of GCNs on the node classification
task for Cora and Pubmed datasets. They
provide a semi-supervised approach using a
graph convolutional neural network using a
localized first-order approximation of
spectral graph convolutions. It starts by
computing a matrix A=D""4D""* where
A 1s an adjacency matrix. The model is then
defined by:

Z=fX,A)= softmax(ﬁ Relu(zle w Oy

where W© and W are learned matrices. It
uses a semi-supervised log loss. The method
proposed in the paper 1s mainly applicable to
small graphs, as it needs to know the entire

Laplacian during training. In fact, this is one
of its main weakness, that it cannot be
applied to graphs that are large in size or
constantly increasing, as it needs to operate
on the entire Laplacian during training,
which could be expensive.

In Inductive Representation Learning on
Large Graphs, Hamilton et al. provide a
different approach to defining the
convolution on graphs than [1]. While Kipf
et al. define the aggregation by a two-layer
neural network using a Relu, followed by a
Softmax, this paper defines a number of
aggregator functions that learn to aggregate
information from a different number of steps
away from a given node. In fact, this is one
of the main strengths of the paper, which
compares different types of aggregator
functions. For instance, the mean aggregator
Just averages Information from local
neighborhoods, while the LSTM aggregator
1s able to operate on a random permutation
of the node’s neighbors, despite not being
symmetric. ~ Moreover, the pooling
aggregator performs a max-pooling on each
neighbor’s vector after it is being fed

through a fully-connected neural network.

Another strength of this paper is that it
leverages node features, showing how they
can 1mprove performance, in comparison
with [1], where graphs were not as feature
rich. The paper also introduces random
walks on the graph as a way of getting
positive samples and uses
negative-sampling.

This method can be used with both an
unsupervised and supervised log-loss
function:

L == log(0(z]2,)) = O°E,,_p,,l0g(6(~=]z,,))

where v = node that co-occurs near u on a
random walk

Pn = distribution of negative samples

At test time it 1s simply applying the learned
aggregator functions to get embeddings for
new nodes.

While successful on small datasets, applying
GCNs on large scale datasets has still been
challenging. In one of the most recent papers
in the field, Graph Convolutional Neural
Networks for Web-Scale Recommender
Systems, Ying et al. successfully apply
GCNs to compute embeddings for nodes in
the Pinterest graph, which contains billions
of pins. This 1s the most recent paper in the
field, and its biggest contribution is that it is
working with a really large graph,
containing 3 billion nodes and 18 billion
edges (the Pinterest graph). They compute
node embeddings using GCNs and then
provide recommendations via nearest
neighbors search in the embedding space. It
1s the first paper to show that graph
convolutional neural networks can be
leveraged on web-scale graphs.
Architecturally, it 1s very similar to
GraphSage, the model proposed in [2],
improving upon it by adding engineering
artifices to address the scale of the problem
and algorithmic contributions for better
performance.

In terms of engineering improvements, they
propose a producer-consumer architecture
where they use the CPU and GPU resources
efficiently for different types of
computations. For instance, they use the
CPU to sample node network
neighborhoods, get the node features, store
the adjacency list, reindex and perform
negative sampling, and the GPU to run the
training, running one GPU computation at a
iteration and a CPU computation at the next

iteration in parallel.

They also do on-the-fly convolutions, where
they sample a neighborhood around a node
and dynamically construct a computation
graph from the sampleed neighborhood,
meaning that they alleviate the need to
operate on the entire graph during training, a
shortcoming of the previous two approaches.

They also have a MapReduce pipeline to
minimize re-computation of the same nodes’
embeddings. In contrast with [2], they use
an importance pooling aggregator, where
they weigh the importance of node features.
They define neighborhoods by sampling the
computation graphs with random walks
around a node. Another contribution of the
paper is introducing curriculum training,
where the algorithm is fed harder and harder
examples during training, in order to learn to
differentiate better.

4 Model Architecture

In this section, we present the model
architecture.

4.1 Graph definition

We define the following graph G = (V ,E) :
V = {u = Setusers: b € Setbusinesses}

E = {(u,b) if user u gave business b at
least with a 3.5 rating}

By using this definition for E, we are
creating a graph containing businesses and
clients who gave them high ratings. We are
essentially assuming that a client who rated
a business with a high score 1s more likely to
resemble this business profile in the
embedding space, and provide more
meaningful information 1n the neighbor
aggregation phase.

4.2 Node features

Each entry in the graph, business or user,
contains some associated information, which
we leverage as input features to the model.
These will be the inputs to the graph
convolutional neural model. The features we
end up using are the following:

For a business:

x9 = {neighborhood, city, state,
postal code, latitude,
review_count, alcohol, bike parking

longitude,

accepts_credit_cards, caters, drivethru,
goodforkids, hastv, noise level
outdoor seating, restuarants price range,
delivery, goodforgroups, pricerange,

reservations, table service, takeout, wifi}

And for a user

x0 = {useful, funny, cool, #fans,
average_star, compliment hot,
compliment more, compliment profile,
compliment_cute, compliment list,
compliment note, compliment plain,
compliment cool, compliment funny,

compliment_writer, compliment_photos}

Some of these features are transformed into
categorical features, while some are
continuous. At the end of the input feature
extraction, each business ends up having a
feature vector of size 24, and each user ends
up having a feature vector of size 16.

4.3 Models

In this section, we present the models we
experimented with.

4.3.1 Multi-class Logistic Regression

As a baseline, we are using a simple
multi-class logistic regression model on the
business’s features. In this model, we are not
using the graph structure or the users’
information at all. We use the cross-entropy
loss function

4.3.2 Linear Regression

As another baseline, we are also using linear
regression on the business’ node features.
We use the mean-squared loss function.

4.3.2 Graph Convolutional Neural
Networks

We are combining the information about a
business’s local neighborhood together with
the embedding of the business itself and
pass it through a neural network in order to
predict a final star rating. Essentially, we are
modeling a business’s profile by combining
information both about the business itself
and the profile of the users that like this
business, getting the latter by applying a
convolution around the users connected to
that business in the graph.

We use a 1-layer graph convolutional neural
network, following the definition from
GraphSage [2]., where we use as input the
features described in 4.2. For each node, we
average the signals from all neighbors (we
do not perform any sampling). Then, we
concatenate the result with the embedding of
the node at the current layer and pass the
result through a neural network. Basically,
for each business node x, , we start with an
input feature x¥as given in 4.2, and then at
each layer, we compute:

DI

xk = Relu(Wk["E]]V\;?V)

5 x\]S_l])’ k > 0

where x/, = v’s embedding in layer i

The output of our model is the learned
matrice W, , which can then be applied to

any node in order to get an embedding using
the above equation.

We are only using 1-layer.

4.4 Prediction
For each of the business nodes in the graph,
we predict its star-rating. For both
multi-class logistic regression and GCNs,
we consider the possible cases:
1. Predicting one of 9 possible ratings:
[1, 15, 2,25, 3,35, 4,45, 5]
2. Predicting one of 5 possible ratings:
[1, 2, 3,4,5]
For linear regression, we predict a
continuous score, and then round either up
or down, depending on whether the
predicted value x is smaller than or greater
than the floor of that value + 0.5. We use the
cross-entropy loss function for both logistic
regression and GCNss.

6 Data

We are using part of the Yelp dataset, made
available at https://www.velp.com/dataset as

part of a challenged proposed by Yelp. The
dataset which contains ~6 million reviews,
~200k businesses and ~280k pictures,
covering 10 metropolitan areas and 2
countries. We are only considering
businesses that have at least one review and
users that gave at least one review. After
performing other minor dataset cleaning
operations, we are left with 146526
businesses and 1518169 users. The data is
split 90% 1into train and 10% into train. Out

of the training data, 10% 1s used for
validation

7 Evaluation

For evaluation, we are using the accuracy as

a metric:
dccuracy = E2Teststar ratings
Y #all star ratings
8 Results
Training | Test
accuracy | accuracy
Logistic 0.25 0.254
Regression, 9
classes

GCN, 9 classes | 0.267 0.254

Logistic 0.383 0.3912
Regression, 5

classes

GCN, 5 classes | ().39 0.4
Linear 0.2 0.021
Regression

Logistic regression was trained for 1000
epochs, linear regression for 10000 epochs,
and GCNs for 50 epochs (because they are
significantly slower than the other two
methods). All models used an Adam
optimizer and were implemented in pytorch.
Learning rate for logistic regression was
0.001, and for GCNs 0.1.

Training graphs can be seen below:

500 | == train loss

400

300

Loss

200

100

0 200 400 600 800 1000
Num epochs

Figure 2. Train loss for logistic regression, 9 classes

0.250 { = train accuracy
0225
0.200

0175

Accuracy

0150

0125

0.100

0.075

0 200 400 600 800 1000
Num epochs

Figure 3. Training accuracy for logistic regression, 9
classes

196 = train losses

194

192

Loss

190

188

0 10 2 30 a0 s0
Num epochs

Figure 4. Train loss for GCNs, 9 classes

= train accuracy
0.265

0.260
0.255

0.250

Accuracy

0.245

0.240

0.235

0 10 2 0 4 50 &0
Num epochs

Figure 5. Training accuracy for GCNs, 9 classes

0275
—— gCn accuracy

0.250 { = logistic regression accuracy
/
0.225

0.200

0175

Accuracy

0.150

0125

0100 ",/’____/—/

0.075

0 10 2 0 a0 50
Num epochs

Figure 5. Comparison of training accuracy for
logistic regression and GCNs, 9 classes, in the first
50 epochs

9 Conclusion

We can see that GCNs are giving better
results than our current baseline models.
Linear regression 1s performing the worst, so
the problem isn’t suited as a regression one.
Still, the accuracy is not as high as one
would it expect. One reason could be that
better initial features should be used as input
to the model, for both users and businesses.
Nonetheless, the model i1s promising and
should be explored further.

10 Discussion & Further Work

Since the model is not performing as well as
expected, several options could be explored
further:

1. Better input features for both
businesses and users. Right now, we
are using information that is general
about both businesses and users. It
could be that averaging over this
information 1S simply not
meaningful. For instance, for each

business x, take as input feature a

concatenation of [x X

image > reviews >

X where x _image i1s an average

meta]
of the features of the last N images
posted by users for that business,

X 1s an average of the last M

reviews
reviews that business got and x,,,
1s the features vector containing
metadata we are currently using. For
each image, we can get a feature by
passing it through a VGG16 network
and taking the last feature vector. For
each review, we can pass it through a
Bi-LSTM layer and take the
concatenation of the hidden layers as
We could find

similar features for the users, based

feature vector.

on the reviews they gave

Formulate this problem as a
weighted graph, where the weight
between an user and a business is
that user’s rating of the business.
Right now, we are assuming that
users that rated a business > 3 stars
liked that business, so we are
aggregating their information. It
could be useful to also aggregate
information from people who didn’t
like the business and gave negative
scores.

Train the model longer - the model
took long to train on a CPU, so if
given more resources (like a GPU),
could be let to run longer. Right
now, we only ran GCNs for 50
epochs, but logistic regression
converged around a couple hundred

epochs, so it would be worth just let
the model run until convergence.

11 Code Repo

The code can be found publicly available at:
https://github.com/aistratel/yelp _challenge

This 1s a Jupyter notebook in which I did all
my work, but I also uploaded a pdf with the
cells outputted.

References

[1T Kipf, Thomas N., and Max Welling.
"Semi-supervised classification ~ with graph
convolutional networks." arXiv preprint
arXiv:1609.02907 (2016).

[2] Hamilton, Will, Zhitao Ying, and Jure Leskovec.
"Inductive representation learning on large graphs."
Advances in Neural Information Processing Systems.
2017.

[3] Ying, Rex, et al. "Graph Convolutional Neural
Networks for Web-Scale Recommender Systems."
arXiv preprint arXiv:1806.01973 (2018).

[4] Grover, Aditya, and Jure Leskovec. "node2vec:
Scalable feature learning for networks." Proceedings
of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM,
2016.

[5] Perozzi, Bryan, Rami Al-Rfou, and Steven
Skiena. "Deepwalk: Online learning of social
representations." Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2014.

