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1 Introduction and Problem Definition

Recommendation system has become very common in today’s business world and is present in many shapes and
forms on online platforms such as Q&A sites and social media. One of the most prominent is perhaps Amazon’s
product recommendation system where co-purchasing history is used to make future purchase recommendations
to users. Needless to say, having a good product recommendation system is crucial for both the sellers and the
consumers. On the one hand, sellers increase their potential revenues by increasing awareness of products that may
not be popular enough for prominent advertising space. On the other hand, consumers gain a more streamlined
and varied shopping experience with more options and a much higher probability of finding the products they need.

Traditionally, product recommendation is often built using some form of content-based systems which examine
properties of the items recommended, or using the collaborative filtering approach which is based on similarity
measures between users and/or items. In this project, however, we will take a network approach to this problem
by focusing only on network/node properties and structure of the network to perform product recommendation,
which is modeled as prediction of missing links in the co-purchasing network.

Specifically, we want to achieve the following: given a product p, we want to be able to retrieve a ranked list of
products that should be recommended to the buyer who purchased p. In other words, given an incomplete graph
G(V,E) where V denotes the set of products and there is an edge between product i and j if they are frequently
bought together. Let U be the universal set of all W possible edges, then the set of nonexistent edges is
U — E. Some of the edges in U — E may appear in the future, and the task of link prediction is to find these links.

2 Literature Review

2.1 The Link-Prediction Problem for Social Networks [5]

This paper provides an overview of similarity-based link prediction methods using the co-authorship network by
comparing relative effectiveness of network similarity measures. The paper classifies these measures into two main
categories: (1) methods based on node neighborhoods, i.e. local methods (e.g. Common Neighbors, Jaccard’s
Coefficient, Adamic/Adar, etc.) and (2) methods based on the ensemble of all paths between two nodes, i.e. global
methods (e.g. Katz, PageRank, SimRank, etc). The paper finds that there is no clear winner among these methods
and the performance is dependent on the dataset, but a number of them significantly outperforms the base-line
predictors, with some simple measures (such as Common Neighbors) doing particularly well.

2.2 Hierarchical Structure and the Prediction of Missing Links in Networks [2]

The paper first observes that many networks exhibit hierarchical organization, where vertices divide into groups that
further subdivide into groups of groups, and so forth. Such structure can be uncovered by fitting the hierarchical
model to observed network data using a maximum likelihood with a Monte Carlo sampling algorithm on the space
of all possible dendrograms. Combined over a large number of samples, we then derive a likely model of the data.

*Code at: https://drive.google.com/drive/folders/1n-dgN86EzHKR615vr GxSqmabBkOgRsD-7usp=sharing



To apply this method to link prediction, we generate a set of hierarchical random graphs based on the incomplete
network, then we look for pair of unconnected nodes with high probability of connection in the hierarchical random
graphs - these will be likely candidates for missing links. On the test networks, the hierarchical structure model
does better than baseline chance model. Unlike similarity based models which works well for strongly assortative
networks, hierarchical models make sense in both assortative and disassortative structures.

2.3 Graph-based Features for Supervised Link Prediction [3]

This paper tackles the IJCNN Social Network Challenge to separate real edges from fake edges in a set of 8960 edges
sampled from an anonymized, directed graph depicting a subset of relationships on Flickr. For feature extraction,
the model employs a large number of a variety of techniques, including extracting local subgraphs which is relevant
to nodes in question, using SVD, kNN, EdgeRank etc as well as traditional similarity measures such as Common
Neighbors, Jaccard etc. It then performs repeated classification using the posterior probabilities from Random
Forests.

3 Data

3.1 Overview

This project uses the Amazon co-purchase network available from the Stanford Network Analysis Project (SNAP),
with ground-truth community defined. It is based on Customers Who Bought This Item Also Bought feature of the
Amazon website. If a product i is frequently co-purchased with product j, the graph contains an undirected edge
from ¢ to j. There are 334863 nodes and 925872 edges in the network originally. Each product category provided
by Amazon defines each ground-truth community with top 5000 highest quality communities specified.

3.2 Pre-processing and Train-Test Split

Generally we do not know which links are missing now (but might appear in the future), therefore in order to
evaluate various approaches, we will randomly divide the observed edges into two disjoint set: one for training, and
one for testing. The training set of edges will simulate the graph at a past point in time, whereas the held-away test
set will simulate “future” edges. Before we perform any analysis, we first follow the following steps to pre-process
and split our data.

Algorithm 1 Data Pre-processing

Let us denote the original complete graph by G = (V, E).

1. Among the all the nodes V', we sample a random 25% of the nodes. Call this set Vi and the Graph induced
be G1 = (V4, E1). We use only a subset of the original graph to keep computation time manageable.

2. Keep only the largest WCC from G;. Call it Gy = (Va, E3)

3. Remove low-degree nodes from G5. Here we remove any nodes with degree < 3. This is because nodes with
smaller degrees (fewer interactions with other nodes) are arguably less relevant for our link prediction task.
Let Vinain be the set of remaining nodes, and the sub-graph induced by Vipain be Gmain = (Vinain, Emain)

4. We now perform the train-test split. Among all edges in Fyai, we sample 10% of the edges, call this set
Eiest, +- We hold away this set of edges by removing them from the current graph. Now we are left with the

training graph Gtrain = (Vmaina Etrain) where Etrain — Lmain \ Etest, +)-

The following table summarizes basic statistics of the graph before and after processing.

No. of Nodes | No. of Edges
G 334863 925872
G, 83716 58376
G, 15228 19535
Grmain | 3573 4883
Glrain | 3573 4395




4 Similarity-Based Methods

Similarity-based methods is the most studied category of link prediction methods. The underlying assumption of
similarity-based methods is that two entities are more likely to interact if they are similar. And as such, defining
a similarity function Sim(z,y) that assigns a score for every pair of nodes z and y becomes the key task in these
methods.

A large number of heuristics have been developed in the past, including local similarity measures such as
Common Neighbors, The Resource Allocation Index, and The Jaccard Index, as well as global approahes such
as The Katz Index and Random Walks. In this section, we experiment primarily with different local similarity
measures to perform the link prediction task.

4.1 Computation and Evaluation

We will evaluate each measure using Prec@K. The following information boxes outlines how we will compute and
evaluate each similarity measure.

Algorithm 2 Compute Similarity Measures

for all pair of nodes u,v € Vi, and u # v do
if (u,v) € FEipain then
continue
end if
if u,v has no common neighbors then
continue
end if
s = Sim(u, v) based on Girain
Store (u,v) and s as a tuple ((u,v), s) in a list simScoreList
end for

Algorithm 3 Evaluate Similarity Measures using PrecQK

1. Sort simScoreList in descending order of similarity score
2. Output the top K (u,v) pairs as our predicted edges, call this set of edges Epred, k-

3. Now compare Feq x with the withheld test set Fiest,+, We have
|E e | '
red, K est,+
PrecQK = —rreti—remt Ll

The next section outlines specific similarity measures used in our experiment. Results are summarized in section
7.2.

4.2 Local Similarity Measures

e Common Neighbors (CN): Common Neighbors captures the idea that, the more common neighbors two
nodes share currently, the more likely a link will form in between them in the future.

Sim(u,v)ony = |T'(w) NT(v)]

e Jaccard Index (JA): Compared to Common Neighbors, Jaccard Index futher takes into account the number
of neighbors each of the nodes already has, by computing the fraction of common neighbors between two nodes
among all neighbors the two nodes have.

Sim(u,v)ja =



e Preferential Attachment (PA): The “rich gets richer” intuition is that the larger the current neighborhood
of the two nodes, the more likely the future connection.

Sim(u,v)pa = [T(u)||T(v)|

e Adamic/Adar (AA): Adamic/Adar also considers common neighbors between two nodes, but gives more
weight to common neighbors with smaller degree.

1
Sim(u,v) a4 = E _—
DA log(|T'(2)])

e Resource Allocation (RA): RA index is similar to AA, but is motivated by the process of resource
allocation. There is a higher penalty for high degree common neighbors in RA than in AA.

. 1
Slm(u,’U)RA = Z m
z€l(u)NI'(v)

4.3 Enhanced Local Similarity using Community Information

One idea we came up with to improve on the local similarity model is to incorporate additional information beyond
just node-node similarity. For example, community information, extracted by either some ground truth or by com-
munity detection algorithms such as Louvain method, can be used to supplement similarity measures to improve
link prediction accuracy.

Suppose we are computing the similarity score Sim(u,v) between node u and v based on common neighbors.
Suppose common neighbor a is not in the same community as v and v or shares community with only one of the
node, whereas common neighbor b share the same community with both u and v then possibly b can be given
higher weight.

e Modified Common Neighbors (CN*): We modified Common Neighbors Sim(u,v)cn as follows. Let
C(z) denote the communities containing node x. We start with CN(u,v) and for every community u, v
shared, we add a points. Then for each neighbor i shared by u and v, we add an additional 3 point for every
community that a, b and 7 share.

Sim(u,v)en= = |T'(uw) NT(v)| + a|C(u) N C(v)| + B Z |C(i) N C(u)NC(v)]
i€l (u)NC(v)

e Modified Resource Allocation (RA*): Similarly, we can also modify S(u,v)ra to give additional weight

to common neighbors that are in the same community as v and v.

1+ a|C3E)NC(u) N C(v)]
deg(i)

Sim(u, v)ga> = Z

i€l (u)N(v)

Results are summarized in section 7.2. Top 5000 Ground truth communities is used.

5 Matrix Completion

The global topological information can be exploited through the adjacency matrix, where the nonzero entries denote
the connections between vertices, while missing links and non-existing links are both denoted by zero entries.

In this context, link prediction can be framed as a matrix completion problem. Specifically, suppose we have
an observed network represented by adjacency matrix A € R™*™ which is a subset of the original network G*. In
the set-up of this project, G* is Gpain and A is extracted from Girain, Firain 1S the set of edges we observe in A
and FEi.g is the hidden set of edges we want to recover. Our goal is to recover a network G that is sufficiently close
to G* based on observed A.



Let matrix X* € R™ "™ be the backbone structure that describes the evolution of the network, and X be the
subset of X* containing only the new links. In other words, if we take X* and compare with A and change all
entries in X* corresponding to non-zero values in A to 0, we obtain X. We can think of A as a noisy observation
of X*, and X* can be obtained from A by subtracting an error matrix E € R"*™. In other words, we have the
following relations.

A=X"+E

G=X+A

Principle Component Analysis (PCA) is a tool we can use to obtain X* and E simultaneously by converting
A into a set of linearly uncorrelated set of principle components. Here we use the Robust PCA [1] to obtain X*
and E because classical PCA requires A and E to have low rank property, which is hard to satisfy. Once we have
X*, we compare it against A where a non-zero entry s in X* with corresponding zero entry A denotes a predicted
edge with likelihood s.

Algorithm 4 Matrix Completion

1. Compute the adjacency matrix A from graph Gy,qin
2. Compute A = X* + E where X* is low rank, and E is sparse using Robust PCA [4]

w

. Symmetrize X* = X* + X*T

W~

. Output prediction.
for all entries (4,7) in X* do
if A(i,j) =0 and X*(i,7) #0 then
score = X*(4,7)
u is the node ID corresponding to ¢ and v is the node ID corresponding to j
Store (u,v) and score as a tuple ((u,v), score) in a list scoreList
end if
end for

5. As before, evaluate scoreList using PrecQK

See section 7.3 for experimental results.

6 Supervised Binary Classification

So far we have experimented with unsupervised methods. Another class of approach is to train a supervised clas-
sifier on the graph. We again first perform train-test split on the edges in the network to obtain FEiyain, + and
Elest, +. These existing edges will be positive examples. We then append a similarly sized set of negative examples
(pairs of nodes not connected by edges) to the training set, and obtain Eiyain = Eirain, + U Etrain, -- All of the rest
of the negative edges will be part of the test set along with Eiegt, -

And for each pair of nodes in the network, we extract a feature vector. Here we used some standard graph
features and some similarity measures, including source node degree, destination node degree, Common Neighbors
(CN), Jaccard Similarity (JA) and Resouce Allocation (RA) to form a feature vector of length 5. We then train an
SVM with linear kernel to predict on the test set of node pairs, with probability indicating the confidence of edge
existence. We then rank these predictions like before and compute Prec@QK.

See section 7.4 for experimental results.



7 Experimental Results

7.1 Local Similarity Measures

| K=5 K=10 K=20 K=30 K=40 K=50 K=60 K=70 K=80 K=90 K=100 |
CN 04 0.3 0.25 0.3 0.275 0.22 0.2167 0.214 0.2 0.178  0.17
JA 02 0.2 0.1 0.067 0.075 0.1 0.1167 0.129 0.1125 0.111 0.13
PA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0125 0.011  0.01
AA 04 0.4 0.35 0.3 0.225 0.24 0.283  0.257 0.2375 0.256 0.25
RA 04 0.3 0.35 0.3 0.225 0.28 0.267  0.243 0.2125 0.244 0.24

Table 1: Prec@K for local similarity measures

Number of Correctly Identified Edges vs K Prec@K vs K
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Figure 1: Local Similarity Measure Results

7.2 Enhanced Similarity Measure

K=5 K=10 K=20 K=30 K=40 K=50 K=60 K=70 K=80 K=90 K=100 ]
CN 2 3 5 9 11 11 13 15 16 16 17
CN*(a=5[8=0) 1 3 5 7 11 13 14 16 18 19 19
CN*(a=0,=5) 0 3 5 7 11 13 14 15 17 18 18
CN*(a=5,8=5) 0 3 5 F 11 13 14 16 18 19 19

Table 2: Number of correctly preidcted links for CN*

K=5 K=10 K=20 K=30 K=40 K=50 K=60 K=70 K=80 K=90 K=100 |
CN 2 3 7 9 9 14 16 17 17 22 24
RA* (alpha = 0.5) 1 2 5 9 10 13 17 18 19 20 25
RA* (alpha=1) 0 3 6 10 11 13 17 18 19 20 25
RA* (alpha =5) 0 3 5 9 11 12 17 18 19 20 24

Table 3: Number of correctly preidcted links for RA*
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Figure 2: Enhanced Similarity Results

7.3 Matrix Completion

K=5 K=10 K=20 K=30 K=40 K=50 K=60 K=70 K=80 K=90 K=100 |
Matrix Completion 1 1 3 3 3 6 6 6 11 14 14
JA 1 2 2 2 3 5 7 9 9 10 13

Table 4: Number of correctly predicted links for Matrix Completion
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Figure 3: Matrix Completion Results



7.4 Supervised Classification

K=5 K=10 K=20 K=30 K=40 K=50 K=60 K=70 K=80 K=90 K=100 |
SVM 1 3 6 10 11 14 16 18 20 22 27
JA 1 2 2 2 3 5 7 9 9 10 13
CN 2 3 5 9 11 11 13 15 16 16 17
RA 2 3 7 9 9 14 16 17 17 22 24
Table 5: Number of correctly predicted links for SVM
Number of Correctly Identified Edges vs K Prec@K vs K

251

— %)
17 S
I L

5
L

Number of Correctly Identified Edges

20 40 60 80 100 0 20 40 60 80 100
K K

(a) Number of Correctly Identified Edges vs K (b) Prec@K vs K

Figure 4: SVM Results

7.5 Analysis and Discussion

e Among simple similarity measures, common neighbor based measures Adamic/Adar (AA) and Resource
Allocation (RA) performed well even though they are conceptually simple. Put in the context of Amazon
product network, it makes sense that we should give higher weight to more “rare” common neighbors because
if a third product which is seldom purchased together with other product is a common neighbor between two
products, then there is a high chance that these two products are very relevant.

e Despite our high hopes, our “enhanced” local measures did not improve performance very noticeably beyond
the base similarity measures. This may have to do with the fact that we are only using the top 5000
communities - if we are able to obtain more extensive and higher-quality community information, these
measures may perform better.

e Despite being relatively quick to compute and based on completely different concepts, matrix completion via
PCA performed similarly to local similarity benchmarks, which proves again that there are many different
frameworks to approach link prediction. It would also be interesting to compare and contrast similarity
measures against matrix completion on networks of different level of densities.

e SVM performed well against the best-performing basic similarity measures, consistently upper-bounding
prediction precision of the base similarity measures used as features. This makes intuitive sense as all of these
similarity numbers are taken into account when making predictions using SVM. We should also note that
the SVM is trained with the most basic linear kernel using only 5 features. Expanding feature sets or using
kernels with higher degree of flexibility might improve performance.
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