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Abstract

In this work, we use graph analysis techniques and concepts to carry
out a comparative study between healthy tissue and two distinct types
of tumours. Through an investigation of the structural properties of
the tumour networks, we were able to ascertain key differences be-
tween the two tumour types. To further substantiate these differences,
we carried out community detection and obtained localised commu-
nities in the LS174T tumour. We also performed network robustness
tests which showed that the LS174T tumour is more robust to both
targeted and random attacks when compared to the SW1222 tumour.
Finally, to determine the most effective scheme for drug delivery
we carried out influence maximisation, and showed that injecting
drugs into less than 2% of the inlets in either tumour can cause drug
delivery to over 80% of the tumour mass in the LS174T tumour and
over 65% of the tumour mass in the SW1222 tumour.

1 Introduction

Small tumours survive by drawing on oxygen and nutrients supplied from the nearest
existing vasculature. Once a tumour’s size exceeds 1 — 2 mm?, it can no longer
survive based on the diffusion limit of oxygen and nutrients. In order to continue
growing and maintain its supply of oxygen and nutrients, an angiogenic process
to build its own vasculature is triggered. Tumour vasculature consists of vessels
recruited from pre-existing networks as well as angiogenic vessels, and differs
significantly from healthy vasculature on both a micro (vessel properties) and a
macro (network geometry) scale. [1]

Many of the most promising drugs designed to combat cancer have not found success
due to the poor distribution of the drug within the tumour. Studies have shown that
this poor perfusion can be attributed to the chaotic nature of tumour vasculature
geometry. [2] Recent advancements in imaging technologies have allowed for the
collection of datasets that model tumour vasculature as graphs. These techniques
rely on staining blood vessels with bioflorescence and performing optical clearing,
which makes the refractive index of all tissue very close to 1. The tumours are then
imaged using Optical Projection Tomography, which relies on the bioflorescence,
and the resulting signal received is used to reconstruct the vessel network structure
with a high resolution, capturing vessels with diameters of less than 1um.



Using these graphs of vessels, where the edges are blood vessels and the nodes are
points of splitting or joining of vessels, we look to apply network analysis tools
to better understand the underlying characteristics of these networks. Specifically,
we look to uncover structural differences between different tumour types as well
as investigate how the structure of these graphs influence the effective spreading of
drugs, which continues to be an unsolved problem in the field of oncology.

2 Related Work

There has been some previous work done in analyzing tumour vessels from a
network perspective. Skinner et al. in 1990 reported higher frequency of branching
within tumour vasculature compared to healthy vasculature [3]. These findings
were expanded by Less et al. who directly studied the branching patterns of tumour
vasculature and found two different types of branching patterns. The first was
characterized by decreasing vessel diameter and length in successive generations
of vessels. The second was characterized by higher fluctuations in both radius and
length corresponding to higher degrees of branching. They reported the presence
of loops in the vasculature and categorized them into “self-loops”, which are loops
between two nodes consisting of just two edges and “true loops” which are loops
consisting of multiple nodes [4]. Pries et al. suggested based on the above properties
that this can give rise to a “shunt problem” in the tumour vasculature, whereby short,
low resistance paths divert blood away from longer paths [5].

This work is mainly a continuation of the findings of D’esposito et al. [6]. They
identified two graph properties that contribute to drug distribution and propagation
in two different tumour networks, LS174T and SW1222. The authors find that
functional connectivity and redundancy contribute to lower drug perfusion. In this
work we look at structural differences in the graphs in addition to the above metrics
to further analyze the difference between the different tumour types.

3 Objectives

We outline the following aims for this work:

I. Understand the structural differences between the different tumour types: how
do these tissues differ in their network topologies?

II. Investigate influence maximization: how many inlets of the network are re-
quired to target in order to reach a majority of the network?

III. Quantify robustness: how do the different networks withstand random and
targeted attacks?

4 Data Sets

From the Walker-Samuel Lab at UCL, we obtained two different networks of col-
orectal adenocarcinoma tumours. The first network is that of an LS174T mouse
model of a colorectal carcinoma. The second network is that of an SW1222 carci-
noma mouse model. Structural properties of both networks, as well as the reference
vasculature have been provided in Table 1. Additionally, we obtained a small 2-D
network representing the vasculature of a rat mesentery. We used this network as
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a proxy for healthy vasculature. The nodes correspond to points of splitting of
vessels, and the edges represent the vessels themselves. These two tumour models
have markedly different phenotypes: SW1222 tumours are well differentiated with a
well-perfused vascular network, whereas LS174T tumours show moderate-to-poor
differentiation and are comparatively less-well vascularized and perfused, with larger
areas that have died due to lack of oxygen supply. [7] Based on simulations run by
the Walker-Samuel lab, we possess scalar values on each of the edges that describe
the simulated pressure, stress and flow.

Table 1: Graph properties of the data sets

Graph Nodes Edges Clustering Coef. Avg. Deg. Edge Density

Mesentary 388 546 0.038 2.8093 0.728%
LS174T 16,354 20,377 0.024 2.4192 0.015%
ER LS174T 16,357 20,377 0.00014 2.4192 0.015%
SW1222 64,239 77,450 0.027 24113 0.004%
ER SW1222 64,239 77,450 0.00001 24113 0.004%

5 Data Preprocessing

The data we received contained some clear artifacts that we needed to correct for.
First, there were multiple self edges, which are clearly erroneous as there can’t be
flow in a zero pressure gradient loop. Further, the graphs under consideration are
directed, but the ordering of nodes in the produced edge lists does not accurately
reflect the direction of flow. We corrected for this by ensuring that the start node for
each edge was the node with the higher pressure.

Furthermore, there is an artifact in the data coming from the pressure simulation
values associated with each node. There are multiple edges with non-zero flow but
zero pressure drop across them caused by discretization errors. For the purposes
of this project we omit these edges from our networks, being cognizant of the fact
that this will have an impact on flow conservation. These were confirmed by the
Walker-Samuel Lab as existing artifacts which were accounted for.

Moreover, there are pairs of nodes that share multiple edges, however, the pressure
drops across these edges are sometimes not of the same magnitude. We use the mean
of the pressure drop values in such cases.

6 Methods

In this section, we specify the relevant methods we have identified for analysing our
graphs.

6.1 Clustering Coefficient

Clusters in vasculature networks denote nodes that are highly interconnected, as is
often in the case in capillaries. The clustering coefficient c¢,, for a given node n is
defined as:
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where k,, is the degree of the node and t¢,, is the number of edges between the
neighbours of n. The clustering coefficient of the graph is then the average of
clustering coefficients over all nodes.

We find that the vasculature networks have high clustering coefficient when compared
to an Erdos-Rényi graph due to the high edge density around the capillaries of the
vasculature network.

6.2 Motif Discovery

We explore the motifs present in the graphs using the Exact Subgraph Enumeration
(ESU) algorithm [8]. We first generate the set of non-isomorphic directed motifs
having k nodes and then use the ESU algorithm to get counts of these motifs in
our graph. We then compare these counts to those of the corresponding rewired
networks. The rewiring method randomly alters the edges in the network while
preserving the in and out degrees of each node. The statistical significance Z; of
motif 7 in the network is defined as:

NP N;

iy =
std(N)

where N7 is the count of the motif in the real graph g, N; and std(N]) are the
average count and standard deviation of the motif count over multiple rewired
graphs, respectively. In cases in which the count of the motif is the same value c in
the real graph and in all rewired graphs, we set Z; = 0.

Vasculature networks are networks of blood flow in the vessels, where the flow is
induced by pressure difference between any two nodes. This precludes the presence
of cycles in the graph. As a result, we expect motifs that don’t have cycles to be
highly enriched.

6.3 Community Detection

We performed community detection using the Leiden community detection algorithm
from [9], while maximizing the modularity. The modularity, @, is given by

1 kik;
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However, our graph is directed, and so a slightly modified formulation is used.
1 k.gut k.zn
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where k9 and k:;" are the out and in degrees of nodes 7 and j respectively. We
used an open source implementation of the algorithm which greedily maximizes
the modularity, in an iterative fashion, much like the Louvain algorithm. However,
unlike the Louvain algorithm, there is a guarantee that the generated communities
are connected. The aim is to detect the presence of communities, and compare and
contrast the characteristics of said communities in the two types of tumors. An
additional exploration is done on a Mesentery Network to serve as a baseline.
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6.4 Influence Maximisation

Lazy hill climbing was used to perform influence maximisation. Lazy hill climbing
differs from vanilla hill climbing by reducing the number of influence evaluations
needed. It does so by maintaining an ordered list of marginal gains, and a form
of pruning to only evaluate a subset of the new influences. The algorithm can be
summarised in the following steps:

1. Keep a list of marginal benefits ¢; from the previous iteration
2. Reevaluate ¢; only for top node

3. If the reevaluated d; is the largest marginal benefit, select this node. If not,
reinsert it to maintain sorted order, and return to step 2.

We implemented lazy hill climbing from scratch, and were able to run influence
maximisation on our networks. We restricted the set of possible nodes which could
be selected by only considering inlets. An inlet is defined as a node with no incoming
edges. The goal of running influence maximisation on these inlets is to determine
which inlets supply a majority of blood to the tumour. This leads to far ranging
implications when designing drug delivery systems.

6.5 Betweenness Centrality

Betweenness centrality was employed to conduct targeted attacks in both networks
while measuring network robustness. To that end, we used the existing snap imple-
mentation. Betweenness Centrality aims to measure how prominent a node or an
edge is, when considering all shortest paths between pairs of nodes in a network.
For a node k, the betweenness centrality By can be written as:

b= Y0

i’j

where N j is the number of shortest paths between nodes 7 and j which pass through
k, and V;; is the number of shortest paths between nodes i and j.

6.6 Network Robustness

We look at how the different networks react to nodes being deleted. We use the size
of the largest weakly connected component as a proxy for network fragmentation.

We perform two kinds of attacks. The first is random attacks where we choose nodes
at random and delete them from the graph as well as all the edges they connect to.
The second kind of attack is targeted, where we used different metrics to order the
nodes, including node betweeness centrality, flow, radius and degree.

7 Results

7.1 Degree Distribution

We first consider the degree distributions within each of the graphs. We observe,
as seen in Figure la, that there is a high concentration of small degree nodes as
expected, with a clear peak at 3. This is consistent with the relevant physiology,
since bifurcations are the most prevalent branching pattern.
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Figure 1: (a) Comparing the degree distribution between LS174T and SW1222 tumours.
We see that there is a greater degree diversity in the SW1222 tumours, which is expected
as they tend to have greater vascular density (b) Distribution of node connectivity for both
tumours. We find that nodes in the SW1222 tumour have on average lower connectivity than
the LS174T. (c¢) Motif distribution for the top 15 4-node motifs in LS174T and SW1222
tumours. We calculate motif fraction by dividing the count of a specific motif by the count
of all motifs in the graph. We find that there are no motifs with cycles among the top motifs.

7.2 Motif Analysis

We analyzed the occurrence of motifs with 4 nodes in the different graphs as seen in
Figure 1c. What we find, unsurprisingly is that by far the most common motifs are
cycle free. Motifs representing successive nodes that connect to one another as a
chain, bifurcations, and joining of veins are especially proliferate. However, what is
not intuitive, is that these highly common motifs are in fact underrepresented - they
are more common in randomly rewired null models. We believe that this cause by
the fact that the nature of these tumor networks is such that there is a large number
of motifs corresponding to bifurcations and combinations of two vessels at a given
node. The count for these motifs is unlikely to reduce on rewiring, due to the lack of
long range edges in the network.



We carried out an analysis of both the normalized motif counts, normalized for
the total number of motifs in the graph, and the Z-scores. The normalized counts
themselves are as expected, whereas the Z-scores follow from the argument detailed
above. While there are no motifs with strongly connected cycles we find that the
motifs that are over-represented in our network are those with weakly connected
cycles.

We also find that the two networks have very similar structures, when considering
motif distributions for three node motifs.

7.3 Community Detection

The community detection algorithm when run on the mesentery network yielded the
results in Figure 2a. The nodes have been visualised using real world coordinates in
3D space, which were then projected onto a 2D plane. It is evident that communities
consist of nodes in close physical proximity, in line with our expectation that within
the capillary bed, nodes are likely to be highly clustered.

When running the algorithm on the LS174T tumour, we found that there exists a
community structure, similar to what was observed in the mesentery network. We
visualised the results at a node level, as well as at a community level. This can be
seen in Figure 2b, Figure 2c, and Figure 2d.

The SW1222 tumour did not yield similar results. Communities were largely random,
and showed radius, flow and pressure profiles which were nearly identical to the
distributions of these values across the entire tumour.

We also carried out role discovery for all three networks. After obtaining 2 hop
RolX features for each node, we ran k-means clustering to identify potential roles in
the networks. Without any a-priori knowledge of possible roles, the results of role
discovery were inconclusive.

7.4 Connectivity Analysis

In this analysis, we studied the distribution of nodes which can be reached and are
reachable by a node in the graph. This gives us a notion of the connectivity of a
graph— a graph with a higher average connectivity is more likely to have higher
redundancy and hence more robustness. In Figure 1b, we computed the sum of sizes
of the in-set and the out-set for each node divided by the total number of nodes in the
network, and plot the distribution. The analysis revealed that the LS174T tumour has
a significantly higher connectivity than the SW1222 tumour. LS174T has an average
connectivity of 0.90% whereas SW1222 has an average connectivity of 0.14%.

7.5 Network Robustness

We proceeded to analyse the robustness of the vasculature networks when subjected
to random and targeted attacks. This has potential applications in targeted radiation
therapy for tumours— knowing the network structure of tumours can aid in deter-
mining the dosage of radiation required to break it down, and even decide which
regions of the tumour need to be targeted. We consider the size of the largest weakly
connected component as a surrogate for network robustness. Isolating weakly con-
nected components breaks connectivity and hinders the growth of the tumour. We
consider random attacks and targeted attacks on the LS174T, SW1222 tumours as
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Figure 2: (a) Mesentery Network Communities (b) Community Detection results on the
LS174T tumour. Each node is coloured by the community it belongs to. The nodes are
shown in the figure as they are placed in 3D space. (c¢) The largest community found in
the LS174T tumour, arranged with spatial coordinates (d) Contracted communities. Each
node represents a community, and the size of each node is proportional to the size of that
community

well as Erdos-Renyi graphs with the same number of nodes and edges. For targeted
attacks, we compute the approximate node betweenness values, and then remove
nodes in order of decreasing betweenness. The results are presented in Figure 3b.

We observe that in general, the LS174T network is more robust than SW1222.
However, both the networks are less robust than the random Erdds-Renyi networks.
As expected, the targeted attacks are more effective in disrupting the networks. The
most notable observation is that disrupting only approximately 30% of the nodes
in either LS174T or SW1222 brings down the size of the largest weakly connected
component to 10% of the total nodes in the network. Moreover SW1222 is more
susceptible to targeted attacks than LS174T. These results may have interesting
implications for both radiation and drug based therapies.

7.6 Influence Maximization

Given the subtle structural differences we observed between the two tumour types,
we turn to the second objective. We ran influence maximization using our own
implementation of the Lazy Hill Climbing algorithm on both the LS174T and the
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Figure 3: (a) Influence Maximization on the inlets when run on both the LS174T and
SW1222 networks, using lazy hill climbing. Number of inlets chosen was set to 1795,
which represents the total number of inlet nodes in the smaller network (L.S174T). (b)
Robustness analysis of the networks on LS174T, SW1222 and Erdds-Renyi networks to
random and targeted attacks. In the targeted attack, the nodes are removed in decreasing
order of betweenness.

SW1222 networks. This was motivated by the problem of effective drug transport in
tumours. We consider the most influential & inlets to the network and evaluate the
total fraction of nodes in the network that they influence. What we find is that the
LS174T tumour requires fewer inlets to influence a higher proportion of the nodes
as seen in Figure 3a.

If we consider only the top 2% most influential source nodes in each network we
influence 83.4% of the nodes in the LS174T and 69.9% of nodes in the SW1222.

This is consistent with literature, which finds that the SW1222 tumours tend to have
greater network homogeneity and so nodes deeper in the network are less dependant
on single inlets, (i.e. inlet influence sets have much more overlap in SW1222 than
those of the LS174T network). [6]

8 Discussion

In this work we set out to answer three main questions. First, we are interested in
understanding the structural differences between the networks. What we find is that
although both tumours differ in their spatial density of nodes and vasculature, a 3D-
space agnostic network perspective fails to unearth any clear differences. We see that
both networks present similar degree distributions (see Figure 1a) and motifs (see
Figure 1c). The main structural difference we see concerned the edge density. We
know that the SW1222 tumour is spatially more dense but given the prepossessing
assumptions we made we find that there is no greater density of edges in the SW1222
tumour compared to the LS174T tumour, as seen in Table 1. LS174T is four times
more edge-dense than SW1222. Furthermore we find that LS174T nodes tend to
have a higher average connectivity.

Our results for structural differences come as a surprise since D’esposito et al.’s work
on similar data sets found that when simulating drug distribution across LS174T
tumours vs SW1222, the LS174T tumours had on average lower connectivity. [6]
One possible reason for this discrepancy is the difference in the graph prepossessing,
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since based on our assumptions we eliminated over 15% of the edges in both data
sets due to zero flow regions and self edges.

We also consider the question of influence maximization. This is driven by the
need for a better understanding of efficient drug delivery in tumours, which is a big
challenge due to the chaotic and disorganized network morphology. We find that 2%
of the source nodes influence over half the nodes for both networks. However, we
understand the limitation of this approach since we are only considering the structure
of the network and not the specific edge properties. The diluting effect of branching,
wherein only a trace of the administered drug at an inlet would appear at every node,
begs the question whether that quantity is at all sufficient.

Network robustness analysis represents an interesting way to consider how to target
nodes for maximal damage. We considered the impact of different ways to target
nodes, and found that removing nodes based on node betweenness was the most
effective method. We also note that the LS174T tumour is more robust and therefore
less susceptible to both random and targeted attacks than the SW1222 network.
This is consistent with the work of El et al., where they measured the impact of
administering higher doses of the same drug on impeding the growth of LS174T and
SW1222 samples [10]. They found that the LS174T sample required three times
as much radiotherapy as the SW1222 one, to achieve the same effect. The greater
network robustness might be a contributing factor to this.

In conclusion, we present a novel analysis of this dataset. As far as we are aware,
this is the first time that oncological vessel networks has been subjected to a rigorous
graph analysis. By considering graph properties alone, we are able to correlate some
of our results to published work. We believe that with greater advancement of blood
vessel imaging, techniques presented here could have a direct impact on discovering
novel therapies and assisting existing ones, specifically radiotherapy planning.
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