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Abstract

We develop, validate, and apply network anal-
ysis tools to neural recordings from mice, un-
covering structural features of neuronal networks
in premotor cortex (ALM) in the left and right
hemispheres of the mouse brain. We infer neu-
ronal network structure using measures of activ-
ity correlation, causality, and behavioral predic-
tion similarity between pairs of neurons. Next,
we validate these methods using simulations with
known ground-truth connectivity patterns. We
compute summary statistics over the inferred net-
work structure that indicate substantial cross-
hemisphere communication. We apply a variety of
community detection algorithms uncover modular
structure, finding that it spans across anatomical
regions and demonstrate and is robust to experi-
mental optogenetic perturbation of ALM. Further
more, we find that certain measures of modularity
in the inferred networks are predictive of behav-
ioral and neural activity differences across mice.

1. Introduction

Modern experimental techniques allow for
large-scale recording and perturbation of neural
activity at neuron resolution. Existing work has
shown that mice can perform motor tasks cor-
rectly when left or right (but not both) ALM is

\ Signal
4
Stimulus Delay Reponse

(a)

Left ALM ight ALM ™4a -/ %\ / %\ A

No Perturbation: Unilateral Perturbation: Bilateral Perturbation:
Success Success Failure

(b)

Figure 1. (a): Mice are trained to lick in one of two
directions after receiving a stimulation. (b): Optoge-
netic perturbation is applied to left and/or right ALM
region during the delay period. When no peturbation
is present or only one side is perturbed, mice can still
perform the task properly. When both ALMs are per-
turbed, mice cannot perform the task any more.

perturbed optogenetically by experimenters [4].
This work suggests that there exists a correction
and information recovery mechanism between the
left and right premotor cortex (ALM). While ex-
perimental techniques allow for separate analy-
sis and perturbation of distinct anatomical regions
like left and right ALM, they do not allow for
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direct examination of underlying modular neural
structures that may exist at a finer scale, or which
may in fact span multiple regions. Since neurons
are known to interact in complex networks, ap-
plying network analysis algorithms to time-series
neural data has the potential to uncover modular
structures and interactions between them at the
appropriate scale and level of abstraction. We
seek to uncover structure that lies within and
across anatomical hemispheres and use variability
in these structures across mice and experimental
sessions to predict behavioral differences in task
performance.

2. Related Work

Gated information transfer in mice premotor
cortex. The work of [4] demonstrated modular
structure in left and right mouse premotor cortex
(ALM). Mice were trained on a task which re-
quired them to choose one of two motor outputs
according to a sensory stimulus. A delay period
was imposed between the stimulus in response.
See Figure 1. Electrode-array recordings of neu-
ral activity in left and right ALM during the de-
lay period are predictive of mouse motor output
(left or right). Bilateral optogenetic silencing of
left and right ALM simultaneously during the de-
lay period prevent the mouse from performing the
task correctly. After such a perturbation, ALM
activity immediately before the motor response is
still predictive of the response, but diverges sig-
nificantly from its average values on control trials.
However, following a unilateral silencing of left
or right ALM, the mouse can still perform the task
correctly, and the silenced hemisphere recovers its
typical activity. See Figure 1. These results indi-
cate that there is modular structure in the ALM
system, as the damage to the information in the
perturbed ALM does not propagate to the unper-
turbed side. However, there must be information
transfer between left and right ALM, in the direc-
tion of the perturbed side, since the activity on the
perturbed side recovered. [4] showed that these
results could not be accounted for well by a lin-

ear model of the entire left/right ALM system but
could be explained by considering left and right
ALM as modules with gated, nonlinear interac-
tion.

Correlation-based functional networks. One
common technique to infer functional connectiv-
ity structure from neural data is assigning undi-
rected network edge strengths according to the
strength of correlation in firing rate activity be-
tween pairs of neurons. This approach has al-
lowed previous work to identify interesting net-
work structure underlying neural activity — for in-
stance, [8] found small world structures in brain
functional networks. However, this technique
has been shown to sometimes overestimate net-
work clustering ([11]), and care is required in null
model construction to avoid identifying spurious
network structures.

Granger causality-based functional networks.
Instead of using correlation, one can employ met-
rics that capture causal relationships between the
time-series activity of neurons. Some examples
are transfer entropy [9] and Granger causality
[3]. These techniques quantify the causal influ-
ence of A on B by measuring the additional in-
formation that the present value of A provides
about B’s future beyond what B already pro-
vides. These methods yield directed graphs and
widely used for discovering interactions between
neurons and brain regions. For instance, [5] con-
structed causality-based functional networks from
multi-subject EEG measurements and performed
community detection using an adapted version of
the Louvian algorithm. [6] identified communi-
ties of well connected “rich-club” neurons using
a causality-based network derived from electrode-
measured neuron activities.

Community detection. A number of commu-
nity detection algorithms can be used to infer
modular structure in functional networks. The



Clauset-Newman-Moore algorithm [1] greedily
maximizes network modularity by first assigning
each node to its own community and then join-
ing pairs of communities that increase modular-
ity until no such pair exists. Label propogation
[10] first assigns each node its own community
label and then repeatedly change the label of each
node to the most frequent label of it neighbors un-
til no further changes can be made. Communities
discovered with label propagation depend signifi-
cantly on if label updates are performed in parallel
on all nodes (synchronous model) or sequentially
(asynchronous model). [2] introduces a hybrid,
semi-synchronous model that is more stable than
asynchronous models and as fast as synchronous
models. The fluid community algorithm [7] is
inspired by label propagation models. The algo-
rithm first randomly initializes each of £k commu-
nity labels to a unique node and then iterates over
each node, setting its label to the community with
maximum density within the ego network of the
node. Density is calculated as the reciprocal of
the number of vertices in a community.

3. Methods

3.1. Data and Preprocessing

Dataset. This data is available courtesy of Prof.
Shaul Druckmann (Neurobiology) and Prof. Nuo
Li (Baylor College of Medicine). Mice are trained
to perform the following task: first, the mice are
stimulated with a pole in one of two locations in
their whiskers. Next a “delay period” is imposed,
followed by an auditory “go” cue. After the cue,
the mice respond by licking one of two ports, ac-
cording to which of the two stimuli they perceived
— the responses we refer to as “lick left” and “lick
right.” Silicon probes are used to record spiking
activity of populations neurons in left and right
ALM throughout the performance of the task. On
some trials, optogenetic perturbation is used to si-
lence neural activity on one (unilateral — left ALM
or right ALM) or both (bilateral) ALM regions
during the delay period.

The coding direction referred to in subsequent
analysis is computed as the difference in average
activity for lick-right trials and the average activ-
ity for lick-left trials in the last time bin of the de-
lay period on control (no stimulation) trials. The
coding direction is, essentially, the linear com-
bination of population activity that provides the
most predictive information about the mouse’s re-
sponse before the response occurs.

Preprocessing The raw spiking neural data re-
quires careful preprocessing to produce mean-
ingful time-series firing rate data. Ultimately,
the preprocessed data consists of time-series es-
timates of the real-valued firing rates of each neu-
ron in the recording, throughout the experimental
delay period. See the Appendix for details.

3.2. Inferring network structure.

As described above, the dataset contains time-
series observations of firing rates of populations
of neurons. Each neuron is treated as a node.
We employ several methods to infer edge weights
between nodes, for both control trials and bilat-
eral perturbation trials. They are described below.
Network structures are inferred independently for
each experimental session.

Activity Correlation. First, we infer functional
undirected connectivity sturcture between neu-
rons, assigning edge weights equal to the absolute
value of the Pearson correlation of activity of each
pair of neurons.

Granger Causality. Second, we infer func-
tional directed connectivity structure, assigning
directed edge weights as follows. For each pair
(A, B) of neurons, we fit the best linear regres-
sor that predicts B;,; from B; across all trials and
time steps in the dataset, where time steps are of
length 0.1 s. Then a linear regressor is fit that pre-
dicts the residual error of the first regressor from
A;. The significance (p-value) of this last predic-
tion, as determined by a t-test, is used to assign



directed edge weights — specifically, edge weights
are setto 1 — p.

Behavioral Prediction Similarity. Neural ac-
tivity in left and right ALM during the delay pe-
riod is predictive of mouse behavior (lick-left vs.
lick-right). This is even the case on trials in which
the mouse performs the task incorrectly (i.e. when
the mouse does not give the response that corre-
sponds to the stimulus). The best linear predictor
of behavior (fit via logistic regression) using neu-
ral activity immediately before the go cue has 94
% accuracy on control trials and 89 % accuracy on
bilateral perturbation trials. The predictivity is not
perfect — individual neurons, in particular, make
inaccurate predictions on many trials. We lever-
age these effects to produce another measure of
similarity between neurons — the frequency with
which neurons make the same behavioral predic-
tion (normalized to lie in [0, 1] where 50% agree-
ment corresponds to 0 and 100% agreement cor-
responds to 1). The predictor for each neuron is
obtained by fitting a logistic regression model to
predict behavioral output (lick-left vs. lick-right)
from that neuron’s firing rate activity immediately
before the go cue, across trials.

Validating our Network Construction Meth-
ods. To validate and characterize the limitations
of our network construction methods, we perform
a simulation study. We construct a model of neu-
ron connectivity and firing behavior and assess
how well our edge weight inference methods are
able to infer the ground truth connectivity. We
were particularly interested in the following ques-
tions.

1. How well do the correlation cetwork and the
causality network capture true relations be-
tween neurons?

2. Is the causality network capable of capturing
asymmetric relations?

We simulate neural activity firing using the fol-
lowing model. Neurons are connected in a di-
rected fashion. All result are evaluated over [V tri-
als. In each trial, there are 7' time steps. For each
t € {1,2,...,T}, there are ¥ opportunities for
a neuron to fire. There are three conditions that
control the probability with which a neuron fires.
1) A neuron A fires at time (¢, w) with intrinsic
probability p. 2) If A fired at time (¢ — 1, w), then
with probability 7 it will fire at (¢,w). 3) If all
parents of A fired at time (¢ — 1,w), then with
probability ¢ A will fire at (¢,w). f(A,t,w) =1
if A fired at time ¢, w, 0 otherwise. At time step
t, the observed firing rate for neuron A, v(A,t), is
the sum over all w firing opportunities. v(A,t) =
quvzl f(A,t,w). The construction is designed to
have several properties. It is straightforward to
see that if B has sole parent A,

E[v(B,t)] = p+rE[v(B,t—1)]+¢E[v(A, t—1)].

For each neuron, firing rate at time ¢ has autocor-
relation with firing rate at £ — 1 (controlled by r).
Additionally, there can be causal relationship be-
tween neuron firing rates (controlled by ¢q).

We base our simulation parameters on the
control (no-perturbation) experimental condition.
Unless otherwise specified, each session contains
N = 100 trials. Each trial records 7' = 15 time
steps. p = ¢ = r = 0.3. In the most simple case,
the connection is A — B, C connected to noth-
ing. Two examples of firing rate time series can
be seen in Figure 2 (a) & (b). Under our construc-
tion, A has causal correlation to B but the time
series are very noisy, which is representative of
what would happen with real life data.

We varied the true interaction strengths ¢ and
the number of observed trials /V and characterized
the ability of our correlation metric and Granger
causality metric to uncover true relationships be-
tween neurons.

3.3. Community detection.

We sought to uncover community structure in
the inferred networks. Our goal was to discover



whether (1) Community structure persists even
in the face of perturbation, and (2) Which con-
trol trial graph construction method is best suited
to predicting community structure following per-
turbation. Community detection involves a num-
ber of modeling choices, including the choice of
community detection algorithm and the method
of preprocessing. Given the level of noise in our
data, no method is guaranteed to uncover impor-
tant structure even if it exists, so using a diverse
array of methods is important. In particular, we
found that applying a panel of community detec-
tion methods to pruned, unweighted graphs on
a representative experimental session was help-
ful in allowing us to clearly establish and visu-
alize persistence of community structure in the
various graph types before and after perturbation.
Next, we focused on the case of applying spec-
tral clustering to the original weighted graphs in
order to quantify more thoroughly the extent to
which structure in the control trial graphs pre-
dicted community structure in graphs with dif-
ferent constructions and in bilateral perturbation
graphs.

Panel of Community Detection Algorithms.
We use a panel of six algorithms to detect com-
munity structures. The panel consists of the
Clauset-Newman-Moore algorithm (greedy mod-
ularity), asynchronous label propagation, semi-
synchronous label propagation, spectral cluster-
ing, and Kernighan-Lin algorithm (all discussed
above). Each functional network is constructed
from activity data during either baseline state or
bilateral perturbation, and has edge weights de-
riving from either activity correlation, Granger
causality, or behavioral predication similarity.
Networks were denoised prior to community
detection by keeping only edges with weights
within the the P-th percentile. Community de-
tection was found to depend significantly on P,
which was varied during each experiment. To fur-
ther reduce noise, we only consider communities
with more than two nodes and fewer than 80% of

the total number of nodes in each network.

The communities of greatest interest corre-
spond to modular network structure that is in-
variant to perturbation, i.e. communities that
are observed both in networks constructed from
baseline activity and from activity during bilat-
eral perturbation (importantly, the neurons being
recorded are the same). We take the similar-
ity of two clusters from different networks to be
J(Vi, V) where V) and V; are the vertices in each
cluster and J is the Jaccard index defined as

Vinve
J(‘G,Vz):ﬁ-

We report the significance of the Jaccard index
with the Z-score, Z = (J — puy)/oy, where the
expectation p; and the standard deviation o; of
the Jaccard index are calculated over 1000 ran-
dom samples a null model with identical commu-
nity sizes and random community labels. Clus-
ters from two networks are associated together
by repeatedly pairing the two unpaired clusters
with the largest z-score. We reported the Z-scores
of the best and second best matching community
pairs for all community detection algorithms and
values of P.

Spectral Clustering Across All Experimen-
tal Sessions. We next focused on one method
which performed reasonably in the prior analy-
sis (Spectal Clustering into £ = 4 communities)
and applied it to all graphs on all sessions. In
this case, to quantify the agreement in commu-
nity assignments on two graphs with the same
nodes, we chose the permutation of assignment
labels that maximized the agreement in labels be-
tween the two graphs and reported the fraction of
labels that agreed. Again, we compared the com-
puted metrics to the same metrics sampled from
a null model with identical community sizes and
random community labels.

3.4. Modularity of Left/Right Partition

For subsequent analyses, we computed the
modularity of the anatomical partition of neurons
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Figure 2. We evaluate the Correlation Network and Causality Network construction method using simulation.
Neuron A causally affects neuron B with strength g but B does not causally affect A. All neurons are independent
of Neuron C'. (a), (b): Sample firing rate time series. (c), (d): Inferred edge weight as neuron interaction strength
q increases. (e), (f): Convergence of edge weight inference as the number of trials /V increases.

into left and right ALM. We used the following
definition of modularity of a partition of an undi-
rected weighted graph with vertices V', adjacency
matrix A, partition assignment ¢, for eachv € V/,
and node degrees k, for eachv € V:

Kok
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v,weV

where 1 is the indicator function.

We focused on applying this analysis to the
Granger causality-based graph, as our community
detection results suggested that this graph would
be most predictive of bilateral perturbation trial
structure. We used an unweighted graph, main-
taining only the top P% strongest edges, where
P was chosen to be one less than the maximum
percentage for which this procedure would yield
any nonzero weights. This was done to prune
spurious edge weights in the causality graph, of
which there are many. Remaining edges were
all assigned weight 1. Then undirected weights
were assigned for each pair of nodes by adding
the edge weights between the nodes in both direc-
tions, yielding possible undirected weight values
of 0, 1, and 2.

4. Results

4.1. Validating Edge Construction Methods

through Simulation

We assessed the ability of our edge construc-
tion methods to capture true connectivity patterns
in a model of neuron interaction (described in the
methods section).

First, we varied the influence of a neuron A
on a neuron B by changing ¢ and compute edge
weight between neurons A and B and C' using
the two methods, see Figure 2 (c) & (d). As ¢ in-
creases, the influence of A on B becomes more
pronouned. We see both methods capturing this
relation. The edge weight between A and B in-
creases, whereas the edge weight between A and
C' (two disconnected neurons) remains the same.
This indicates that both correlatin and Granger
causality distinguish connected pairs of neurons
from disconnected pairs. Furthermore, we ob-
serve that the weight weight for A — B increases
as ¢ increases, and B — A is no more than the
baseline value. So Granger Causality indeed cap-
tures directional causal relationships and avoids
detecting spurious relationships.

We also sought to assess if it is reasonable
to expect our algorithm to detect connection be-
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Figure 3. Left three columns: The edge weight distributions, within and across hemispheres, of constructed net-
works under different perturbation conditions and different graph construction methods. Right column: Node
degree distributions for the behavioral prediction similarity networks.

tween neurons given the limited amount of data
we have. We varied the number of trials /N with
q fixed to ¢ = 0.3 and computed edge weight be-
tween neurons A and B using the two methods,
see Figure 2 (e) & (f). As the number of trials
increases, the signal to noise ratio increases and
both methods distinguish the true interaction of
A — B from the null cases A — C' and B — A.
Note that edge weight computed by both methods
are relatively accurate at N = 30. Our dataset
contains more than 30 trials per session (typically
on the order of 200 control trials nad 50 bilateral
perturbation trials). So under the assumption that
our model of neurons is somewhat realistic, we
have more than enough trials per session to derive
information about the graph.

4.2. Summary Statistics of Inferred Network Struc-
tures.

We apply the three methods described in Sec-
tion 3.2 to data from one of the experimental
sessions. Each of the three method generates a
weighted graph, either directed (in the case of the
Granger causality network) or undirected.

Edge weight distribution. 'We compare the dis-
triubution of edge weights in control trials and in
bilateral perturbation trials (see Figure 3). The

correlation networks yield a distribution that ap-
pears reasonably Gaussian for both perturbation
conditions, and almost all values are relatively
low (absolute value less than 0.5), which makes
it difficult to assess which correlations are mean-
ingful and detect interesting community struc-
ture. The Granger causality networks, on the
other hand, yield edge weight distrbutions with
peaks at the highest causality strengths, suggest-
ing that many, but not all, neuron pairs do indeed
have true (Granger) causal relationships. These
statistics are more promising for extracting com-
munity structure. The behavioral prediction simi-
larity networks have edge weights mostly greater
than 0.5, which makes sense as neurons make
correct predictions most of the time. However,
the bilateral perturbation data yields a reasonably
high number of similarity strengths near 1.0, sug-
gesting that under bilateral perturbation, certain
groups of neurons tend to always give the same
behavioral prediction, regardless of whether it is
correct. These groups are likely to be identified
by community detection algorithms. Importantly,
the edge weight distribution does not appear to
vary significantly when only edges that cross the
left/right ALM divide are considered as compared
to when only edges within left ALM or within
right ALM are considered. This suggests that
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Figure 4. Z scores, for various community detection algorithms and edge percentile thresholds P, indicating
robustness of communities to perturbation as quantified by Jaccard index of top two overlapping communities in
the control trial graph and bilateral perturbation trial graph compared to a null model. Solid line indicates Z score
for the most robust community, while dashed lines indicate the robustness of the second most robust community.

any left/right modularity in the ALM system is
weak, and that the “true” modular structure of
these brain regions may involve communities that
span both anatomical regions.

Node Degree distribution. We compare the
distribution of node degrees in control trials and
in bilateral perturbation trials (see Figure 3). The
most interesting structure was revealed in the be-
havioral prediction similarity networks, both of
which contained a large number of nodes with
very high degree compared to the rest. This sug-
gests that a small number of neurons “drive” the
behavioral predictions of many other neurons in
the network.

4.3. Community Detection

As described in the Methods section, we ap-
plied a panel of community detection algorithms
to the control trial and bilateral perturbation
trial networks obtained from each of our three
edge construction methods (correlation, Granger
causality, and behavioral prediction similarity) on
an example session. We quantified the extent to
which overlap in the most and second most ro-
bust (to perturbation) community exceeded that
expected in samples from a null model with iden-
tical community sizes. The Z-scores of this null
model comparison are shown for each P and each
method in Figure 4. Many of the methods dis-

cover meaningfully robust communities, as indi-
cated by Z-scores that as high as 6. This suggests
that these communities are invariant to changes
in the network due to perturbation, and therefore,
may potentially correspond to biological mean-
ingfully functional modules in the mouse brain.

We also tested the consistency of community
assignments by Spectral Clustering with k
4 across all sessions. We found that clusters
identified in the correlation network overlapped
strongly with clusters in the behavioral prediction
similarity network (Figure 5g), indicating that
communities coupled neurons tend to give simi-
lar predictions. Moreover we found that clusters
identified in the causality network were most pre-
dictive of clusters in the correlation network for
bilateral perturbation trials (Figure 5h), indicat-
ing that the Granger causality network is best able
to predict community structure following pertur-
bation. This may be attributable to the fact that
computing granger causality can filter out spuri-
ous correlations in the control trial networks.

Visualizations, for an example session, of the
various graph structures for control trials and bi-
lateral perturbation trials, with the top two most
robust communities indicated, are shown in Fig-
ure 5 a-f. The causality network gives the most
striking results, as the identified communities
clearly persist after perturbation. Notably, the
communities span anatomical hemispheres, indi-
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Figure 5. (a-f): Visualizations of communities identified by the best-performing method of Figure 4. Green and
blue nodes indicate the most and second-most robust communities, respectively. Top row: control trial graphs.
Bottom row: bilateral perturbation trial graphs. (a, b): Correlation network. (c, d): Causality network. (e, f):
Behavioral prediction similarity network. (g): Quantification of community overlap (using spectral clustering into
four communities) across sessions for control trial correlation graph and behavioral prediction similarity graph.
(h): Same as (g) but for control trial causality graph and bilateral perturbation trial correlation graph.

cating important network structure beyond that
imposed by anatomy.

4.4. Left/Right Modularity Predicts Behavioral and
Neural Differences Across Experimental Ses-
sions

In this section, we seek to predict mice behav-
ior using properties of inferred neural connectiv-
ity structures. In particular, mice differ in their
behavioral responses to the task setup. Some are
more accurate at the task than others, and some
are more robust to unilateral optogenetic pertur-
bation than others. Even the same mouse will
exhibit different behavioral properties across dif-
ferent experimental sessions. We find that the
left/right partition modularity of our inferred net-
work structures can predict these cross-mouse and
cross-session differences.
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Computing Modularity. Using their anatomi-
cal location, we classify neurons into two par-
titions: those belonging to the left ALM and
those belonging to the right ALM. This cluster-
ing is chosen because unilateral optogenetic per-
turbation is applied to one side of the two ALM
partitions. We compute the modularity of such
partition, using both the Granger causality-based
network and the behavioral prediction similarity-
based network, for all experimental sessions. We
measure the correlation between the modularity
of a network in a session recording and the corre-
sponding mouse’s behavioral performance during
that session. See Figure 6.

Metrics. Behavioral accuracy measures the per-
centage of the trials on which the mouse success-
fully completes the task. Coding direction re-
covery quantifies the extent to which the unper-
turbed hemisphere corrects the firing of the per-
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Figure 6. Modularity between the left and right ALM area in Granger causality networks correlates with robustness
to perturbation and behavioral accuracy, across experimental sessions. (a) Modularity is positively correlated
with with behavior accuracy following unilateral perturbation. (b) Higher modularity also correlates with higher
recovery rate of neural activity along the coding direction in the perturbed ALM. (c) Modularity also predicts

behavioral accuracy on control trials.

turbed hemisphere. It is measured by fraction of
recovery to trial-average values for the given trial
type. A value of 0 indicates that neuron activity
projected onto the coding direction remains at the
decision boundary (the mean coding direction ac-
tivity on all trials). A value of 1 indicates that
the firing rates of neurons in the perturbed hemi-
sphere projected onto the coding direction recov-
ers to typical values (e.g. the mean coding direc-
tion activity on lick-left trials).

Modularity and Robustness. We found that in
the causality graph, modularity of the left/right
partition is positively correlated with behavioral
accuracy following unilateral perturbation (Fig-
ure 6a) with statistical significance. Similarly,
higher modularity under the causality network
predicts better recovery of coding direction activ-
ity (Figure 6b). Our interpretation of these results
is as follows. Higher modularity indicates that left
and right ALM are less interconnected. Hence,
the results suggest that for a mouse to be robust
to optogenetic perturbation, it must not have ex-
cessively permissive communication between the
left and right ALM. Otherwise, perturbation on
one side will also corrupt the representation on the
other side. Furthermore, we find that the modu-
larity of the network predicts behavioral accuracy
even on control trials (Figure 6¢). This suggests
that even in the absence of experimental pertur-
bation, environmental perturbations and noise in
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signals from other brain regions add enough un-
certainty to the ALM system that modularity is
still beneficial in robustly performing the task.

5. Future Work

Future work could extend our work in a num-
ber of ways. For instance, we one could explore
ways to denoise our edge weights and, when it
is necessary to produce unweighted graphs for
subsequent analysis, to determine the optimal
weight-thresholding procedure more rigorously.
One could also seek to validate and character-
ize the performance of different community de-
tection algorithms on our simulation model of
neural interaction. Finally, one could seek to
validate the functional significance our identified
communities by assessing how successfully a lin-
ear dynamical systems model, in which activ-
ity evolves independently within each community
(potentially allowing for sparse gated interaction
with other communities) models the neural ac-
tivity. In particular, we are interested in the ro-
bustness of such a model when applied to pertur-
bation trials. We have already demonstrated the
promise of this approach by using the anatomi-
cally defined modules, left ALM and right ALM,
as test cases, but its application to finer-grained
modules is a fascinating direction that could help
better understand the functional role of mesoscale
structure in premotor cortex.
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6. Appendix: Data Preprocessing
Methods

There are 23 experimental sessions, obtained
from 7 different mice (some mice participated in
more than one session). For each session, a sub-
set of trials and units are selected to (1) ensure that
all neurons used are held throughout the specified
time window, (2) maximize the number of neu-
rons used, and (3) maximize the number of trials
used. Conditions (2) and (3) are at odds given (1),
so a heuristic is used to manage the tradeoff.

Spiking data is binned to obtain firing rates us-
ing time windows of length 0.4 s, with a stride of
0.1 s (note that adjacent time bins contain sub-
stantial overlap). The time window of interest
lasts from t = -4 seconds to t = 2 seconds, where t
= 0 seconds corresponds to the go cue. The sam-
ple period lasts from t = -3 to t = -1.8. Hence t
=-1.8 to t = 0 is the delay period and t = -4 to t
= -3 is the presample period. Perturbations, when
present, last from t = -1.7 to t = -0.9 s. All sub-
sequent analysis is performed using these firing
rates. For control trials we consider activity dur-
ing the entire delay period, and for perturbation
trials we consider only post-perturbation activity.

On trials without perturbation, the projections
of neural activity in each hemisphere onto each
respective coding directions are strongly corre-
lated. Hence, to ensure we identify meaning-
ful correlations in the data, subsequent correla-
tion and Granger causality analysis on control tri-
als is not conducted with raw activity, but rather
with the fluctuations of this activity about the con-
ditioned (lick-left or lick-right) trial-average ac-
tivity. On bilateral perturbation trials no such
mean-subtracting is necessary since the pertur-
bation decorrelates the information across hemi-
spheres.
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