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Abstract— Dealing with drug-drug interactions is time-
consuming and costly. We synthesize work on drug-drug
similarity network construction and process drug-drug
interaction networks to construct a program that allows
for automatic substitution of problematic drug pairs with
combinations that have similar function but less severe
interactions. First, we use a random walk algorithm on
a protein-protein interaction network via drug-protein
interactions to measure functional drug similarity. Then,
we process existing drug-drug interaction networks to
categorize interactions in terms of severity. We then
combine these two to recommend pairs of drugs with
high similarity to a problematic pair, but with less severe
interactions.

[. INTRODUCTION

Patients with complex diseases or comorbidities
often need to use combinations of drugs, which
is known as polypharmacy. Polypharmacy is par-
ticularly common for the elderly; over 35% of
adults aged 65 or older take between 5 and 10
prescription drugs [1]. Drugs used in combination
can modulate protein activities, which can lead to
improved or worsened outcomes. These drug-drug
interactions (DDIs) that occur when using a drug
combination lead to higher risk for side effects.

Since drugs are generally studied individually
in clinical trials, it is very difficult to predict
polypharmacy side effects. It would also be very
costly and time consuming to investigate pairwise
DDIs in a laboratory setting, let alone n-drug
combinations. Treating polypharmacy side effects
costs nearly $180 billion a year in the U.S. [1], and
the number of people taking drug combinations
is increasing year to year. The impact on medical
institutions is also serious. For example, 28% of
admissions in a Dutch hospital encountered at least
one DDI [2].

There is therefore a critical need to predict DDIs
before prescribing drug combinations that may

have adverse effects on the patients and would
be expensive to treat. Furthermore, there is a
need to use DDI predictions to aid physicians in
selecting better drug combinations to effectively
treat patients, while minimizing the possibility of
serious adverse side effects.

We propose a project that builds off of existing
work on DDI prediction and on drug similarity
networks. We aim to combine previous approaches
in order to recommend drug pairs with high simi-
larity to the originally requested drug pair, but with
negligible side effects.

II. RELATED WORK

There has been much work on constructing
drug-drug similarity metrics, and on predicting
drug-drug interactions, but little work on suggest-
ing viable alternatives to problematic drug combi-
nations.

A. Chen et al. 2012, Assessing Drug Target Asso-
ciation Using Semantic Linked Data [3]

To give an example of work on drug-drug sim-
ilarity, Chen et al. (2012) constructed a heteroge-
neous semantic network relating drugs, chemical
compounds, protein targets, diseases, side effects,
and pathways for use in drug-target interaction
prediction [3]. They then used the results from
their network to construct a drug-drug similarity
network that hinted at drug interactions.

B. Park et al. 2015, Predicting pharmacodynamic
drug-drug interactions through signaling propa-
gation interference on protein-protein interaction
networks [4]

Another approach was taken by Park et al.
(2015), who used a random walk with restart
algorithm on a protein-protein interaction network



to model drug similarity. Their main insight was
that if a drug targets a protein, they should let
the influence of that protein diffuse through the
protein-protein network to get a true sense of the
drugs influence [4]. Subsequently, they compare
the spread of each drugs influence through the
protein-protein interaction network to determine
the similarity between two drugs.

This method improved on earlier attempts to
measure drug similarity through functional com-
parison. Chen et al. (2012) mention that func-
tional comparison yields more meaningful drug
similarity evaluations than structural comparison,
Huang et al. (2013) [5] improve on the methods
of Chen et al. (2012), and in this paper, Park et
al. (2015) show that their method yields more im-
pressive ROC curves than the technique of Huang
et al. (2013) with known drug-drug interactions
as a metric, with AUC of 0.842 on DrugBank,
as compared to 0.786. Although ensemble models
combining various techniques, some non-network,
have been proposed by Zhang et al. (2017) [6], the
method of Park et al. (2015) is the state of the art
for a single network approach to drug similarity
based on a protein interaction network.

C. Zitik et al. (2018), Modeling polypharmacy
side effects with graph convolutional networks [7]

Zitnik et al. (2018) proposed a model, Decagon,
to predict specific polypharmacy side effects,
rather than just the possibility of any side effect
existing [7]. The authors formulated the problem as
a multirelational link prediction problem in a two-
layer multimodal graph G consisting of drug and
protein node types. The network was constructed
from protein-protein, drug-protein, and drug-drug
interaction data. Unlike previous approaches which
aimed to predict whether or not two drugs would
interact (binary classification), Decagon aimed to
determine whether a pair of drugs would interact
with a given side effect type. Their method outper-
formed alternative approaches by up to 69%, and
resulted in a 20% average gain in predictive per-
formance. This approach also allowed the authors
to find novel predictions.

D. Opportunity for novel work

For our project, we use drug-drug similarity
and known drug-drug interactions to suggest al-

ternatives to problematic drug combinations. We
therefore turn to the work done by Park et al.(2015)
- which determines drug similarity more accurately
than previous structural approaches - for the con-
struction of our drug-drug similarity metric. While
the authors mention that their results could be
used to avoid bad drug combinations, they don’t
elaborate on this finding.

Zitnik et al. (2018) predicted specific drug-drug
interactions very successfully in their Decagon
model, but for our project we will instead use
the Decagon drug-drug interaction (DDI) dataset
as a reference to avoid interactions, rather than
attempting to predict them ourselves.

III. APPROACH
A. Decagon Dataset

We used BioSNAP data, in particular the
Decagon data (http://snap.stanford.edu/decagon/),
to find drug-drug similarity. The relevant Decagon
files for this part of the project are the drug-target
interaction (DTI) network and the protein-protein
interaction (PPI) network. There DTI network has
data on 1774 drugs and 7795 proteins, while
the PPI network has 19081 proteins. We did not
condense the PPI network to just the 7795 proteins
in the drug-target network, since our algorithm
involves a random walk along the PPI network, and
can therefore account for the influence of proteins
in the PPI network even if they are not explicitly
drug targets.

As our basis for determining side-effects be-
tween drugs, we use the Decagon drug-drug in-
teraction (DDI) network, which models polyphar-
macy side-effects. In this network, nodes represent
drugs, and edges represent the various types of
side effects associated with the drug pair, which
cannot be attributed to either individual drug in
the pair. This dataset appears to be state of the
art in determining DDIs, and was created from
the third paper we reviewed in this report, Zitnik
et al. (2018) [7]. The network contains 63,473
interactions across 645 drugs, and was generated
based on national adverse event reporting systems.

B. TWOSIDES Dataset

We also utilized the TWOSIDES database,
which the Decagon drug-drug interaction dataset



was built off of. This dataset was created by
Tatonetti et al. (2012) [8], and contains information
on polypharmacy side effects for pairs of drugs,
as well as the likelihood of the interaction. In
our approach, we used both the TWOSIDES and
Decagon datasets so that we could compare results.
This is important because the Decagon dataset
is itself a model of the TWOSIDES data, and
because we wished to use interaction statistics to
refine our model. TWOSIDES contains 868,221
significant associations between 59,220 pairs of
drugs and 1301 adverse events (side effects). The
relationships that are included in this database are
limited to those that cannot be clearly attributed
to either drug alone. The database also includes
3,782,910 associations for which the drug pair has
a higher proportional reporting ratio (PRR) than
either individual drug alone. The PRR measures
the extent to which a particular adverse event is
reported for individuals taking a specific drug,
compared to the frequency at which the same
adverse event is reported for patients taking some
other drug. This database was suitable for our
algorithm because the reported adverse events are
likely caused by the interaction of the drugs, rather
than either drug alone - which is exactly what
we are interested in. A very important feature
of the TWOSIDES dataset, is that it contains a
“confidence” level for each interaction it reports.
The confidence level is assigned based on the p-
value of the reported interaction, and ranges from
1 to 5 (5 corresponding to lowest p-value, and
therefore highest confidence).

C. Methods

1) Pre-processing Decagon Dataset: We ini-
tially wanted to pre-process the Decagon model
built by Zitnik et al. (2018) to include a heuris-
tic for side effect severity. The Decagon model
considers the 1317 types of polypharmacy side
effects, and we had wished to assign each side
effect a score indicating its severity (e.g. a mi-
nor side effect like dandruff would get a lower
score, while a severe side effect like cardiac arrest
would get a higher score). However, this heuristic
would require significant medical and pharmacy
expertise, so for this project we used a simpler
heuristic. We will refer to the latter heuristic as the
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Fig. 1. Distribution of edge count between two drug nodes in
Decagon drug-drug interaction network

drug-drug score. Instead of weighting each edge
by the severity of the side effect, we used the total
number of edges between two nodes as a heuristic
for drug-drug interaction (DDI) severity. We chose
this as an initial heuristic, because a larger number
of potential side effects between two drugs would
result in a larger drug-drug score, indicating a less
favorable drug combination - as desired. Figure 1
shows the distribution of the drug-drug score in the
Decagon network. We can see that the majority of
drug pairs have about 50 edges between them, and
that the frequency decreases as the drug-drug score
increases.

2) Pre-processing TWOSIDES Dataset: After
initial analysis of the Decagon dataset, we no-
ticed that many drugs that are commonly taken
together (e.g. aspirin and ibuprofen) had many
listed side effects in Decagon. We therefore wanted
to include some measure of the likelihood of
side effects occurring, since many side effects
were likely rare and would disproportionally affect
our recommendations. Therefore, we decided to
use the TWOSIDES dataset, because it contained
data on the confidence of each interaction. Based
on the p-value, ‘confidence’ ranged from 1 to
5, and a higher confidence level indicated that
the interaction occurs with more certainty. We
therefore pre-processed the TWOSIDES dataset to
only include interactions with a confidence level
of 5 (maximum), and plotted the drug-drug scores
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Fig. 2. Distribution of edge count between two drug nodes
in TWOSIDES drug-drug interaction network, with interaction
confidence equal to 5

using the same methods as before (Figure 2). We
can see from Figure 2 that the distribution has the
same overall shape as that of Decagon network,
but that the maximum drug-drug similarity score is
about three times smaller than it was in Decagon’s
distribution. The overall graph also looks a bit
smoother here, and may have less noise compared
to the Decagon dataset.

The drug-drug score heuristic can therefore be
used based on the Decagon DDI network, and/or
the TWOSIDES network. We will report results
from both for comparison.

3) Recommendation Algorithm: Next, given a
query in the form of a pair of drugs, we reference
a polypharmacy side-effect association network to
get a heuristic of the drug-drug score (using either
Decagon or TWOSIDES). We then search for the
five most similar drugs to each drug in the input
pair using a random walk with restart algorithm.
Finally, we try all combinations of the resulting
similar drugs and recommend the one with the
lowest drug-drug score, which is a heuristic for
lower DDI rate.

We have implemented the random walk with
restart (RWR) algorithm described in Park et al.
(2015) to calculate drug similarity. We first parsed
the drug-target network file as well as the PPI
network file and stored them for future uses.

Given a single drug, the RWR algorithm over
the PPI network consists of the following: For each

timestep ¢, we calculate probability vector p(t+1),
whose values are the probability of the random
walker being at a given protein at the timestep, as

pt+1)=@Q—r)-M-pt)+r-p0) (1)

where 7 is the restart probability (here 0.7 as
in Park et al. (2015)), M is the adjacency matrix
with rows normalized, p(t) is the probability vector
from the previous timestep, and p(0) is the initial
probability vector, consisting of a % for each target
of the drug in question and a 0 for each protein that
is not a target, where n is the number of targets
the drug has.

We terminate the walk when the sum of the
absolute values of the differences between p(t+1)
and p(t) is smaller than an epsilon 1.0 x 107°.

Then, we calculate the similarity between the
two drugs by taking the element-wise square root
of the product of the vector values of each protein
for the two drugs A and B:

ProteinScore;(A, B) = \/ PR,(A) - PR;(B)
(2)
Then we simply sum up the protein scores over all
proteins to get a metric of drug similarity:

N
DDIScore(A,B) =Y ProteinScore;(A, B)

=1
(3)
Overall, the algorithm is quite similar to PageRank
with teleportation, where the authors use protein
influence as a proxy for drug influence and ulti-
mately drug similarity.

In order to implement this algorithm, we chose
to use the Python defaultdict data type to represent
our sparse vectors and matrices in the PPI net-
work, and implemented various operations such as
normalization and dot product over this data type
ourselves.

Our goal for this section was to input a pair of
drugs (drugA, drugB), and output the five most
similar drugs to drugA, and the five most similar
drugs to drugB. We wanted our algorithm to be
robust enough that we could test any pair of drugs
in the evaluation portion, but the RWR algorithm
was computationally intensive, and we did not
have knowledge a prior: of which drugs would
be similar to one another (and therefore could



not prune any drug nodes). Therefore, we pre-
computed the RWR vector for each of the 1774
drugs in the network, and saved all of these in
a pickle file for future use (using Python’s pickle
package).

Next, we wrote a function that would calculate
the similarity score between drugA and all other
drugs, using the saved RWR vectors, and return
the five drugs with highest DDI score to drugA.
Again, this was a computationally intensive step,
so we saved results to a file. Furthermore, from
literature searches, we noticed that a single drug
is likely to interact with multiple other drugs, and
thus we kept a cache to prevent from recomputing
similarity rankings.

Finally, once we had the five most similar drugs
to drugA and drugB, we used our heuristic to
calculate the drug-drug score between all combi-
nations between drugA and its five most similar
drugs, and drugB and its five most similar drugs
(36 combinations). For this section, we used the
pre-processed drug-drug scores. Since the drug-
drug score was used as a heuristic for severity of
drug-drug interactions, we then recommended the
drug pair with the lowest drug-drug score because
it would theoretically minimize the adverse events
from drug-drug interactions.

IV. RESULTS AND DISCUSSION
A. Software

Our deliverables include 1GB of computed sim-
ilarity scores between all 1774 drugs for which
we have information in the drug-target network in
Decagon. We also produced software in Python for
processing the Decagon and TWOSIDES database
files into internal representations, caching our com-
puted RWR vectors and similarity scores as Python
pickle files, and creating databases of our heuristics
for drug-drug interaction severity.

We also produced text files of the most similar
drugs to the drugs in our 25 sample pairs with
their scores, and all the possible pairs of those
alternatives with their scores as per our heuristics.
Finally, and most importantly, we created Python
software that computes drug-drug similarity using
the RWR algorithm on the PPI network, and
calculates alternatives given a pair of drugs, the

similarity algorithm, and DDI files containing the
heuristic scores.

Our  repository may be found at
https://bitbucket.org/drugdrug224w/drugdrug/src
and a backup is at https://github.com/alexjwade/
drugdrugrecommender.

B. Evaluation

As our test set of drug pairs, we first did a
literature review and selected 15 pairs of drugs that
are known to be problematic. Next, we used our
data and our drug-drug score heuristic to select
10 pairs of drugs with the highest number of
interactions in the TWOSIDES database. Note that
there was no overlap between the 15 pairs from the
literature review and the TWOSIDES database.

From the literature review, we chose 15 pairs
of drugs which have problematic interactions be-
tween them, based on Kheshti et al. (2016)[9],
which asked trained pharmacists for their knowl-
edge about the pairs. We believed that this would
represent our typical test case, the problem we
wished to solve. However, it turned out that the
Decagon drug-target networks we use for our RWR
algorithm lacked information on many of the drugs
from these pairs. When we only included pairs that
were present in the data we used to construct drug-
drug similarity, the number of pairs dropped to 11.
We therefore added in another 4 drug pairs from
another article, Roe et al. (2016), on harmful drug-
drug interactions.

Next, we wanted to use our data to find poten-
tially problematic pairs. For this method, we used
our pre-processed TWOSIDES dataset, which had
the count of side effects (with confidence level 5)
between drug pairs. Using this again as a heuristic
for the the severity of drug-drug interactions, we
found the top 10 pairs with the highest drug-drug
scores, and used those as input to our algorithm.
Again, some of these drug were not present in the
drug-target network we use in the RWR algorithm.
Therefore, we used the top 10 drug pairs which
were present in the drug-target database. This
meant that we had to search the the top 27 pairs
in our database according to our metric, because
17 of those pairs did not exist in our drug-target
data.

Our algorithm first found the 5 most similar
drugs to each of the drugs in the pair, then calcu-



lated the severity of interactions between the drugs
most similar to each, and finally proposed a pair of
similar drugs with low interactions to recommend
in lieu of the problematic pair.

Following the steps of our algorithm, we first
evaluate our results in terms of similarity, followed
by our drug-drug interaction metrics, and finally
the quality of the recommended pairs.

1) Drug similarity evaluation: We hoped to
compare our results directly to the implementa-
tion of Park et al. (2015)[4]. They have a web-
site (http://biosoft.kaist.ac.kr/targetrw/index.html)
which allows users to find similarity scores be-
tween drugs. Unfortunately, their website did not
have a similarity score between acetaminophen and
erythromycin.

For a sanity check to ensure that our re-
sults are approximately correct, we compared ac-
etaminophen and aspirin, two painkillers with sim-
ilar chemical structures and effects, hoping to see
a high similarity score. The similarity is 0.93578
in our implementation.

We also compared aspirin to glyburide, which
is used in the treatment of Type II diabetes and
has a very dissimilar chemical structure to aspirin.
The similarity is 0.19818 in our implementation,
which contrasts markedly with the score for ac-
etaminophen and aspirin, thus confirming our san-
ity check.

Besides comparing our results directly to
Park et al. (2015), we compare our results to
those of Brown et al. (2016)[10], who used a
literature-based method to find similarities be-
tween FDA approved drugs. Importantly, they
have an implementation of their algorithm on-
line at http://apps.chiragjpgroup.org/MeSHDD/.
We chose to compare acetaminophen and its most
similar drugs according to MeSHDD using our
algorithm. Unfortunately their online implementa-
tion does not include dissimilar drugs, only similar
ones, but we tried finding random drugs (glyburide
and erythromycin), computing the similarity score,
and seeing whether they were listed as being simi-
lar to acetaminophen on MeSHDD (they weren’t).
(Note that MeSHDD scores correspond to distance,
whereas our scores correspond to similarity.) Table
I summarizes the scores for the sample drugs,
and targetRW corresponds to Park et al. (2015)’s

SCores.

TABLE I
SAMPLE DRUG SIMILARITY SCORES WITH ACETAMINOPHEN

Drug name 1 - MeSHDD score  targetRW  Our score
Ibuprofen 0.222 2112 0.764
Naproxen 0.165 2.0 0.738
Codeine 0.144 0.178 0.226
Ketoprofen 0.162 2.026 0.247
Erythromycin  N/A N/A 0.205
Glyburide N/A 0.168 0.197

Additionally, MeSHDD did not have aspirin
listed as similar to acetaminophen. The scores
for codeine and ketoprofen are rather low on our
end but still higher than the similarity scores for
erythromycin and glyburide.

Our results follow those of targetRW (from Park
et al. (2015)) fairly closely apart from our low
score for ketoprofen, which is much lower than
the targetRW score. Since we followed the same
algorithm as targetRW, this discrepancy in results
must be due to the differences in the datasets we
ran our algorithms on. We hypothesize that the
Decagon data we used had fewer links (direct and
indirect) between acetaminophen and ketoprofen.
Ultimately, though, our results were roughly simi-
lar and our dissimilar drugs did have lower scores.

When we put the similarity algorithm into prac-
tice, we noticed a strange feature in the most
similar drugs that came up. Many of them had
the same ID, but beginning with a 1 instead of
a 0. Technically, these are different molecules,
with vastly different structures, and of the ones
we examined, not even licensed medications. It
seems that the same drug is listed twice in the
drug-target database, but with some of its mentions
preceded by a ‘1’ for some reason. In our similarity
algorithm, we ended up having to throw these
strange molecules away as it seemed that they were
clones of the actual drugs we wanted to examine,
a glitch in the database.

We then analyzed the top 5 similar drugs re-
turned by our algorithm to see if our algorithm
truly returned drugs with similar functions. We
analyzed the distinct drugs in the 30 drug pairs we
had previously tested. For each drug, we extracted
the drug in its list of 5 most similar drugs with
the highest similarity score (ignoring the drugs
with the problem mentioned above). Next, we



researched the drug and its most similar drug, and
noted the results. Finally, we reported a represen-
tative sample in Table II of the types of relations
we found.

TABLE II
DRUG SIMILARITY ANALYSIS

Drug Most Similar Drug Sim Score  Observations
Colchicine is an anti-
inflammatory drug that can treat
o 824 S G and prevent gout attacks, and
Colchicine Vincristine 1.16 p s

vinchristine is a chemotherapy
drug. Both bind to tubulin, and
inhibit cell growth.

Ergotamine and Bromocriptine
Mesylateand are closely related
to ergoline and dopamine
agonists.

. : Bromocriptine
Ergotamine

= Mesylate
Epinephrine can treat severe
asthma attacks and allergic
reactions, and ciprofoxacin
treats infections. While they act
on different systems, they both
seem to be involved in immune
responses.

Epinephrine  Ciprofloxacin 1.08

Carvedilol can treat high blood
pressure and heart failure, and
fentanyl can treat severe pain.
While they act on different
systems, they might have
overlapping mechanisms.

Carvedilol Fentanyl 1.07

Fluoxetine is a Selective
Serotonin Reuptake Inhibitor
(SSRI). It can treat depression,
obsessive-compulsive disorder
(OCD), bulimia nervosa, and
panic disorder. Citalopram is
also an SSRI used to treat
depression.

Fluoxetine Citalopram 1.05

Haloperidol is an antipsychotic
used to treat certain types of
mental disorders. Asenapine is
also an antipsychotic, often used
to treat schizophrenia and acute
mania associated.

Haloperidol ~ Asenapine 1.05

Triamterene is an antibiotic for
baldder infections

Trimethoprim is a diuretic.
Interestingly, both seem to affect
renal system.

Trimethoprim Triamterene 1.03

Simvastatin is used to treat
cholesterol. Etravirine is an HIV
drug (NNRTI). These drugs
seem fairly different.

Simvastatin Etravirine 0.83

We see that drugs with high similarity (higher
sim score) tend to either affect the same organ
system or have similar targets, effects, or molec-
ular structure. Generally, higher similarity score
indicates a closer match, though there do seem
to be nonsensical recommendations. We did note
that many of these nonsense pairings included
an antibiotic. It is possible that, since antibiotics
tend to target bacterial proteins, the Decagon data
is not well suited because it primarily contains

human protein interactions. One example of a
good similarity matching is that of fluoxetine’s and
citalopram. Both drugs are Selective Serotonin Re-
uptake Inhibitors (SSRIs), which are used to treat
depression. One surprising and interesting match
is that of trimethoprim and triamterene. While
trimethoprim is used to treat bladder infections,
triamterene is a diuretic, which increases produc-
tion of urine. At first glance, these drugs seem
to act differently, but they both act on the renal
system. Finally, one match that seems irrelevant
is that of simvastatin and etravirine. Simvastatin
is used to treat cholesterol, while etravirine is an
HIV drug. While there may be some similarity in
molecular mechanism that we are unaware of, it
seems unlikely that these drugs are actually similar.

2) Drug-drug interaction severity evaluation:
Subsequently, we evaluate the quality of our drug-
drug interaction metrics. This is the component
of our algorithm that has the potential to most
severely impact the patient. It was of great im-
portance that we avoid deadly interactions while
not ruling out a drug combination based on minor
side effects.

Our first, coarsest metric, was based off of the
Decagon DDI database directly. We had assumed
that the more interactions recorded between a
pair of drugs, the more harmful the drug com-
bination would be. However, we had noticed that
acetaminophen and aspirin, which are actually sold
together as one medication (together with caffeine)
over the counter as Excedrin, had 337 different in-
teractions, while atazanavir and simvastatin, which
are contraindicated and one of our test pairs, had
only 11 interactions in the database. This was an
indicator that this first heuristic had limitations.

Our second heuristic was designed based on
an observation from the data’s original source in
the TWOSIDES database, which includes statis-
tical significance of the side effects. While ac-
etaminophen and aspirin had no interaction with
confidence over 4 (the confidence scores in the
database range from 1 to 5 and are based on
the logarithm of the p-score of the interaction),
atazanavir and simvastatin have two interactions
with confidence of 5. Thus, we decided to count
only the interactions with confidence over 5.

Due to the fact that most pairs lack any in-



formation in TWOSIDES or Decagon, we limit a
quantitative evaluation of the interaction metric to
the pairs with data which were found in our search
for alternatives to epinephrine and metoprolol,
which was one of the problematic pairs we used
as a test. For each of these candidate pairs with
data, we compare the score that the two heuristics
assigned them as well as the status of the pair on
RxList, a website that records drug interactions.

TABLE III
SAMPLE DRUG PAIR INTERACTION SCORES

Drug 1 Drug 2 Score 1  Score 2 Status
epinephrine  metaprolol 94 8 Significant
epinephrine  ciprofloxacin 98 28 None
metaprolol  ciprofloxacin = 249 0 Minor
betaxolol metaprolol 58 0 Serious
betaxolol ciprofloxacin 77 0 Significant

As a qualitative assessment of the first two pairs,
the first pair, which we were trying to avoid in the
first place, is associated with kidney failure with
highest confidence. The second pair, however, is
also associated with terrible effects such as heart
attack with highest confidence.

The problem is that both heuristics not only
somewhat disagree with each other, but that when
they do seem to agree, as with betaxolol and
metaprolol receiving a relatively low score, RxList
actually reported the severity of interactions as the
opposite- highly problematic.

On the bright side, we did manage to write
software that calculated and used these metrics
for recommendation of less problematic drug pairs,
and if given the right network data, the software
would give correct results. The problem is that
there does not seem to be a good way to measure
severity of drug interactions.

While our heuristics are certainly not a replace-
ment for the advice of licensed medical profes-
sionals, we hoped to obtain a metric that was
as valid as possible for use in our algorithm,
without having to ask medical professionals to
spend hours annotating drug-drug interactions. We
had assumed that TWOSIDES and its downstream
incarnation in Decagon carried the information that
we needed, but due to the amount of information
they have gathered, it became difficult to identify
the truly problematic drug combinations amidst the
noise.

We also faced a problem that was a bit of the
reverse- many drug combinations that we wanted
to find information about as part of the candidate-
ranking stage of our algorithm simply did not have
data listed in the database. Without this informa-
tion, we could hazard a guess as to whether they
would interact or not, and these pairs simply had
to be thrown out. For example, while we came
up with 22 distinct candidate alternative pairs for
dopamine and phenylephrine, none of the pairs had
any information in Decagon or TWOSIDES.

Another issue is that both databases contain
information on deadly effects as well as less severe
side effects, or phenomena which are not side
effects at all. Some examples of these are ‘road
traffic accident’, ‘herpes simplex’, and ‘dandruff’.
While we wanted to narrow the document down
to the side effects we deem most significant, given
that there were 1301 side effects in TWOSIDES,
we deemed it unfeasible for us to properly weight
all of them, and we defer this work to a team of
medical professionals in the future.

In the future, we need a gold standard with
actual pharmacists and side effects weighted by
not just significance but how severe the actual side
effect is. This would be crucial not just for future
computational work but for the well-being of all
patients. When tested, pharmacists only correctly
identified 66% of drug-drug interactions[11], and
even current computerized systems only scored
250 out of a possible 400 points for accuracy in
the study of Kheshti et al. (2016)[9]. Clearly there
is a need for better data.

V. CONCLUSIONS AND FUTURE WORK

Drug-drug interactions (DDIs) can cause numer-
ous adverse side effects for patients, and cost bil-
lions to the healthcare system each year. However,
they are a seemingly necessary evil for patients that
require a cocktail of drugs for multiple afflictions
or a particularly difficult disease. Our goal was to
provide a tool that can automatically alleviate the
burden of DDIs caused by a pair of drugs.

Our system accepts a pair of drugs and recom-
mends a new drug pair that is similar in function,
yet reduces the number and severity of polyphar-
macy side effects, for a set of roughly 1774 drugs
whose targets are known (though some of these
don’t have data in TWOSIDES).



Our proposed method combines prior work done
by Zitnik et al. (2018) on predicting polypharmacy
side effects, and Park et al. (2015) on predicting
drug similarity using a protein-protein interaction
network. We first processed the Decagon model
built by Zitnik et al. (2018) to distinguish between
side effects by their severity. The Decagon model
considers the 964 most commonly occurring types
of polypharmacy side effects, but we wanted to
focus on the most severe side effects, and there-
fore created a heuristic scoring system to assign
weights to the different side effects based on
confidence. This allowed us to determine if the side
effects between two drugs could be categorized as
severe or not. In the case of a severe interaction, we
use a random walk algorithm to find similar drugs
that can be substituted to minimize DDI severity.

While we successfully built a software frame-
work which allowed us to fully implement our
vision for an alternative recommender to problem-
atic pairs of drugs (with the exception of name-to-
CID and CID-to-DruglID lookup for drugs, which
would be simple to achieve through a dictionary),
our final product was hampered by data quality,
in particular as it related to our metrics. It turned
out that our similarity metric didn not always
accurately predict the most similar cousins to a
drug, and we had trouble with reliably capturing
drug-drug interaction severity, even given a large
dataset which Zitnik et al. (2018) used successfully
for side effect prediction.

In the future, we hope to create a better inter-
action severity metric, which could offer a better
sense of the combined toll potential side effects
would have on a patient. We imagine this could use
unsupervised learning methods to assign weights
to the various side effects using existing medical
data. We would also like to incorporate the severity
and likelihood of each individual side effect in
this model, and weight each side effect’s score
accordingly. We also hope to validate our drug
recommendation system with physicians and phar-
macists to determine which aspects need to be
further refined.

To turn an eye even farther towards the future,
we also believe our system, with different data
sources, could be used in veterinary medicine.
This would be very challenging due to the lack of

data on protein-protein interactions in animals, but
could produce many new insights because drug-
drug interactions in animals are not well studied.
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VII. CODE LOCATION

Our  repository may be found at
https://bitbucket.org/drugdrug224w/drugdrug/src
and a backup is at https://github.com/alexjwade/
drugdrugrecommender.
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