Project Report: On Representation Power of Character Network
Feature Extraction and Inferences

Github Repo: https://github.com/annazhu1996719/CS3224W-project.git

Zhining Zhu
Kuangcong Liu
Zhen Qin

1. Introduction

The complex structures of social networks inherently
embed rich information, and thus social graphs have
always been serving as a starting point for feature ex-
tractions. With representative features extracted from
social networks, Machine Learning will act as a pow-
erful tool in tasks ranging from regression and clas-
sification, to clustering and others. Our project will
focus on combining feature extractions on social net-
works with Machine Learning. Our goal is to analyze
methods of extracting representative features for so-
cial networks, and to understand the usefulness of the
extracted features in making further inferences on the
networks.

In order to accomplish this goal, we will use Character
Movie Network, which is a social graph on relation-
ships between characters in movies, as a representative
of small scale social networks. And we have defined
two specific tasks to evaluate the usefulness of net-
work features in realistic settings, which is to predict
IMDB movie ratings and genre from character movie
networks. Furthermore, we target to gain insights on
the relative significance of features extracted by look-
ing into the results and weights of predictions made
from Machine Learning methods.

2. Relevant Prior Work

There are several relevant papers analyzing feature ex-
traction from different perspectives. One of them is
Mining and Modeling Character Networks (3), which
explores the usefulness of hand-picked basic graph fea-
tures such as clustering coefficient, modularity, pager-
ank, motifs and cliques. Similar to their experiments
which use these features to predict if a character net-
work is real or fake, our experiments also utilizes the
same features they are suggesting for prediction. On
the other hand, Representation Learning on Graphs:
Methods and Applications (7) emphasizes more on re-
cent research progress on automating the process of

ANNAZHUQSTANFORD.EDU
CECILIA4@QSTANFORD.EDU
ZHENQINQSTANFORD.EDU

feature generation by an encoder-decoder framework
that tightly connects with Machine Learning. Inspired
by their idea of node to vector representation, we de-
veloped our algorithm of complete graph to vector
representation. In addition, Fxploiting character net-
works for movie summarization (5) provides us with
one important feature of the network by analyzing the
score of each character, each of which contains infor-
mation on several properties of the network such as
degrees and distances. Their technique of identifying
the main character provides us approaches to extract
features related to main character nodes.

3. Dataset

In this project, we use two datasets:

1. Moviegalazies (http://moviegalazies. com/):
A collection of around 800 character networks ex-
tracted from movie scripts. Each character network is
a weighted undirected graph with weights represent-
ing the interactions and relationships between pairs
of characters. Each movie is also associated with its
IMDB 1Id, through which we can join the character
networks dataset with the IMDB movie dataset

2. IMDB Movie Dataset: The IMDB Movies Dataset
contains information about 14,762 movies. It contains
useful movie features including IMDB-rating, religion,
duration, director, language, genres and so on. The
IMDB-rating and genre are what we will target to pre-
dict in our experiments.

3.1. Data Preprocessing

1. Moviegalaxies: Each Character Movie Network
comes in as an xml file with information on nodes,
edges, and edge weights. To make use of them, we
first scrap all the useful information into csv files, and
then load each network as two directed weighted net-
works(PNEANet object in SNAP) into python. A sub-
tlety here is that ideally we would like to use undi-

Project Report: On Representation Power of Character Network Feature Extraction and Inferences

rected weighted networks to best represent the data.
However, SNAP only supports either undirected un-
weighted graphs, or directed weighted networks. As a
compromise, for each movie m, we created a G- and
a Gundgir PNEANet in the following way:

G yir: For each connection between character u and v
in movie m, create one weighted edge of weight w from
u to v, and one weighted edge of weight w from v to
u, where w is the weight of the connection between
character u and v.

Gundair: For each connection between character u and
v in movie m, create a weighted edge of weight w from
u to v, where w is the weight of the connection between
character u and v.

When computing different network properties and
statistics, we are able to use whatever more conve-
nient, Ggir or Gyndir- For example, Gyngir is more
suitable in computing degree of the network, while
G4ir is more appropriate in computing the diameters
of the network.

2. IMDB Movie Dataset: Based on the IMDB ID of
each character network’s movie meta-data, we query
out all 659 movies that have character graph infor-
mation. Then factorize non-numerical features into
integers. Finally, join the selected IMDB Dataset and
graph properties with IMDB ID as index.

For regression experiment, our prediction target is
IMDB-rating. IMDB-rating is a decimal ranging from
0 to 10 with step size 0.1. From the total 659 movies,
the maximum rating is 9.3 and the minimum rating is
4.3.

For classification experiment, out prediction target is
movie genre. A movie can have arbitrary number of
genres. In IMDB dataset there are 27 total genres, out
of which we choose 12 that have more than 3% of the
659 movies under the genre. Then encode the genre
in to a vector of 0 and 1’s, with 1 representing the
movie is in this genre and 0 otherwise. In Table 1 we
represent the genre count distribution of 659 movies.

Genre Count | 0 1 2 3
Movie Count | 2 | 84 | 229 | 344

Table 1. Histogram of genre count in our dataset

4. Approaches and Preliminary
Findings
In high level, our approach is to first find an abundant

set of features to represent the networks, and then pass
them as inputs to machine learning frameworks.

NETWORK PROPERTY NETWORK USED ForMuLA
num_characters Gundir \4!
num_edges_unweighted Gundir |E|
weighted_degree_sum Gundir Zlv‘ di
weighted_degree_max Gundir maxl‘;‘ d;
weighted_degre_avg Gundir |\1/| Zlvl di
clustering_coef ficients Gundir levll T (?;”_1)
| E
density Gundir ZzlVll -
max_shortest_path Gair MAaT;£je{1...
avg_shortest_path Gair Zi#je{[l‘}i

Table 2. BASIC NETWORK PROPERTIES

d; := OUT DEGREE OF THE I-TH NODE

w; := WEIGHT OF I-TH EDGE

e; := NUM OF EDGES BETWEEN NEIGHBORS OF NODE I
Dij := LENGTH OF SHORTEST PATH BETWEEN NODE I & J

4.1. Graph Representations

We mainly experiment with five types of network fea-
tures in representing the Movie Character Networks.
We will describe below how to extract each types of the
features in details, and summarize the initial findings
and statistics.

4.1.1. BAsic NETWORK PROPERTIES

The basic properties we studied on include number of
characters, number of edges, total weighted degrees,
max weighted degree, average weighted degrees, clus-
tering coefficient, density, diameter (max length of
shortest paths), and average length of shortest paths.
The formulas are specified in Table 2.

See the distribution of basic network properties over
the 773 Character Movie Networks in Figure 1.

We have also attempted to calculate the number of
connected components and the size of the largest con-
nected component for each Movie Character Network.
However, it turns out that there is only one connected
component for each network, and thus the size of the
largest connected components is just the total number
of nodes. As a result, we discard these two features to
avoid highly correlated features.

4.1.2. MOTIF COUNTS

Motifs are potentially very useful in interpreting Char-
acter Movie Networks since they embed the relation-
ship between characters. Therefore, we also look at
the counts of size 3 and 4 motifs in each network. Be-
cause Character Movie Networks are undirected, we
limit our study to undirected version of motifs (Figure

Project Report:

On Representation Power of Character Network Feature Extraction and Inferences

digtgibution of number of characters in

movie

20

150

10

E

0

o E] @ &

distribution of gyerage of weighted degrees for each network in movie

®

0

30

=0

20

150

10

B

o
20 o

char: cte e‘:&g o

character networks _ distrittion of number of edges(unweighted) in movie c

00 W0 W0 W 50

haracter networks

o

average of clustering coefficients in movie character networks

0
=0
x0
x0
x0
150
100

B
o

igtribution of density (weighted) of movie character networks

0

300

0
000 005 010 015 020 025 030 035 040 045

distribution of the diameter of movie character networks

w0
50
10
=0
20
150
10

20

20

150

100

%

o

Figure 1. distribution of the basic network properties over

the 773 Character Movie Networks

2).

/’\ 7% RS

® 0 £ 3

Motlf l Motif 2 Motif 3

BRI N

- - *—0 e —e0

Motif4 Motif 5 Motif 6
Mot|f7 Motif 8

Figure 2. Undirected motifs of size 3 and size 4

The distribution of proportion of each motif over the
networks is shown in the boxplot (Figure 3). it is no-
ticeable that Motif 3 occurs most frequently, which im-
plies that having central characters that connect with a
lot of other characters is a universal pattern in movies.

4.1.3. REPRESENTING CLUSTERING AND
COMMUNITIES

Since we are experimenting with social networks, the
community and clustering structures are worth exten-
sive study of. We mainly use the following two meth-
ods to represent the microstructure:

Box%ot for proportion of each size 3 and 4 motifs counts(undirected)

oo} | T .
o ; P
Wi
oﬁgé;'% 4t

Motif 1 | Motif2 Motif4 Motif3 | MotifS | Motif6 | Motif7 Motif8
Figure 3. Distribution of proportion of each motif over the

773 networks

(a) K-core Features

A k-core of a graph G is a maximal subgraph of G
in which all vertices have degree at least k, and it
represents the clustering structure of the graph. In
our case, the number of k-core of a movie character
network means the number of closely-connected
small communities of characters with appropriate
grouping criteria. In other words, number of k-
core can be interpreted as the number of ways we
can group the characters into sub-communities in
which everyone has interactions with at least k
other people.

For prediction purposes, we extract the number
of k-cores for k € {1,2,3,4,5} for each Character
Movie Network as features.

Modularity

Modularity is a measure of how well a network is
partitioned into communities. Formally,

YL

sES i€Es JEs

Q(G,

We first use two community detection algorithms
(Girvan-Newman algorithm(4) and Clauset-
Newman-Moore algorithm(1)) to partition graphs
into communities, and then compute the mod-
ularities of the resulting communities from two
community detection techniques respectively.

In order to get an intuitive understanding of how
community detection algorithms are performing,
as well as what graphs have high modularities, we
choose two typical Character Movie Networks to
make some visualizations. We choose network 3
and 5, of which one has high modularity and the

Project Report: On Representation Power of Character Network Feature Extraction and Inferences

other has low modularity. Table 3 displays the
modularities of network 3 and network 5 after per-
forming the two community detection algorithms,
and Figure 4 visualizes the original network struc-
tures of network 3 and network 5. We also use
colors of nodes to label the communities detected
by the two algorithms respectively. Obviously, al-
though the two algorithms divide different nodes
to communities, there is a clear pattering of clus-
tering in network 3 with both algorithms, while
it is hard to find any clearly-divided communities
from network 5. As a result, detecting communi-
ties in network 5 results in a low and even negative
modularity.

Graph of network 5

Graph of network 3

® .9 . 0
ha . e - !
% < @

Communities of network 3 using CNM Communities of network 5 using CNM

@0 *0: =
- »] .
@
101 @

Figure 4. Community Detection
Network || Girvan-Newman CNM
3 0.47261204 0.47261204
5 -0.005 0.16

Table 3. Modularities of network 3 and 5 using different
community detection algorithms

4.1.4. EGONET

For each character network, we extract the egonet fea-
tures of the main character. The specific algorithm
involve two steps:

(a) Identify the Main Character

To find the main character, we combine several
centrality measures.

In details, for each Movie Character Network, we
first compute the Closeness Centrality, Between-
ness Centrality, and Page Rank score for each
node, whose formal definitions are elaborated in
Table 4. Then, we select the top 2 central nodes
based on each measure. After that, with the out-
put of the above three measures, we define the
main character of the network to be the node that
is identified as “central” most often, and break ties
randomly.

Centrality Formula
Closeness oo (@) = m

L 9,
Betweenness Chet(T) = Zy,z;ﬂz,agﬁéo gfy(f)

Y= dout(y) n

Table 4. Formal Definition of Centrality Measures

Again, Figure 5 visualizes the central nodes in net-
work 3 and network 5 with the three centrality
measures. In network 3, all three centrality mea-
sures find the same two nodes as the central nodes,
so each central node is selected for exactly three
times. Therefore, we break tie randomly and de-
fine node 8691 as the “main character”. In net-
work 5, however, all three measures regard node
22830 along with a different node as the top 2 cen-
tral nodes, so we pick node 22830 as the “main
character” because it is the only overlap among
three groups of central nodes.

Central nodes in network 3 Central nodes in network 5
@ @

Figure 5. Central Characters: blue nodes are central nodes
found by the three centrality measures (may have overlap-
pings); green node is the “main character” following our
definition

0y.: num of shortest path from y to z
0y (x): num of such paths pass through x

Page Rank () =a Y] cpr(y) 4 1-a

Project Report: On Representation Power of Character Network Feature Extraction and Inferences

(b) Compute the Egonet features

When calculating the Egonet features, we combine
basic features with recursive features of the main
character to obtain more comprehensive structural
information.

For each node i, basic features are the degree of
node ¢, the number of edges in the egonet of node
¢ and the number of edges between node i’s egonet

(0)

and the rest of the graph, as V;*’ shown below.

Recursive features concatenate each node’s basic
features with the mean and sum of their neighbors
features, and we denote it as Vl-(l). We repeat this
process for twice and get VZ-(Q) € R*" to generate
more information about this network. We select
the vectors of our two main characters as parts of
out features of the whole graph.

‘/1(0) = [d“ ini, Outi]

1
y Z o L
Vi ww)

Z Vj(o), Z ‘/J(O)]

JEN () JEN(4)

4.1.5. NETWORK EMBEDDINGS

(a) Node2Vec

Grover et al (2) proposed a method to represent
each node with a low-dimensional vectors of fea-
tures that maximize the likelihood of maintaining
network properties. If two nodes have similar net-
work neighborhoods, then their vector representa-
tions should also be close.

After exploring all the character networks, we find
out there is only one connected component in
each network and the average number of nodes
is around 30, which means our networks are rel-
atively small. Then it is more intuitive to learn
more about the local features rather than the
global features of our networks.

Therefore, we choose the return parameter p = 0.1
which gives high probability in random walk for
each node to return back to the previous node.
Also select the In-out parameter ¢ = 1. This will
be likely to the Breadth First Search method and
generate more helpful information about neighbor-
hood of each node.

For each network, after getting the vector repre-
sentations of each node, we simply calculate the
sum and average of all the node embeddings, and
then add those result vectors to our final feature
representation of each graph.

(b) Anonymous Walk Embedding Feature-Based

(AWE-FB)

Anonymous Walk Embeddings (6) also proposes
insightful method for graph embedding, which is
able to reconstruct graph information as a whole.
There are two approaches to embedding anony-
mous walk, the feature-based and the data-driven
embeddings.

AWE-FB embedding of a graph G is a vector, with
the size of all possible anonymous walks of some
length we choose. i-th element in the vector is the
probability of ¢-th anonymous walk a; on graph G:

V = [p(a1),p(az), ..., p(an)]

When the network is large or the length of anony-
mous walk is long, we couldn’t find all possible
anonymous walks, and therefore they use a Monte-
Carlo sampling method to approximate the true
distribution. Under the situation of Character
Network, we choose anonymous walk length of 7
and sampling 10000 examples for each graph.

Anonymous Walk Embedding Data-Driven

(AWE-DD)

Anonymous Walk Embeddings (6) proposes AWE-
DD method as a solution to the case when a
network has sparse feature-based vector. This
method is really similar to the method of find-
ing representation vectors for paragraph in a text
document.

For each node wu in a graph G, AWE-
DD (6) first samples user-specified k number
of random walks starting from w, such as
T1572, oees Tk Find the corresponding anony-
mous walks representationai,as,...,ar and se-
lect a; as target anonymous walk. Then cal-
culate the probability of that target anonymous
walk given the rest anonymous walk and the
representation vector of this graph d, which is
plailay,...,ai—1,a;41,...,ak,d). Try to maximize
this probability for all nodes in all graphs by find-
ing best representation of anonymous walks for
all graphs and best representation vector of each
graph.

Compare node2vec, AWE-DD and AWE-FB

Figure 6 shows us the similarities between second
network and other networks. The similarity is cal-
culated by distance between the vector represen-
tations of networks. The black edges indicate edge
with weight more than 1 and the blue dashed edges
indicate weight less or equal to 1.

In node2vec algorithm, Network 832 has the high-
est similarity with Network 2, while Network 719

Project Report: On Representation Power of Character Network Feature Extraction and Inferences

Graph of network 2
s ® ® »

Node2Vec: Graph of network 832

Node2Vec: Graph of network 719

T
o g Tieueg.

e
g Bias
o, @t
- e

g pI%; oo

AWE-FB: Graph of network 837 AWE-FB: Graph of network 814

Figure 6. Graphs of Network2, and the most and the
least similar networks with Network2 calculated under
node2vec, AWE-DD and AWE-FB algorithms

has lowest similarity. If we use AWE-DD method,
Network 749 has the highest similarity with Net-
work 2, while Network 696 has lowest similarity.
In AWE-FB method, Network 837 has the highest
similarity with Network 2, while Network 814 has
lowest similarity.

From this figure, we could see that node2vec and
AWE-DD seem to perform better than AWE-FB
because Network 2 have two relative center nodes
with high weights (black edges), which is simi-
lar to the structure of network 832 and network
749, while Network 837 seems to have many cen-
ter nodes with high weights (black edges).

o il PP
e e

Algorithms Kendall’s 7 | Spearman’s p
node2vec, AWE-DD 0.01 0.016
node2vec, AWE-FB -0.028 -0.041
AWE-DD, AWE-FB -0.026 -0.039

Table 5. Rank Correlation of three algorithms

After calculate the similarities rank of all networks
with Network 2 by using these three algorithms,
we could calculate the rank correlation by 2 meth-
ods, Kendall’s Tau and Spearman’s Rho. The re-
sults are shown in Table 5. From this table, we
could see that the correlation of rank vectors be-
tween algorithms are really low and there are even
negative correlations, which means that each algo-
rithm predicts similarities with Network 2 in quite
different ways, and the main cause for this prob-
lem is probably lack of data.

4.2. Predictions
4.2.1. CROSS VALIDATION

Due to limited available data, we use k-fold cross val-
idation for evaluation in all prediction tasks. Ran-
domly divide our training data into 11 equally sized
folds, each with 60 graphs, expect last fold with 59.
For each iteration, use one of the fold as test set and
10 other folds to train the model. Then average the
evaluation result, over 11 iteration as final evaluation.

4.2.2. GENRE CLASSIFICATION

Since there are 12 different genres, and each movie can
have multiple genres, we need to predict 12 different
classification tasks. We use the multi-label classifica-
tion method to predict each genre one by one and out-
put a prediction vector with 12 dimensions. Each el-
ement Ypredict, € {0, 1} represents whether this movie
is in i-th genre.

We define two metrics for genre classification evalua-
tion, precision and recall. Precision is the total num-
ber of true positives divide the sum of true positives
and false positives. Recall is the total number of true
positives divide the sum of true positives and false neg-
atives. To be more specific, assume ypredict, is our pre-
dicted genre label for ith graph and yrue, is its true
label:

> Hypredict, = 1 and Yirue, = 1}
> H¥Ypredict, = 1}
> i H¥predict, = 1 and Yirue, = 1}
> Htrwe, = 1}

Precision =

Recall =

Project Report: On Representation Power of Character Network Feature Extraction and Inferences

1. Support Vector Machine (SVM) use hinge loss to
minimize the distance to margin. The slack vari-
able &, allows some instances to fall of margin but
penalizes them. In addition, with kernels, SVM
maps the inputs into a higher dimensional feature
space. In our experiment we use Gaussian kernels.
SVM has objective:

1 S
min §||w||§+C’Z§i
=1

s.t.Vi, yi(wx; +b) > 1—¢;
£ >0

2. Single layer neural network (Perceptron) is a lin-
ear classifier with weight and bias, and a non lin-
ear output activation function. We use a percep-
tron with Lo regularization penalty term and ap-
ply stochastic gradient descent to update weight
and bias.

4.2.3. RATING REGRESSION

We use mean square error(MSE) to evaluate regression
tasks on all iterations to predict the final test set. More
specifically, we use the following regression methods:

1. Lasso Regression combines least square regression
loss with L; norm regularization on the weights.
Since L1 norm push non-relevant features’ weights
to 0. Lasso regression is helpful for subset selec-
tion. It’s objective is:

min[lwX — Y|3+allwll

2. Support Vector Machine Regression(SVR) uses
the same principles as the SVM for classification.
In the case of regression, the margin (€) is set in
approximation to the SVM, with slack variables
&, and & for each point as soft margin. More
specifically, the optimization problem for SVR is:

1 - .
min §||w||§+0 dE+¢)
=1

s.t. Vi, y;(wx; +0) <e+¢&;
(wx; +b) —y<e+&
£i,6 20
In our prediction we use SVR with linear kernels,
where parameter w can be completely described
as a linear combination of the training observa-
tions using the equation. With linear kernel, we

can easily visualize the weights for each feature
after training completes.

5. Results and Analysis
5.1. Classification

We perform classification on 7 different set of features
mentioned previously, and compare their recall and
precision. We find that there is trade-off between pre-
cision and recall while tuning the hyper-parameters.
For example, Figure 7 represents how precision and
recall change while sweeping different values of C, the
penalty term for SVM.

090
—— Basic properties & Modularity & K-core =
085 Central node egonet < ———
Anonymous walk P

—— Graph embedding with sum

075 Graph embedding with average p
Imdb property V4
070 1 — Anonymous walk prob P 4
Motif Count

080

Precision

065

060 P

4 3 2 -1 0
Log C for SVM

014 | — Basic properties & Modularity & K-core \ g

Central node egonet \ ., o

012 Anonymous walk)

—— Graph embedding with sum
Graph embedding with average p O
Imdb property _ _ g

—— Anonymous walk prob s S -

006 Motif Count ST o

Recall

4 3 3 -1 0
Log C for SVM

Figure 7. Precision & Recall in SVM

Upon tuning SVM for each feature set, we list out the
precision and recall for the SVM with the best hyper-
parameters in Table 6. We find that although IMDB
features set achieves good precision, the model is very
conservative in predicting positive values, and there-
fore the recall is unusually low. On the other hand, two
sets of graph features achieve reasonable precision and
recall rates. One is “basic network property, modular-
ity, and number of nodes”, and the other is “egonet of
central nodes”.

H Features H Precision Recall H
Basic,Modularity,K-core 0.580669 | 0.136838
Egonet of central node 0.608169 | 0.125977
Anonymous walk embedding || 0.528106 | 0.183756
Node2Vec sum embedding 0.532468 | 0.194945
Node2Vec mean embedding 0.513196 | 0.203783
IMDB features 0.84047 | 0.081382
Anonymous walk probability | 0.540545 | 0.187217
Motif count 0.517879 | 0.189929

Table 6. SVM classification on different features

Project Report: On Representation Power of Character Network Feature Extraction and Inferences

Similarly, we present the best Perceptron classification
results in Table 7. Overall, Perceptron classifier per-
forms worse than SVM classifier. This is because per-
ceptron is a linear classifier and has a weaker represen-
tation power than SVM. What’s interesting is that on
motif feature set, perceptron achieves pretty high pre-
cision. This might imply that local structural features
are linearly separable in genre classification problem.

H Features H Precision Recall H
Basic,Modularity,K-core 0.576271 | 0.021465
Egonet of central node 0.636587 | 0.039782
Anonymous walk embedding || 0.319654 | 0.280235
Node2Vec sum embedding 0.468644 | 0.052745
Node2Vec mean embedding 0.280620 | 0.203718
IMDB features 0.692090 | 0.023341
Anonymous walk probability || 0.281971 | 0.329475
Motif count 0.788136 | 0.022059

Table 7. Perceptron classification on different features

Overall, for both SVM and Perceptron, features that
are mesoscale characterizations of the networks, such
as motifs, and egonet features turn out to be more use-
ful. One justification could be that in movies, which
is a miniature of the real world social networks, com-
plexity within small close communities are what really
distinguish one network from another.

5.2. Regression

Similarly, we first tune the hyper-parameters, regu-
larization coefficient, alpha, for Lasso regression and
penalty term, C, for SVM Regression. Figure 8§ shows
how Mean Square error(MSE) changes during tuning.
In addition, Table 8 lists the MSE for different fea-
ture sets and regression methods after tuning. Among
these features, basic graph property, modularity and
k-core count with Lasso regression output the lowest
MSE.

085 o=
a5 r —— Basic properties & Modularity & K-core
" / Central node egonet
¢ // Anonymous walk
g 095 y ~—— Graph embedding with sum
2 Graph embedding with average
& i Imdb property
2
~—— Anonymous walk prob
Motif Count
105 S
-110
-1 -6 -5 -4 -3 -2 -1 0 1
Log alpha ‘or Lasso Regression
0.85 e ——— ————
090 Y
8 NG
z —— Basic properties & Modularity & K-core N
2 -095 Central node egonet e
3 s
3 Anonymous walk NS
= —— Graph embedding with sum .
-1.00 Graph embedding with average \\\
Imdb property G
—— Anonymous walk prob N
105 Motif Count N

-7 -6 -5 -4 -3
Log C for SVM Regression

Figure 8. Regression parameter tuning

H Features H Lasso SVR H
Basic,Modularity,K-core 0.830236 | 0.834300
Egonet of central node 0.865048 | 0.833672
Anonymous walk embedding | 0.830521 | 0.833632
Node2Vec sum embedding 0.830876 | 0.833323
Node2Vec mean embedding 0.830404 | 0.832751
IMDB features 1.056176 | 0.834290
Anonymous walk probability || 0.830521 | 0.835874
Motif count 0.835694 | 0.833596

Table 8. Mean Square error on different features

To further investigate the significance of impact from
different network properties, we visualize the regres-
sion weight on network features and then select sev-
eral features with highest average absolute weight from
different feature sets. The features we select include:

e From basic graph property: max_shortest_path
e 2-core node count
e CNM Modularity & GN Modularity

e From anonymous walk embedding: embed_108,
embed 41, embed_26, embed_1

e From central node egonet: node_0-0, node_0_11,
node_0_12, node_0_3

e From IMDB dataset: year, ntOfWins, nrOfNom-
inations.

Project Report: On Representation Power of Character Network Feature Extraction and Inferences

The final MSE with theses features is
0.8640806810970486 for Lasso Regression and
0.8212124857898835 for SVM Regression. Figure 9
displays the average weights from both classifiers for
these features.

075 { mmm SVR
. 050 Lasso Reg
)
|
— — — [l===] —
s 0.00 — — -_—
@
o —0.25
=]
g -050
-0.75
D D~ 2 o > 5 9 ~ Ny m 2 8 & 5
F o & N Y Fo N N o §§ '33?
K \"’A’ > -] > o1 S AL 5 & ~
S 5 g 8§ & Fy¥ oo g &S
$E6 £ FE £ 358 §8 s
g 3 § § & ¢ s 3
s' g s £ g
S " S &
S i &
&

Figure 9. Lasso & SVR Regression weights on best features

One interesting observation from Figure 9 is that al-
though most of the network features take on nonzero
weights, which means that they are at least somewhat
relevant to our regression task, all of their weights are
relatively small compared to weights of IMDB features.
There are many possible explanations.

First, for AWE-DD embeddings, one possibility is that
we didn’t find a good random walk length or the em-
bedding length for each graph. We set random walk
length to be 10 in the experiments and embedding
length to be 128 for each graph, however we only have
773 graphs which is pretty few compared to the num-
ber of features. More fine-tune on those parameters
are needed.

Secondly, the networks we used might be too small.
The number of nodes range from 2 to 100. For such
small graphs, network features might not have enough
variations to be informational, especially for difficult
tasks such as regression.

In addition, IMDB features are more explicit than net-
work features. We can think of IMDB features them-
selves as a prediction result from the network charac-
teristics. From this perspective, they are products of
preprocessing from the more lower level network fea-
tures, and thus regression tasks are more likely to use
them directly because they embed more useful infor-
mation.

5.3. Limitations and Future Directions
5.3.1. SIZE OF DATA SET

The data set we use is too small for a machine learning
task, both in terms of number of data points and size
of the networks. Also, due to the specialty of Charac-
ter Network, we couldn’t do data augmentation on this
dataset as people usually do on many other datasets,
because each edge and node in Character Network
have unique meaning from movies. Therefore, a fu-
ture direction could be to find a more comprehensive
data set, and redo the feature extractions and predic-
tions on it to get more robust prediction results. More
aggressively, instead of finding a bigger data set, we
could even augment the original data set by generat-
ing similar networks in terms of network embedding.

5.3.2. OVERFITTING AND LACK OF
GENERALIZATION

A lot of the machine learning algorithms we tried are
actually overfitting to the training set. Thus, another
potential direction is to study on ways of removing fea-
tures from the feature vectors. While we tried stan-
dard ways of feature selection such as Lasso, it would
be better to have some algorithms that incorporate do-
main knowledge of networks in eliminating features.

5.3.3. AUTOMATE FEATURE EXTRACTION

In feature extraction phases, although we have applied
automatic feature encoding methods such as Node2Vec
and AWE, most of the features are still manually com-
puted. And the manual computed features, especially
features that incorporate community information, like
modularity, turn out to work better in our prediction
tasks. Therefore, another promising research topic
would be to develop more general algorithms for net-
work feature auto-encoding.

References

[1] Cristopher Moore Aaron Clauset, M. E. J. Newman.
Finding community structure in very large networks.
2004.

[2] Jure Leskovec Aditya Grover. node2vec: Scalable fea-
ture learning for networks. 2016.

[3] Ethan R. Elenberg David F. Gleich Anthony Bonato,
David Ryan DAngelol and Yangyang Hou. Mining and
modeling character networks. 2016.

[4] M. E. J. Newman M. Girvan. Community structure in
social and biological networks. 2002.

[5] O-Joun Lee Jai E. Jung2 Quang Dieu Tran,
Dosam Hwang. Exploiting character networks for
movie summarization. 2017.

Project Report: On Representation Power of Character Network Feature Extraction and Inferences

[6] Evgeny Burnaev Sergey Ivanov. Anonymous walk em-
beddings. 2018.

[7] Jure Leskovec. William L. Hamilton, Rex Ying. Rep-
resentation learning on graphs: Methods and applica-
tions. 2017.

