Predicting Success of Restaurants on Yelp using Attribute-Specific
Spatial Clusters

Heidi Chen (hchen7), Edward Lee (edleel), Tyler Yep (tyep)!

Abstract— Many studies have sought to predict the success
of a restaurant given its surrounding competition and
characteristics [1] [2]. However, such studies have not
taken into account the topologies in restaurant distribution,
often assuming that only basic heuristics like surrounding
restaurants within a given radius affect the performance of
the restaurant. Restaurants may not always be distributed
as such, and restaurants outside of such thresholds may
still affect the performance of the given restaurant. As
an example, restaurants far from each other on a busy
street may affect each other more than restaurants nearby
but not on that street. Not just that, such studies often
do not distinguish between type-specific restaurant den-
sity and global restaurant density. For instance, Chinese
restaurants may be dense in an area because they are
in a community like Chinatown, or simply because they
are in a very dense area with many restaurants. The
goal of our project is to account for irregular restaurant
distribution in determining how being in a community of
similar restaurants as compared to a more diverse array
of restaurants affects a restaurant’s success. We intend
to achieve this by: (1) identifying communities through
a combination of spatial clustering and multiplex graph
community detection techniques, (2) evaluating the the-
oretical success of these community detection algorithms
on a set of null models, and (3) comparing predictions
of success among restaurants between, inside, and outside
such communities.

I. INTRODUCTION

A key problem in marketing is that of geographic market
segmentation. The goal of geographic segmentation is
to divide a region according to social and demographic
characteristics. This activity is especially important in
the restaurant industry, where the geographic place-
ment of a restaurant can significantly affect its future
success. One factor that contributes to the importance
of geographic placement is the placement of similar
restaurants in the surrounding area, which contributes
to the competition a restaurant faces [2]. For example,
two Chinese restaurants close together may compete for
the same market of customers looking to eat Chinese
food. However, it may also be the case that a cluster of
Chinese restaurants may draw more overall customers
looking to eat Chinese food to the area and thus increase
business to both. We thus want to quantify the effect

*This work was not supported by any organization
1Heidi, Edward, and Tyler are with the Department of Computer
Science, Stanford University

surrounding, similarly-typed restaurants can have on an
individual restaurant’s success.

Past works [1] [2] have approached the definition of
surroundings in a very simple manner, using the distri-
bution of restaurants within some given radius as their
feature. While this allows the metric to take into account
how the density of similarly-typed restaurants compares
with the overall density of restaurants in the area, it
still fails to take into account two factors. The first is
how competition is likely not directly correlated with
distance. For example, a pair of restaurants far from each
other on a busy street are likely bigger competitors of
each other than a third restaurant nearby that is not on
that street. The second is that of restaurant density. The
radius threshold in a metropolitan area may be signifi-
cantly smaller than in a suburban or rural area, meaning
a single threshold is not applicable to all settings. Thus,
we plan on using and developing algorithms that can be
used to connect and cluster similarly-typed restaurants
together normalized to overall restaurant density, as
well as connect and compare the success of restaurants
inside and outside these clusters. As far as we can
tell, not much work has been done in the space of
identifying type-specific clusters. Thus, we plan to draw
upon existing research done in spatial clustering and
community detection.

In Section II, we provide an overview of previous work
that has inspired this paper, grouped into three cate-
gories: studies on predicting restaurant success, work
done on graph-based spatial clustering methods, and
community detection algorithms that could be applied
to graphs with attributes. In Section III, we describe
our approach to this problem, including the dataset, our
evaluation methods, and an in-depth explanation of the
algorithms we have run. In Section IV, we discuss the
results of our graph construction, community detection,
and the accuracy of our predictions of restaurant success
based on these algorithms and various supervised learn-
ing models. In Section V, we identify key takeaways
from our research and explore possible future directions
for this topic space.

II. RELATED WORK

Since we are focused on applying spatial clustering
and community detection algorithms to restaurants, we
decided to look at three different areas: (1) existing ap-
proaches to relating restaurant surroundings to restaurant
ratings, (2) graph-based spatial clustering techniques,
and (3) community detection in type-specific settings.

A. Restaurant Surroundings

There were 2 main restaurant-related papers that affected
our problem setup.

Wang et. al [1] used features like review-based market
attractiveness, review-based market competitiveness and
quality, and density to run regressions to output the pre-
dicted number of Yelp check-ins per month for a given
candidate location (specified as an area with a 200m
radius). Their results indicated that textual, review-based
features using sentiment analysis were better predictors
of Yelp check-ins than the geographic features. However,
they run into the aforementioned problem of using a
simple metric like radius that may not accurately capture
how surrounding geography affects check-ins. Addi-
tionally, this paper’s results are questionable because
the authors trained their model on exclusively non-
chain restaurants, and then tested and evaluated it on
chain restaurants which may not have been totally valid.
Even so, the paper provides good ways of testing the
effect of clusters on restaurant success. We therefore
hope to re-investigate their claims with our dataset,
using clustering techniques to more accurately capture
geographic competitiveness and taking care to avoid the
same assumptions in our evaluation.

Athey et. al [2] leveraged GPS movement data in order
to predict demand for certain types of restaurants during
lunchtime. The study determined that restaurant choices
available and people’s personal preferences are the two
major factors that lead to choosing a restaurant for
lunch (personal preferences include the type of food,
price ranges, travel times, etc). The paper conveys two
major findings. First, a person’s willingness to travel
differs significantly depending on the type of restaurant,
as Japanese, New American, and Vietnamese restau-
rants have a much larger user travel radius compared
to sandwich, pizza, or Mexican cuisines. This is an
excellent basis for our project, as this finding means that
it is likely communities of similar-cuisine restaurants in
close proximity will have more success because of their
similar travel times. It also indicates that we may want
to investigate travel time as a distance metric rather than
geographic distance.

B. Spatial Clustering

Many spatial clustering methods have been developed
over the years to group points in some spatial domain
into clusters. There are many different types of spatial
clustering methods, ranging from partitioning-based to
grid-based algorithms. Of particular note are those that
are graph-based, which allow for an adaptivity to various
applications that other methods often lack. For example,
partitioning-based algorithms like k-means typically re-
quire the user to select a k, and grid-based algorithms
require the user to select some granularity for the grid
size.

An early graph-based approach by Harel and Koren [3]
attempts to use short random walks to modify existing
edge weights such that edges between nodes in a cluster
will be higher than edges between different clusters.
They use two different metrics: Neighborhood Simi-
larity, which is essentially a proximity-based distance
metric, and Circular Escape, which relies on the intuition
that a path between nodes of different clusters will be
less likely that paths between nodes of the same cluster.
Neighborhood Similarity seems to be faster but perform
worse than Circular Escape. One flaw of the algorithm
is that it due to the short path-lengths and the need to
run random walks on different subgraphs, long-range
connections in larger clusters are much more difficult to
capture.

Nowadays, cutting-edge graph-based spatial clustering
algorithms seem to focus on extracting explicit features
from a constructed graph and clustering based on those
features. The constructed graphs tend towards 2 main
algorithms: k-Nearest Neighbors [4], and, more recently,
Delaunay Triangulation [5] [6]. k-Nearest Neighbors-
based algorithms like CHAMELEON [4] combine the
algorithm with a subsequent agglomerative clustering on
the properties of the generated graph to cluster points.
While this is effective, it suffers the same problem as
the aforementioned partitioning- and grid-based tech-
niques, which require prior knowledge. On the other
hand, Delaunay-based algorithms like AUTOCLUST [6]
exploit information like the variability of edge weights
to identify boundaries in clusters, which allows the al-
gorithms to adapt to different datasets without requiring
user input.

Although all the algorithms mentioned are likely not
directly applicable to our problem, as they typically
focus on non-attributed nodes, they still provide valuable
insight into how to construct graphs and identify possible
attributes that can be used to detect attribute-specific
communities.

C. Community Detection

Many complex networks cannot be represented using a
single edge type. Instead, to represent the complex in-
teractions between nodes, networks with multiple layers
each sharing the same set of nodes but different edge
sets have risen in popularity. These types of networks
are known as multiplex networks. Although we were
not able to find graph-based spatial clustering algorithms
that map directly to the multiplex space, there has been
work on identifying layer-specific communities.

Kuncheva and Montana [7] do this by extending existing
monoplex random walk algorithms by allowing the
random walker to travel across layers, using transition
probabilities dependent on local topological character-
istics, thus the name Locally Adaptive Random Transi-
tions (LART). Probabilities are calculated to encourage
jumps between nodes with similar topologies and dis-
courage the opposite. This allows the random walker
both explore multilayer-spanning communities and get
“trapped” in single-layer communities. The random walk
generates a distance measure that can then be used to
cluster nodes in the network together through typical
clustering methods. Kuncheva and Montana find that
the algorithm is “better able to detect layer specific
communities and communities that are shared across
several but not all layers”, as desired. This makes LART
quite relevant to our problem space, where restaurant
communities likely do not share all the same charac-
teristics, and thus finding layer-specific communities is
more relevant.

However, it is difficult to say how well random walks,
or more generally, any community-detection algorithm
would work on spatial data. Due to the graph construc-
tion techniques used on spatial data, nodes only have
edges to other nodes in their physical proximity, mean-
ing the interconnectedness of target clusters are likely
not very different from those of its surroundings. And
since modularity metrics, which community-detection
algorithms use for measuring the “goodness” of a split,
depends on interconnectedness of target communities
being higher than usual (the exact opposite), we don’t
know how well community detection algorithms will
work in our problem. Even so, Kuncheva and Montana
provide valuable insight into the topological character-
istics across multiple layers of multiplex networks.

III. APPROACH
A. Datasets

We used the Yelp Dataset [8] of 188,593 businesses in 10
metropolitan areas. However, since we require distances

between restaurants, for our exploration of algorithms
we focus on a single area, namely Toronto, Canada, due
to its sizeable number of restaurant nodes (7578) and
the existence of a Chinatown in the area, which gives a
quick and easy qualitative measure of the performance
of our community detection algorithms. In our results
section, we will also explore Calgary and Montreal,
other Canadian cities of similar demographic and data
set size (2793 and 3682 restaurant nodes, respectively.)

B. Evaluation Methods

In order to quantitatively evaluate our clustering al-
gorithms, we want to evaluate both how well each
algorithm performs when identifying attribute-specific
communities, as well as predicting restaurant success.

Data: 2 maps of pixel to category My and to density
Mp as in subfigures (a) and (b) of figure 1
Result: Map from generated points to categories Mp
Extract C' from images. Choose D, pjp, and p.;
Mp = {};
foreach pixel p(x,y) do
cat = Mc[pl;
dens = Mplpl;
if rand(0,1) < p; then
Initialize empty list for Mp[p];
foreach category c € C do
if rand(0,1) < Dgens + [cat = category|p.
then
| Add cto Mp[p]
end
end

end

end
return Mp;
Algorithm 1: Point generation algorithm

To evaluate how well our clustering algorithms identify
attribute-specific communities, we need to be able to
compare our detected communities to some ground-
truth. Although Yelp does have a community attribute
for each node, this community is not the same as the
community we are looking for, as we want attribute-
specific communities rather than demographic commu-
nities specifically. To get this, we must have spatial data
with ground truth communities. As far as we know, no
such data is available. Spatial clustering papers like [4]
and [6] do have point distributions with varying densi-
ties, but none offer points with varying attributes. Thus,
we create our own graphs with the following parameters:
categories set C, densities D where D; is the probability
each pixel is a point for density level ¢, pixel-to-category
distribution M, pixel-to-density distribution M p, base

s L
2 4
L]
(a) category distribution

(light blue and brown are
categories)

(b) density distribution
(darker is more dense)

(c) points generated (red = brown, green = light
blue, blue = noise)

Fig. 1: Point generation

probability of a point being a given category pp, and
additional probability of a point being a given category
in a cluster of the same category p.. as in algorithm 1. An
example of this process can be seen in figure 1. Once we
have our clusters, we use metrics F1 score to see if the
clustered areas are correctly labelled for each category,
including no category.

We also want to identify the impact our detected com-
munities have on the success of a restaurant. Our plan
follows the approach used by Wang et al. [1] by running
a regression on the data using graph-based features like
clustering coefficient and cluster size to determine the
weight and sign each feature has on predicting success
metrics like rating, review count, and number of check-
ins. We will focus on review counts for our regressions.
By doing our regression on multiple different commu-
nity detection approaches, we identify how well each
algorithm does in encoding information that can be used
to predict restaurant rating.

C. Algorithms, Techniques, and Models

Due to there not being much directly related work in
this area, we decided it would be better to have many
different algorithms and evaluate how well each does at
both identifying correct nodes in the generated graphs
and predicting restaurant ratings on actual data.

Also, to fit the limited time and resources we have, we

decided to focus solely on layer-specific communities
rather than attempting to identify communities that may
occur across multiple layers of the graph. This allows
us to simplify the problem down from a graph with
arbitrary layers and instead focus solely on the base layer
(that with all nodes) and the layer relevant to the attribute
we are examining. In the Yelp dataset for example, if
we were looking for Chinese-specific communities, this
would be the layer with all restaurants and the layer with
solely Chinese restaurants.

1) Algorithm: k-Nearest Neighbors with Filter: 1t is
possible to identify attribute-specific communities using
k-nearest neighbors by first running k-nearest neighbors
on the full graph ignoring attributes. Intuitively, this
means restaurants in an attribute-specific cluster will
have a higher chance of connecting to restaurants with
the same attribute, while restaurants in global clusters
(i.e. dense areas with restaurants of all different at-
tributes) will be more likely to connect to restaurants
of different attributes. Then, to find the layer-specific
communities for a given attribute, we would be able to
choose only those edges connecting nodes of that given
attribute and, with a good k value, identify the clusters as
the connected components of the resulting graph. Then,
by filtering out those connected components smaller than
a given threshold (in this case, the sum of the average
and standard deviation of the sizes of all connected
components), we should be able to identify the most
prominent communities.

2) Technique: Delaunay Triangulation: The other way
of constructing graphs to capture distance information
between nodes is through Delaunay Triangulation, which
has risen to popularity in spatial clustering with tech-
niques like AUTOCLUST [6] and ASCDT [5] using it
to cluster points with great success. Although Delaunay
Triangulation has performed quite well in attribute-less
spatial clustering, its utility in attribute-specific commu-
nity detection remains to be seen. We cannot rely on
splitting a globally generated Delaunay diagram based
on categories like in k-nearest neighbors as there are
much fewer edges between each node.

3) Technique: Edge- and Angle-based Normalization:

Instead, to take advantage of the rich distance informa-
tion captured by Delaunay Triangulation, we attempt to
apply effective single-layer spatial clustering methods
to our graph. To do this, we must first combine the 2
relevant graphs, the base layer and the attribute-specific
layer. We decided the best way to do this was by
normalizing the edge weights of the attribute-specific
layer on the edge weights of the base layer. The intuition
behind this is that the length of an edge corresponds to
the density of the graph at that given region. Namely, as

the density of nodes increase, the average edge length
of the graph constructed should decrease. Thus, by
normalizing, we are able to cancel out the change in
density due to overall density shifts and only examine
the changes in attribute-specific density.

We explore 2 possible ways of doing this: normalization
based on the average of all edges of a given node
in the base layer, which we will denote edge-based
normalization, and normalization based on only the
lengths of the edges surrounding the given edge of a
given node in the base layer, which we will denote angle-
based normalization. These normalized graphs will be
used in the following algorithms.

More formally, given a layer [(e.g. the base layer), we
can use Delaunay Triangulation to construct a graph G(*)
with vertices V) and edges E(") where edge (u,v) €
E® has weight W" (u,v). Let mel(l,u) be average
length of an edge from node u in G, Also let the base
layer be b and attribute-specific layer be a. We know
that V(@ C V).

We can define edge normalization based on these defini-
tions. Namely, given base layer b and attribute-specific
layer a, we can construct the edge-normalized graph
Glee) (which we want to be unweighted) as: Ve =
V(@) and that for each (u,v) € E(®):

W@ (u,v)
mel (b, u)

W@ (v, u)

W u,v) = mel (b, v)

Angle normalization is conceived as a way to capture
more directional information than edge normalization.
By only focusing on a select few edges in the same
direction, we can better capture the densities of the
graph in different directions of a given node. We expect
this to help angle normalization-based methods to be
more accurate than edge normalization techniques when
distinguishing nodes at the boundaries of clusters.

Angle normalization requires choosing the 2 or 3 closest
edges of the base layer in terms of angle. Given u,v €
V, let angle(u, v) be the angle of the edge from node u
to v. We can find this given the coordinates of v and v
(T, yu) and (z,,y,) in code as math.atan2 (y, —
Yur Ty — Ty). Thus, the algorithm for choosing the
closest edges of the base layer to a given edge can
be expressed as in algorithm 2. Given set S, ,) and
S(v,u) and ave(S) being the average lengths of all edges
in S, we can define angle-normalized graph G(®) as:
V(@) = V(2) and that for each (u,v) € E(®),

W@ (u,v)
ave(S(y,v))

W (v,u)
ave(S(v,u))

WD (y,v) =

Data: E®), E@, (u,v) € B®
Result: Set of edges S(,,,) whose angles are similar to
angle(u,v)

Extract C' from images. Choose D, pp, and p.;

A=

foreach {(m,n)|(m,n) € E®), m =u} do
| Add (angle(m,n), (m,n)) to A;

end

sort A on first element;

if 3g € A where g.first = angle(u,v) then

Get elements f,h € A 1 place before and after g
in A;

return { f.second, g.second, h.second};

else

Get the 2 elements f,g € A surrounding where
angle(u,v) would be if placed in A;

return { f.second, g.second};

end
Algorithm 2: Algorithm for choosing edges to use in
angle normalization

4) Algorithm: Edge Removal with Filter: The simplest
algorithm we can do with the normalized graphs is to
remove all long edges. The intuition here is that longer
edges in the normalized graph correspond to edges in
low-density regions. And since we are more focused
on finding high-density communities, we can safely
ignore these edges. Thus, given the normalized graph,
we can continuously remove edges which are longer than
expected until connected components form and consider
these connected components as our clusters. We find
through our experiments that removing all edges above
the average edge length in two rounds before filtering out
all smaller-than-average connected components gives the
best results, though this varies from graph to graph.

If, however, we wanted to find both high- and low-
density clusters, we would likely need a different ap-
proach similar to that from AUTOCLUST, where rather
than examine length of edges, we examine how they
deviate from the norm at a given node, as edges from
a node connecting different clusters are likely to have
different normalized lengths than those at the same node
connecting to within the cluster.

5) Algorithm: Random Walk: To explore the possibili-
ties of detecting attribute-specific communities through
random walks, we begin with previously mentioned
algorithms described by Harel and Koren [3] based on
Neighborhood Similarity and Circular Escape. Once we
create a graph G’ using the normalized graph G where
W' (u,v) = m to promote the likelihood of the
random walker going towards closer nodes than farther
nodes, we can run the random walk based either on

Neighborhood Similarity and Circular Escape.

In Neighborhood Similarity, we run random walks with
a length of 3 to construct vectors for each node based on
the probability of reaching other nodes in the graph and
use the similarity of these vectors as the new weights of
the vectors. We can use such small walk-lengths because
we only care about similarities between nodes that share
an edge. We can then cut off all weights below a certain
threshold to get a good clustering.

On the other hand, with Circular Escape, we run ran-
dom walks on the subgraph surrounding each edge and
identify the probability of reaching the target node and
then returning back to the start node. We expect this
probability to be lower when the edge is between nodes
in different clusters and high when the edge is between
nodes of the same cluster.

The other approach we considered exploring was modi-
fying LART [7] to promote exploring as far as possible
in the base layer and promote staying within a cluster in
the attribute-specific layer. However, after observing the
sub-optimal performance of both Neighborhood Similar-
ity and Circular Escape in spatial data, we decided that,
in the interest of time, we would skip LART in favor of
non-random-walk-based algorithms.

6) Algorithm: Louvain: We also attempted to explore
how modularity optimization would perform on both
graphs constructed from k-nearest neighbors as well
as the aforementioned normalized graphs, so we opted
to use the Louvain method for community detection
[9] to construct communities out of these graphs. We
don’t expect modularity to perform well as a metric
of clustering success since the graphs likely don’t have
much variation in edge density between nodes of high
density and nodes of low density.

IV. RESULTS

A. Predicting High-Density Clusters on Constructed
Spatial Data

To evaluate the performance of our algorithms, we
conducted experiments using graphs we generated our-
selves. We constructed 7 different point distributions
using the aforementioned point generation algorithm. A
point is considered in a high-density cluster if it was
generated in a colored region of the category map and
is of that category. For example, a light-blue point would
be considered high-density if it was generated in a light-
blue region of the space.

We then ran our algorithms on the point distribution
and identify these high-density clusters and return the
predicted set of high-density points. An example of

L § ¢

<
e,

(a) flipped brown cat-
egory distribution from
figure 1

(b) clusters identified by
k-nearest neighbors with
k=38

Fig. 2: Comparison between category distribution when
generating points and final clusters identified

what was generated is given in figure 2. Each algorithm
was given a list of hyperparameters to try. In k-nearest
neighbors, all k£ from 4 to 15 are explored, with k = 9
being the optimal most often. In edge removal of both
edge- and angle-normalized graphs, 1 to 3 rounds of
removing edges above average were done, with 2 rounds
usually being most optimal. In Neighborhood Similarity,
cutoffs from 0.1 to 0.7 were explored, with a cutoff of
around 0.58 being most optimal. On the other hand, in
Circular Escape, 0.21 was usually the best threshold.
And last, the Louvain method on the k-nearest neighbors
graph had an optimal % that varied wildly from 8 to 19
when exploring ks from 5 to 20. The top F1 score of
each algorithm is listed.

We then use these F1 scores to compare to the ground
truth. The results are described in figure 3, where results
are ordered by F1 score in graph “sectioned”. Baseline
is also included, where baseline essentially considers all
points of that given category high-density.

complex] complex2 boundaryl boundary2 boundary3 sectioned simple
erangle 0.8949 0.9046 0.9865 0.9151 0.9542 0.9638 0.9858
knn 0.9389 0.9338 0.9746 0.8988 0.9472 0.9605 0.9893
eredge 0.9120 0.8877 0.9752 0.8346 0.9053 0.9018 0.9673
ns,edge 0.4649 0.6019 0.7292 0.7996 0.9017 0.8539 0.8271
ns,angle | 0.5569 0.6894 0.8368 0.8124 0.9061 0.8154 0.9095
ceangle | 0.5790 0.5801 0.7801 0.8003 0.8974 0.7964 0.7944
ce,edge 0.4881 0.5045 0.7591 0.7987 0.8974 0.7317 0.7841
nledge 0.4353 0.4953 0.6836 0.6236 0.8024 0.7057 0.8263
baseline | 0.3873 0.4128 0.6714 0.7982 0.8974 0.7040 0.7632
nlangle 0.4310 0.5137 0.7247 0.6723 0.7707 0.7027 0.8599
kl 0.4504 0.6159 0.4789 0.4696 0.3446 04535 0.6323

Fig. 3: F1 scores of the different algorithms on identify-
ing nodes in high-density clusters for a single category
in 7 different generated graphs (with hyperparameter
search). Top 3 performing algorithms for each graph are
bolded.

Based on the figure, we see that k-nearest neighbors
and edge removal with both edge and angle normal-
ization are consistently the top 3 performing algo-
rithms. k-nearest neighbors seems to perform the best
most often, then angle-normalized edge removal, and
last edge-normalized edge removal. We see that angle-
normalized edge removal usually performs better than
edge-normalized edge removal, indicating that angle

normalization is able to capture important directional
information that allows it to make better cuts on spatial
data than edge normalization.

These three being the most effective is somewhat ex-
pected due to the number of points in each graph,
which is consistently above 10,000. The size of the
graphs generated mean that the small walk-length in
the random walk-based approaches likely cannot cap-
ture the many enormous high-density regions in each
distribution. Similarly, the size and spatial nature of the
graphs generated may mean that the Louvain method for
community detection is either too inexact or just plain
unfit for the task at hand.

The top 3 performing algorithms are then the algorithms
we focused on using to predict restaurant success be-
tween restaurants inside and outside of attribute-specific
communities and. Special attention is also given to the
Louvain method since it provides not just communities
of high-density, but low-density as well, which may be
useful when analyzing the properties of non-community
restaurants.

B. Qualitative Evaluation of Algorithms on Yelp Data

To qualitatively evaluate our graph construction and
edge selection, we focused on identifying Chinese-
specific communities due to the easily recognizable
Chinese restaurant district in Toronto: Chinatown. While
this spot is quite small relative to all of Toronto and
thus may be difficult when zoomed out on the map, its
location in the urban area of Toronto means that it will
be a good way of testing whether our algorithms are
identifying Chinese-specific communities or just high-
density areas in general. We expect our algorithms to
find Chinatown and other Chinese-specific communi-
ties just like it, including Richmond Hill, a commu-
nity northwest of the Toronto urban area with a well-
established Chinese community.

We begin with the highest-performing algorithm: k-
nearest neighbors with k£ = 9, whose results can be seen
in figure 4. The two main connected components (lower
left and top right) are the locations of Chinatown and
Richmond Hill. Thus, we see that k£ nearest neighbors
is able to identify these attribute-specific communities
quite well, even if they might be sparser than otherwise
expected.

We also attempt to identify communities using edge
removal, as can be seen in the four graphs of figure 5. We
see that while we are able to somewhat identify China-
town and Richmond Hill, 2 rounds of filtering is too little
and 3 rounds is too much. Not just that, we are unable
to isolate just Chinatown itself, and instead pick up

LN

e

Fig. 4: k-nearest neighbors with £k =9

&

%

<K
RSV

X

k

(b) edge-normalized with
3 rounds of filtering

SV

(a) edge-normalized with
2 rounds of filtering

B

(d) angle-normalized with
3 rounds of filtering

(c) angle-normalized with
2 rounds of filtering

Fig. 5: Edge removal on different normalizations and
number of rounds of filtering

restaurants in the surrounding urban area. While it may
be that Chinese restaurants are denser here, we believe
it’s more likely that the algorithm has factored in overall
density into the equation. Thus, edge removal performs
worse than expected, indicating that we may need to
make a more granular measure of filtering and/or adjust
the normalization factor, perhaps by square-rooting each
component in the normalization formulas to adjust for
how density correlates with average edge length in
Delaunay graphs.

C. Predicting Success of Restaurants with Community-
based Features

Having evaluated the accuracy of various graph con-
struction and community detection algorithms, we se-
lected the most successful methods (k-Nearest Neigh-
bors and edge removal with normalized angles and
edges) to establish a prediction model for restaurant
success.

We chose three similar Canadian cities, Toronto, Cal-
gary, and Montreal, for our train, dev, and test sets
respectively. To account for type-specific restaurant den-
sity vs. global restaurant density, we considered two
versions of this data set: one where we included all
restaurant nodes in these cities, and one where we
filtered the cities’ data down to restaurants that fell in
the top 10 most common Yelp categories (i.e., Chinese,
Mexican, Coffee & Tea, etc.). Before filtering, Toronto
had 7578 nodes, Calgary had 2793 nodes, and Montreal
had 3682 nodes. After filtering, Toronto had 3720,
Calgary had 1220, and Montreal had 1393 nodes, for
a total of 5113 restaurants in our filtered data set.

The features we considered were:

1) Node Degree

2) Node Clustering Coefficient

3) Community Edge Density

4) Average Review Count in Community
5) Community Size

For the full dataset, we extracted features on communi-
ties built from the entire graph. For the filtered dataset,
we split each graph into a set of induced subgraphs based
on their category and extracted features per node from
communities in the subgraphs. We then concatenated the
separate categories’ node-level features into a unified
feature matrix for each graph.

We defined our labels for restaurant success as review
count, which approximates the number of customers a
business receives. To focus on the effect of community
features, we decided not to add star rating or number
of check-ins to our labels, as review counts seemed to
theoretically be the most likely indicator of success.

For each graph construction and community detection
method, we evaluated several machine learning models.
We found that Linear Regression performed the best
overall in classifying restaurant success using commu-
nity features. Decision Trees were also notably adept,
but they tended to overfit to the training set (with MSEs
of almost 0) and yielded much higher test errors (in the
tens of thousands).

We also experimented with more complex models, such

Fig. 6: Louvain communities on KNN-constructed graph

as SVMs, Logistic Regression, and Adaboost, but they
perform roughly the same as Linear Regression. More
hyperparameter tuning may be necessary to unlock the
full potential of these models.

1) k-Nearest Neighbors: We selected k = 9 for our
algorithm because of its high performance in our the-
oretical evaluation, and ran KNN to construct graphs
from both the full data set and the category-filtered
data. We considered any connected component to be
a community, and performed feature extraction based
on these community assignments. We ran this algorithm
both keeping all connected components, and filtering out
the smaller components (as described in our approach
section). We found that KNN run on the full graph,
without filtering out smaller connected components,
was among the better predictors of restaurant review
counts.The discrepancy between this result and the fil-
tering success in our theoretical evaluation may be due
to the smaller size of the Toronto data set.

2) Edge/Angle-Normalized Edge Removal: Starting
from the Delaunay graphs, and normalizing edges using
the methods mentioned above, we identified the remain-
ing communities based on edge density and attempted to
predict restaurant review counts. In terms of MSE, these
community features did not help any of our predictors
classify review counts. In all three of the cities, adding
the community features ultimately resulted in a worse
MSE than KNN or Louvain.

3) Louvain: After using the Louvain Algorithm to par-
tition our KNN-graph into communities, we extracted
community-level features and surprisingly found that
the Louvain algorithm yielded the highest net result on
all three of our selected cities. In Fig. 7, we show the
results of Linear Regression on each of our community
detection algorithms.

As our baseline, we ran a linear regression on a feature
matrix of one feature that was always set to zero. We

Linear Regression on Review Counts w/ Community Features
B TrainSet [TestSet1

Test Set 2

KNN Radius

KNN Unsegmented

5000 10000

Mean Squared Error (MSE)

Fig. 7: Linear Regression results.

Louvain vs. Baseline Non-Graph Features
B Train @ Test Test 2
Baseline

Stars Only

Louvair

R2 Score

Fig. 8: Comparison with baseline.

also ran a linear regression with a feature matrix with
only star ratings. The comparison of these regressions
with Louvain in terms of cumulative R? score is shown
in Figure 8; Louvain does significantly better than both
non-graph-based approaches.

The weights from Louvain (Figure 9) indicate that
clustering coefficient on an uncategorized graph may
contribute the most to an accurate prediction of restau-
rant success. One possible interpretation of this is that
overall density is a better measure for restaurant success
than anything category-specific.

Feature
‘Weights

Degree Clustering Comm. Edge Density Comm. Size Comm. Review Count
-0.2569 6.704 0.8015 0.0256 0.1419

Fig. 9: Weights from Louvain linear regression.

V. CONCLUSION

Through a detailed process of graph construction, com-
munity detection, and prediction algorithms, we have ex-
perimented with and explored several different possible
algorithms for identifying attribute-specific communities
in spatial data, as well as several key observations about
the role of such communities on restaurant success.

A. Algorithms

Through experimentation with different ways of con-
structing and normalizing graphs, as well as identifying
edges and nodes to remove, we have identified the
top 3 performing algorithms on our generated point
distribution: k-nearest neighbors with a filter, and basic
edge removal on an edge- or angle-normalized graph.
These algorithms are able to consistently achieve an F1
score of above 90% compared to baselines that can range
from 30% to 89% indicating that these methods is not
just successful, but also consistent.

However, there are still issues with our algorithms. The
most prominent indicator of this is that edge removal
is unable to accurately capture Chinatown from amidst
the Toronto dataset. Due to our lack of time, we were
unable to generate points that accurately reflected the
spatial topology of the restaurant distribution, which
is a lot more geometric than the randomly-generated
point distributions we used to evaluate our algorithms.
Another problem may have been the large scale of the
point distributions used. With such large point distri-
butions, identifying exact boundaries of each cluster
becomes less important than finding the general area of a
cluster. With smaller graphs, the higher number of points
on boundaries would likely increase the importance of
accurately identifying edges between clusters, allowing
for better identification of clusters in smaller graphs like
the restaurant dataset. Additionally, we were unable to
address many of the edge cases that modern single-layer
clustering methods have placed much importance on,
like necks and bridges. Since most of our algorithms
are based on normalizing one layer over another layer,
we could not extend most of these algorithms to identify
spatial clusterings in more than 2 layers.

Despite all these problems, we believe that the work we
have done is a good first step in exploring the space of
identifying attribute-specific clusters in spatial data, and
that this work can be extended to be more robust and
work with more than one base layer and attribute layer.

B. Restaurant Success

We found that the Louvain-detected communities on the
full, unsegmented graph yielded significant improvement
to the MSEs of our restaurant review count success
metric. Although Louvain performed poorly on the large
graphs of our theoretical evaluation, it did well on
our smaller graphs based on city-sized Yelp datasets
(Iess than 10,000 nodes), and predicted review counts
significantly better than non-graph-based features or the
baseline. This indicates that Louvain shows promise
for identifying communities that can be used to predict

restaurant success, as opposed to any attribute-specific
communities.

Although we initially expected category-segmented
KNN to yield the best results in prediction, it was
outperformed by the unsegmented KNN and Louvain
algorithms. Possible explanations for this discrepancy
include that there may be factors contributing to restau-
rant success that are not solely linked to restaurant
categories. Restaurants may do well because they are
near a diversity of restaurants, or because they are simply
in a dense, popular food hub; this information is not
captured as well by our segmented subgraph features.
In the future, we would like to implement more robust
and complex multiplex graph construction algorithms
like LART [7], for identifying more nuanced type-
specific restaurant communities which may improve our
prediction.

For additional future studies, we may explore different
distance or travel metrics and repeat our graph commu-
nity techniques on American and larger cities to see the
optimal graph sizes for community effects.

REFERENCES

[1] Feng Wang, Li Chen, and Weike Pan. Where to place your next
restaurant?: Optimal restaurant placement via leveraging user-
generated reviews. Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, pages
2371-2376, 2016.

[2] Susan Athey, David Blei, Robert Donnelly, Francisco Ruiz, and
Tobias Schmidt. Estimating heterogeneous consumer preferences
for restaurants and travel time using mobile location data. AEA
Papers and Proceedings, 108:64-67, 2018.

[3] David Harel and Yehuda Koren. Clustering spatial data using
random walks. In Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’01, pages 281-286, New York, NY, USA, 2001.
ACM.

[4] George Karypis and Eui-Hong. Chameleon : A hierarchical
clustering algorithm using dynamic modeling. 1999.

[5] Min Deng, Qiliang Liu, Tao Cheng, and Yan Shi. An adaptive
spatial clustering algorithm based on delaunay triangulation. Com-
puters, Environment and Urban Systems, 35(4):320 — 332, 2011.

[6] V Estivill-Castro and I Lee. Argument free clustering for large
spatial point-data sets via boundary extraction from delaunay
diagram. Computers, Environment and Urban Systems, 26(4):315
— 334, 2002.

[7]1 Zhana Kuncheva and Giovanni Montana. Community detection in
multiplex networks using locally adaptive random walks. CoRR,
abs/1507.01890, 2015.

[8] Yelp. Yelp open dataset. 2018.

[9] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and
Etienne Lefebvre. Fast unfolding of communities in large net-
works. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, 2008.

10

