Network Analysis and Community Detection on GitHub

https://github.com/rameshvarun/github-network—analysis

Jarrod Cingel
Stanford University

jcingel@stanford.edu

Abstract

Technology companies increasingly target
open-source communities for hiring. In the same
way that consumer brands analyze Facebook and
Twitter to optimize advertising, recruiters should
analyze GitHub to identify communities and im-
portant voices. We perform network analysis on
two graphs generated from GitHub user inter-
actions. The first User-Follow graph captures
follow relationships, while the second User-PR
graph captures pull requests between users. For
each of these graphs, we analyze degree distribu-
tions, PageRank, reachability, roles (using RolX),
and communities (using the Leiden algorithm).
With find that the GitHub graph is extremely un-
equal, with a distinction between “regular” users
and “leaders.” We also find that the graph has
one large community that roughly corresponds to
modern application development.

1. Introduction

GitHub is the most prominent and widely-used
online version control platform for software de-
velopment projects. Users sign up for GitHub and
create a profile, which includes self-reported “lo-
cation” and “company” fields. Users can then cre-
ate repositories (repos), which are units of code
that can be published to from any Git client. Other
users can open pull requests on a repo - pull re-

Varun Ramesh
Stanford University

vramesh2@stanford.edu

quests represent patches that the creator wishes to
be incorporated into that repo. The owner of a
repo can either accept or deny the pull request.

On top of user profiles, GitHub also features
“organizations,” which are a special type of user
that represents a group of regular users. Organi-
zations can own repositories. Users can be part of
any number of organizations.

In addition to code productivity tools, GitHub
also incorporates features common across social
networks [11]. Users have an information feed
that is displayed on the homepage when they log
in. Users can follow other users, which adds the
followee’s activity to the follower’s information
feed. Users can also watch repos, which puts ac-
tivity related to that repo on the user’s feed. Users
can’t follow organizations - only regular users.

Because of these characteristics, GitHub acts
as a unique blend between a social network and
engineering tool. The goal of this project is to
perform a variety of analyses on this network. We
begin by analyzing basic characteristics like de-
gree distribution and reachability, then move on
to perform more advanced analyses like role ex-
traction and community detection. We also ex-
amine multiple ways to generate a graph from the
GitHub data, in order to understand the benefits
and trade-offs of each one.

2. Previous Work
2.1. Network Algorithms

Clauset et al. introduced the most common ap-
proach to community detection, often referred to
as the Clauset-Newman-Moore (CNM) algorithm
[3]. They define a community as a densely con-
nected sub-region of nodes in a graph, and seek to
optimize an objective called modularity. Later on,
Blondel et al. introduce the Louvain algorithm [1]
which is simpler, faster, and more effective at op-
timizing modularity. Traag et al. build on this to
create the Leiden algorithm, which is even faster
and produces better communities [12]. More de-
tails on the Leiden algorithm are available in sec-
tion 4.5.1.

The RolX algorithm [7] was first introduced
by Henderson et al. to establish structural sim-
ilarities between nodes. The authors found that,
unlike communities, roles provide information
about node-level behavior. The authors applied
RolX to a book co-purchasing network generated
from Amazon data for political books. They used
roles to distinguish between “central” books and
“periphery” books.

Reachability analysis [2] was first introduced
by Broder et al. The authors generated reachabil-
ity plots from link networks on the world-wide-
web. They discovered that the web had a “bowtie”
structure - a single giant strongly-connected com-
ponent with an inlink-set and an outlink-set.

PageRank [10] was first introduced by Page et
al. The authors used the algorithm to find impor-
tant nodes on an early version of the Web graph.
They found that this was better for extracting rel-
evant nodes from a query than title search alone.

2.2. Social Network Analysis

Several other authors have applied network al-
gorithms to large real-world social networks. For
example, Ugander et al. applied community de-
tection to Facebook, which can be understood
as an undirected graph with users as nodes and
friendships as edges [13]. The authors find that

communities tend to form among geographically-
similar users, but without regard to traditional de-
mographics like race and gender, especially when
controlling for country and region.

Similarly, Huberman et al. examine Twitter as
a social network [8]. They find that Twitter users
only interact with a small subset of the people
they follow. They conjecture that Twitter has a
dense follower network, but a much sparser yet
more influential interaction network.

Both of these studies focus on undirected net-
works. Facebook’s friend relationship naturally
lends itself to an undirected model, while for the
Twitter network, a concept of friendship was arti-
ficially created to make the graph undirected. We
build on this prior work by producing different
analyses across directed graphs. We still use undi-
rected graphs for community detection.

3. Data set

We obtained our data from the GHTorrent
project [6]. We downloaded GHTorrent tables
that were publicly available as part of Google’s
BigQuery service. The data is dated to April 1st,
2018. We generated two graphs from our data ta-
bles, the first of which attempts to capture influ-
ence, and the second of which attempts to capture
actual code contributions.

3.1. User-Follow Graph

The User-Follow graph is a directed graph con-
sisting of users. When a user follows another user,
an edge is created pointing from the follower to
the followee. This graph consisted of 24 million
users, 25 million edges, and an average clustering
coefficient of 0.025. However, we found that over
19 million nodes had no in or out follow edges.
We decided to prune those nodes. This gave us
a new graph with 4 million nodes (the number of
edges stays the same). The pruned clustering co-
efficient was 0.133.

3.2. User-PR Graph

The User-PR graph is also a directed graph
over users. When a user opens a pull request to a
repository, we create an edge from that user to the
owner of the repository. This graph consisted of
44 thousand nodes and 42 thousand edges. This
graph has a clustering coefficient of 0.0123.

Unlike the User-Follow graph, the User-PR
graph more accurately captures code contribu-
tions. Furthermore, it provides more equal foot-
ing to organizations, as organizations on GitHub
cannot be followed, but can be contributed to.

4. Methodology

In order to perform our analysis, we used two
network libraries for Python - SNAP [9] and
igraph [4].

4.1. Degree Distribution

We began by replacing all of the directed edges
in our graph with undirected ones, and by plotting
the proportion of nodes with a given degree. We
then included the directed edges and plotted the
in and out degrees on the same graph.

4.2. PageRank

We analyzed our graphs using SNAP’s imple-
mentation of PageRank, selecting the top 100
users by PageRank score. As a baseline, we com-
pared these to the list of 100 most followed users.

4.3. Reachability Analysis

We performed a reachability analysis on each
of the two networks. These reachability figures
were estimated by drawing a sample of random
nodes from each graph and computing their in-
ward and outward breadth-first searches. We then
sorted nodes by their reach and plotted the result-
ing data.

4.4. Role Extraction

We used the RolX algorithm [7] to extract roles
of nodes in the graph. Our basic feature vector
included the degree of each node, the number of

edges coming into the egonet of each node, and
the number of outgoing edges from the egonet of
each node. We used recursive feature estimation
with 1 level of recursion. Once this was com-
pleted, we used k-means clustering with k& = 8
to identify centroids that corresponded to 8 roles.

We also used principal component analysis
(PCA) on the resulting feature vectors - we plot-
ted the first two principal components.

4.5. Community Detection

After initial testing, we found that SNAP’s im-
plementation of the CNM algorithm did not scale
to the size of our data set. Instead, we chose to go
with the Leiden algorithm, which is designed for
much larger networks. We used the original Lei-
den algorithm implementation along with igraph
in order to perform community detection on our
data [12].

4.5.1 Leiden Algorithm

Community detection algorithms like CNM [3]
and Louvain [1] attempt to optimize modularity.
Modularity is defined below, where m is the num-
ber of edges in the network, A is the adjacency
matrix, k; is the degree of node ¢, and c; is the
community of node :.

1 kik;
Q= %Z {Az‘j - 2177;]1[@' = ¢j]
irj
The Louvain algorithm optimizes modularity
by local moves - at each iteration nodes are greed-
ily moved to the community that produces the
greatest increase in modularity. After each series
of local moves, the nodes in each community are
merged into super-nodes in an aggregation step.
The Louvain algorithm is simple, but has many
issues. One issue is that, when a bridge node is
moved from one community to another, this can
result in an internally disconnected community.
Furthermore, the Louvain algorithm is slow be-
cause it visits all the nodes in the network on each
local-move phase.

The Leiden algorithm fixes these issues with
the Louvain algorithm. It does so by adding an
extra step between local moves and aggregation
called “refinement.” After we generate a parti-
tion P from local moves, the Leiden algorithm
refines each community in P into one or more
sub-communities. The refined communities are
generated by randomly merging nodes within a
community. Once complete, we use the refined
partition for the aggregation phase, but assign the
super-nodes to the communities from the origi-
nal partition. The Leiden algorithm also improves
speed by only visiting a node when its neighbor-
hood has changed.

However, the Leiden algorithm does not pre-
vent the tendency of Louvain to incorrectly merge
small communities into larger communities. This
is a fundamental limit of modularity called the
“resolution limit” [5]. This can be resolved by
using other objective functions like the Constant
Potts Model (CPM). However, we chose to stick
with modularity for it’s simplicity.

4.5.2 Evaluating Communities

To evaluate our communities, we borrowed a met-
ric from the Louvain paper called homogeneity.
Blondel et al. evaluate cell-phone network com-
munities by determining what percentage of users
in a community speak the dominant language of
that community. We do the same analysis, but in-
stead of language, we look at three features. The
first is organizations, which is GitHub’s notion
of groups of users that collectively own and con-
tribute to repositories. The second feature is the
company a user works at - this is self-reported on
the user’s profile. Finally, we look at the user’s
location, also self-reported on their profile.

S. Analysis Results

5.1. Degree Distribution

The degree distributions for the User-Follow
and User-PR networks are shown in Figure 1 and

Figure 2, respectively. In the User-Follow net-
work, we can see that the vast majority of nodes
have only one neighbor, but this frequency di-
minishes sharply as degree (both in and out) in-
creases. This is strongly indicative of a prefer-
ential attachment model - a few users get many
followers. Once one has followers, it becomes
more likely for them to obtain additional follow-
ers. This also applies to out-degree, meaning that
users who follow many other users are likely to
follow even more.

In the User-PR network, we observe a similar
shape and trend, but see differences when we dis-
tinguish between in and out degree. Users with
a small degree tend to make more contributions
to other repos, but receive few contributions to
their own repos. The out-degree in the User-
PR network falls much more sharply than the in-
degree. This means that users with a high degree
receive more contributions than the contributions
that they make.

Degree Distribution of GitHub User-Follow Network Degree Distribution of GitHub User-Follow Network

— G serollow etwark | _ Gl s Falow etk Degres
B T G Uer Fllow hetwrk - Ou Deree

rtion of Nodes with a Given Degree (Iog)

Propo

100 10! 107 10° 10¢ 108 100 10! 107 0
Node Degree (log) Node Degree (log)

Figure 1. Degree distributions (Combined, In, and
Out) for User-Follow network.

Degree Distribution of GitHub User-PR Network Degree Distribution of GitHub User-PR Network

100
g 107
a

— GitHub User-PR Network —— GitHub User-PR Network - In Degree
GitHub User-PR Network - Out Degree

100 100
Node Degree (log) Node Degree (Iog)

Figure 2. Degree distributions (Combined, In, and
Out) for User-PR network.

Table 1. The top 10 users according to PageRank
scores from the User-Follow graph.

Rank | Username | PageRank x10*
1 torvalds 8.82
2 JakeWharton 6.93
3 michaelliao 5.25
4 githubpy 4.44
5 Tj 3.84
6 mojombo 3.30
[paulirish 3.24
8 defunkt 2.93
9 ruanyf 2.90

10 gaearon 2.76

Table 2. The top 10 most followed users on GitHub.

Rank | Username | Followers
1 torvalds 80184
2 JakeWharton 48120
3 ruanyf 39102
4 Tj 37402
5 addyosmani 32666
6 paulirish 29690
7 yyx990803 29200
8 gaearon 27415
9 sindresorhus 25701

10 mojombo 25112

5.2. PageRank
5.2.1 User-Follow Graph

The top 10 users by PageRank is shown in Table 1
- this can be compared to the top 10 most followed
users, as shown in Table 2.

It turns out these two methods of finding “im-
portant” users produce similar results. Many
users appear in both lists, though in different or-
ders. The Jaccard similarity between the top 100
most followed users and the top 100 users by
PageRank is 0.626, demonstrating how similar the
lists are.

Many of the top users on both lists make sense.

torvalds is the username of Linus Torvalds,
the creator of the Linux kernel. JakeWharton
is the username of Jake Wharton, the main-
tainer of many popular Android development re-
pos. Going down the list, we also see Tom
Preston-Warner, the co-founder of GitHub, and
Dan Abramov, the creator of the Redux frame-
work for React.

However, some users on the PageRank list
seem highly unusual. Take user githubpy for
example, who has only three followers yet some-
how ranks highly on the PageRank list. To illu-
minate this situation, we can look at the egonet
for githubpy, shown in Figure 3. From this,
we see that githubpy is most likely receiving
it’s PageRank score from michaelliao, a user
who appears on the 100 most followed list and the
top 10 PageRank list.

Figure 3. githubpy Egonet

5.2.2 User-PR Graph

The top 10 users by PageRank on the User-PR
graph are shown in Table 3. Intuitively, this shows
us the users which receive many pull requests
on their repos. Unsurprisingly, these “users” are
most often organizations like Mozilla or Ruby on
Rails that have extremely popular, highly con-
tributed to projects. Two individuals are in the
top 10 - Hadley Wickham (hadley) and Ken-
neth Reitz (kennethreitz). These individuals
are well known in the R and Python communities
respectively, and each has several highly popular
and heavily contributed to repos.

Table 4 shows the results of PageRank run
on the reversed User-PR graph - it gives us

Table 3. The top 10 users according to PageRank on
the User-PR graph.

Rank | Username | PageRank x10*
1 mozilla 25.72
2 hadley 15.92
3 jenkinsci 14.59
4 twitter 11.96
5 rails 11.43
6 puppetlabs 10.71
7 kennethreitz 9.72
8 visionmedia 9.57
9 heroku 9.56
10 doctrine 9.28

Table 4. The top 10 users according to PageRank on
the reversed User-PR graph.

Rank | Username | PageRank x10*
1 GunioRobot 22.24
2 giovanniramos 5.04
3 kenmazaika 4.16
4 ertemplin 341
5 ITix 3.35
6 phil5 3.31
7 JonnyJD 3.29
8 srs81 3.27
9 calvinchengx 3.25
10 lamblin 3.16

users who open pull requests on a wide vari-
ety of repositories. As expected, the top slot is
taken by GunioRobot, a bot. Although it no
longer exhibits this behavior, from 2011-2012,
GunioRobot opened hundreds of pull requests
on repos with the only changes being the re-
moval of trailing white-space in code. Some of
the other users on the list, such as kenmazaika
seem to legitimately be users who open lots of
pull-requests to many repos - perhaps an under-
appreciated behavior.

5.3. Reachability Analysis

The results of our reachability analysis on the
two networks are shown in figures 4 and 5. Figure
4 shows the reciprocity between inward and out-
ward traversals in the User-Follow network. This
would suggest that there is indeed a single large
strongly connected component in the structure of
the GitHub network, just like the bow tie structure
of the World Wide Web [2].

The User-PR graph, on the other hand, does not
seem to have a single large strongly connected
component. The sampled nodes with the largest
reachability have far lower proportional reacha-
bility than in the User-Follow counterpart. This
can be explained based on the more stringent cre-
ation method of the User-PR graph. The acts
of both owning a repository and creating a pull
request on a repository both imply much higher
level of responsibility, and therefore stronger as-
sociation, than is implied in the construction of
the User-Follow graph. Additionally, the results
in the User-PR graph show that repository own-
ers generally don’t contribute to other reposito-
ries, resulting in fragmentation.

Reachability using Inlinks - User-Follow Reachability using Outlinks - User-Follow

ooooooo
2500000

ooooooo
2000000
1500000 —
uuuuuuuuuuuuuu
nnnnnn 500000
o o

00 02 [06 o8 To 00 02 04 06 08 1o

Figure 4. User-Follow Graph Reachability - 100 Node
Sample

Reachability using Inlinks - User-PR Reachability using Outlinks - User-PR

Figure 5. User-PR Graph Reachability - 10, 000 Node
Sample

5.4. Role Extraction

The results of role extraction are shown in fig-
ures 8 and 9 for the User-Follow and User-PR
networks, respectively. For each network, 1000
nodes were randomly selected for the RolX al-
gorithm. Our first observation is that cluster
membership changes only slightly when the or-
der of PCA reduction and k-means clustering is
switched. This indicates a relative success in our
dimensionality reduction; a large amount of the
feature vector variance is captured in the first two
principal components.

In the User-Follow network, the vast majority
of the randomly sampled nodes are clustered to-
gether very tightly, with a select few outliers be-
longing to clusters with only one or two mem-
bers very far from the central concentration. This
seems consistent with our results from the degree
distribution; the majority of nodes in the graph
have a low degree but are connected to a select
few nodes with extremely high degree. These cor-
respond respectively to the large cluster of nodes
in the middle left and all of the outliers spread
across the rightmost portion of the graph.

The User-PR network paints a different picture
due to it’s stricter edge criteria. Nodes are dis-
tributed rather linearly in two places, eventually
converging to a vertex in the upper left corner of
the chart. This seems symptomatic of more di-
verse, varied roles that share more similarity with
one another relative to the drastically differing
primary roles in the User-Follow network.

We can take this analysis a step further by ex-
amining the egonets of a selection of nodes. We
can take any selection of nodes corresponding to
the dense, tightly-clustered regions in Figures 8
and 9, and find that the result typically matches
the form of Figure 6, indicating a very small
neighborhood of direct relationships, for both fol-
lowers and pull-requests.

When we look at the outliers on the PCA plots,

we see a very different result. Examining the
upper-rightmost node in the User-Follow network

results in an egonet that is too dense to easily
show. The node in question corresponds to the
user eval963, who is a student at Sias Univer-
sity in China. Although she only owns 21 reposi-
tories, has only 17 followers, and follows only 42
people, her egonet is quite dense because many of
her follows are reciprocated. Follows that are not
reciprocated generally belong to very large orga-
nizations, like JP Morgan or Tencent.

For the User-PR network, we can look at the
outlier in the bottom right corner. We plot the
egonet in Figure 7. It turns out that this node
corresponds to the user bnoordhuis (Ben No-
ordhuis), who is a member of IBM among other
prominent organizations. He owns several widely
followed Node.js libraries, and he also is a fre-
quent contributor to other repositories. It seems
that bnoordhuis is one of the rare users who con-
tributes at the pull-request level to many projects,
and also has many users contribute heavily to his
own projects.

Figure 6. User-Follow and User-PR Networks: Egonet
of arbitrary node in central, dense region.

User-PR Outlier Neighborhood

Figure 7. User-PR Network: Egonet of user bnoord-
huis, an IBM employee who owns more than 130
repositories.

RolX Algorithm Principal Components - Clustering on Feature Vectors

RolX Algorithm Principal Components - Clustering on PCA
B

500000 .
500000 .

M. e . :

500000

1000000 * 1000000

1500000 b .
00 02 0. o6 o8 10 o0 02
First Principal Component 1e7

04 o6 o8 10
First Principal Component 1e7

Figure 8. User-Follow Network: Clustering precede
PCA in the leftmost image, while clustering followed
PCA in the rightmost image.

RolX Algorithm Principal Components - Clustering on Feature Vectors RolX Algorithm Principal Components - Clustering on PCA

50 . .

o ‘:.:

- *° . o *
o

- ge .
.

50

Second Principal Component

0 0 100 150 200 25 300 350 0 s 100 150 200 25 300 350
First Principal Component First Principal Component

Figure 9. User-PR Network: Clustering preceded PCA
in the leftmost image, while clustering followed PCA
in the rightmost image.

5.5. Community Detection

5.5.1 User-Follow Graph

The Leiden algorithm gave us 116,986 communi-
ties with an average size of 39.32 and a standard
deviation of 3011.08. The distribution of commu-
nity sizes is shown in Figure 10.

User-Follow Community Sizes

105 4

=
o
=

Frequency
-
o

%

=
(=]
~

10! 4

100 4

0 100000 200000 300000 400000
Size of Community

Figure 10. Histogram of User-Follow graph commu-
nity sizes.

We have a wide spread of community sizes

- most communities are very small. Thus,
to make further analyses more tractable, we
pruned communities smaller than 5 members.
We also see that there is one large commu-
nity of size 474,072. This community contains
daimajia, a user with many popular Android
repos, mitsuhiko, a user with many popu-
lar Python repos, LeaVerou, a user with many
popular JavaScript repos, and mat z, the creator
of Ruby. This large community likely repre-
sents “modern” app development, which extends
from Android and JavaScript front-ends through
Python, Ruby, and Node.js back-ends.

The results of homogeneity analysis for each of
the three selected features is shown in Figure 11.
This shows that many communities are not very
homogeneous along either of the features. How-
ever, for some features, at least a few communi-
ties are more than 50% homogeneous.

User-Follow Homogeneity Analysis

=
o
W

Frequency
=
L2

0Org. Homogeneity

=

o
W
L

Frequency
=
o
]
1

Company Homogeneity

=

o
T
s

Frequency
=
L)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Location Homogeneity

Figure 11. Homogeneity analysis of communities on
the User-Follow graph.

In addition to homogeneity analysis, we also
looked at the Jaccard similarity between com-
munities and feature-extracted groups. Table 5
shows organizations ranked by their maximum
Jaccard similarity to any community. Looking at
the largest of these organizations, Anktech, we
see that it consists of a small amount of users in
India who mostly follow each other, and don’t fol-
low the GitHub community at large.

Unfortunately, the results for other features de-
generated to pairs of small groups and communi-
ties with only one user in common. This suggests
a low correspondence between real-world groups
and the extracted communities.

Table 5. Organizations ranked by maximum Jaccard
Similarity to any detected community.

Rank Organization Size | Jaccard Sim.
1 BucksCommCSC | 8 0.18
2 tangentsnowball | 12 0.17
3 Anktech 27 0.14
4 escalation-point 17 0.14
5 InTradeSysTeam | 12 0.13

5.5.2 User-PR Graph

Running the Leiden algorithm on the User-PR
graph produced 8,188 communities, of mean size
5.44 and a standard deviation of 35.56. Looking
at the histogram in Figure 12, we can see a much
more even spread of sizes, though we still have
many small communities. The largest community
has a size of 1,202, and contains addyosmani, a
prolific member of the web development commu-
nity, defunkt and kevinsawicki who work
on the Atom text editor, and mat z the creator of
Ruby. Once again, this large community likely
corresponds to modern application development
which encompasses web and server technologies.

Figure 13 shows the result of homogeneity
analysis on the User-PR graph. It demonstrates
a more even spread, but at the same time the most
homogeneous communities are less homogeneous
than the most homogeneous communities in the
User-Follow graph.

6. Conclusion

Our analyses have shown that GitHub’s graph
is highly unequal. Degree distribution, role ex-
traction, and PageRank show that the graph can be

User-PR Community Sizes

106 4

103 4

Frequency
=
o
>

=
o
9

10° 4

0 200 400 600 800 1000 1200
Size of Community

Figure 12. Histogram of User-PR graph community
sizes.

User-PR Homogeneity Analysis

0Org. Homogeneity

Laalll

Company Homogen'eity

Frequency

Frequency

Frequency

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Location Homogeneity

Figure 13. Homogeneity analysis of communities on
the User-PR graph.

roughly split into “regular users” who have lim-
ited influence and “leaders” who have outsize in-
fluence. This is similar to many other social net-
works like Twitter that also follow a power law
distribution. This is highly indicative of the pref-
erential attachment model.

Furthermore, as shown by reachability analy-
sis and community detection, many of GitHub’s
users exist in one highly-connected community.
This large community roughly corresponds with
modern application development. It includes An-
droid and browser JavaScript frontends, though

unexpectedly does not include i0S. This may be
because the Android open-source community is
stronger. A quick search of repos by tag confirms
this - 46,257 repos are tagged with “android,”
but only 17,084 repos are tagged with “ios.” This
large community also includes server-side lan-
guages like Python, Ruby, and Node.js. Many
of the other communities are small collections of
users that don’t connect to the wider GitHub user
base.

7. Group Work Breakdown

Varun Ramesh - Set up initial data tables /
code, generated User-Follow graph, performed
PageRank analysis, and ran community detection
/ analysis.

Jarrod Cingel - Generated User-PR graph,
performed degree distribution analysis, per-
formed reachability analysis, implemented RolX
feature extraction, and ran PCA / K-means.

References

[1] V. D. Blondel, J.-L. Guillaume, R. Lambiotte,
and E. Lefebvre. Fast unfolding of communities
in large networks. Journal of Statistical Mechan-
ics: Theory and Experiment, 2008(10):P10008,
2008.

A. Broder, R. Kumar, F. Maghoul, P. Ragha-
van, S. Rajagopalan, R. Stata, A. Tomkins, and
J. Wiener. Graph structure in the web. Computer
networks, 33(1-6):309-320, 2000.

A. Clauset, M. E. Newman, and C. Moore. Find-
ing community structure in very large networks.
Physical review E, 70(6):066111, 2004.

G. Csardi and T. Nepusz. The igraph software
package for complex network research. Inter-
Journal, Complex Systems:1695, 2006.

S. Fortunato and M. Barthélemy. Resolution
limit in community detection. Proceedings of
the National Academy of Sciences, 104(1):36—
41, 2007.

G. Gousios. The ghtorrent dataset and tool
suite. In Proceedings of the 10th Working Con-
ference on Mining Software Repositories, MSR

(2]

(31

(4]

(5]

(6]

10

(71

(8]

[9]

[10]

[11]

[12]

[13]

"13, pages 233-236, Piscataway, NJ, USA, 2013.
1IEEE Press.

K. Henderson, B. Gallagher, T. Eliassi-Rad,
H. Tong, S. Basu, L. Akoglu, D. Koutra,
C. Faloutsos, and L. Li. Rolx: structural role
extraction & mining in large graphs. In Pro-
ceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data
mining, pages 1231-1239. ACM, 2012.

B. A. Huberman, D. M. Romero, and F. Wu. So-
cial networks that matter: Twitter under the mi-
croscope. arXiv preprint arXiv:0812.1045, 2008.

J. Leskovec and R. Sosi¢. Snap: A general-
purpose network analysis and graph-mining li-
brary. ACM Transactions on Intelligent Systems
and Technology (TIST), 8(1):1, 2016.

L. Page, S. Brin, R. Motwani, and T. Winograd.
The pagerank citation ranking: Bringing order
to the web. Technical Report 1999-66, Stanford
InfoLLab, November 1999. Previous number =
SIDL-WP-1999-0120.

F. Thung, T. F. Bissyande, D. Lo, and L. Jiang.
Network structure of social coding in github. In
Software maintenance and reengineering (csmr),
2013 17th european conference on, pages 323—
326. IEEE, 2013.

V. Traag, L. Waltman, and N. J. van Eck. From
Louvain to Leiden: guaranteeing well-connected
communities. ArXiv e-prints, Oct. 2018.

J. Ugander, B. Karrer, L. Backstrom, and C. Mar-
low. The anatomy of the facebook social graph.
arXiv preprint arXiv:1111.4503, 2011.

