vec2rec: Network Embedding for Item-to-Item

Recommendation
Xiaowen Lin Zijian Wang Bosen Ding
Stanford University Stanford University Stanford University

veralin@stanford.edu zijwang@stanford.edu bosend@stanford.edu

Abstract

Recommendation systems are ubiquitous in our life. Many of these recom-
menders use item-based approaches to predict the “rating” or “preference” a
user would give to an item [10]. However, such systems normally use only a
part of the available data and/or features. In this report, we study a network
embedding approach based on node2vec [8] to incorporate the richer avail-
able information and further improve recommendations. Our investigations
show that semantic information could be captured from such embedding, for
example, vec (‘“McDonald’s’’) - vec(‘“KFC’) + vec(‘‘Starbucks’’) is
close to vec (‘“Tim Hortons’’). These embedded information will enable
downstreaming tasks that utilize network embeddings for recommendation
systems.

1 Introduction

Recommendation systems are software tools and techniques providing suggestions for items
to be of use to a user [10]. It has been proved to be useful for addressing a portion of the
information overload phenomenon [2]. One of the most widely-used method is item-based
suggestions. One advantage is that it often yields higher click-through rates than those
hybrid approaches (e.g., user-item based) [1]. For example, in e-commerce sites, item-based
suggestions like frequently bought together have achieved great success. Another advantage
is that it does not have to consider a large number of users. The item network makes the
computation more efficient and avoids the cold-start problem for new users.

Even though these traditional algorithms performed well in application, they only use part
of the available information. With access to significantly increased amount of computational
resources, we propose to study a network embedding approach based on node2vec [8]
to incorporate the richer information and further improve recommendations. Inspired by
word2vec [5], which successfully encodes semantic information in word embedding, we
experiment with item embedding from node2vec and show that they can capture the rich
contextual information in the network. For example, based on Yelp Business dataset in
Toronto, we found that vec (‘“McDonald’s’’) - vec(“KFC’) + vec(‘‘Starbucks’®) is
close to vec (‘“Tim Hortons’’) where “Tim Hortons” is the largest coffee chain in Canada.
The results show that learning good vector representations for network nodes are possible
and they could have good application in context-aware recommendations.

CS224W Project Report

2 Related Work

The key method that will be applied in our project is node2vec [3]. Node2vec learns low-
dimensional representations for nodes in a graph by optimizing a neighborhood preserving
objective. This method of network representation, together with other methods like Deep-
Walk, was inspired by word2vec [5]. In this section, we will 1) introduce the background
of word2vec 2) discuss popular methods for feature representations in the network, e.g.,
DeepWalk [8] and node2vec 3) explore recent work on link prediction utilizing node2vec
[1] 4) outline their applications in our project.

2.1 Word2vec [5]

Word2vec, firstly proposed by Mikolov et al. [5], is one of the most popular word embedding
models in the world. It provides an efficient way to learn word embeddings from a large
corpus, which utilizes a shallow two-layer neural networks that are trained fast to reconstruct
linguistic contexts of words. In detail, it maps distinct words to a vector space, specifically,
from one-hot encoding to a low dimension vector space. One of the major benefits of this is
the semantic similarity between words could be learned and preserved, e.g., king - man +
woman = queen. Inspired by this semantic similarity between words, we are curious about
if it is possible for our item/ node embedding to achieve similar effect. For example, if the
product embedding can preserve information like brands or categories.

There are a lot of in-depth discussions of Word2Vec. Here, we only highlight a few important
technical designs. There are two architectures proposed by Mikolov et al. [5] in the paper -
continuous bag-of-words (CBOW), which uses surrounding words to predict the target word,
and skip-gram, which uses the centre word to predict the surrounding words [4]. Among
these two, CBOW leads to a faster training time with a worse performance on less-frequent
words. Besides architecture designs, there are also two optimization tricks, hierarchical
softmax and negative sampling, that contributes the efficiency of training significantly.
Hierarchical softmax replaces the sparse giant softmax layer to a huffman tree, which
improves the time complexity from O(n) to O(logn). However, this method was not used
to train the final word2vec model because evaluating less frequent words in Huffman tree
still takes a long time. Instead, the authors proposed negative sampling, which updates only
the weights of the positive example plus a few sampled negative examples that simulates the
process of doing softmax on all the words to reduce computations. It has been tested that
this method enables even faster training without losing performance.

One of the biggest tasks people are facing when using word2vec is the out-of-vocabulary
(OOV) problem, namely, it does not generate well for unknown words. However, this will
not be a huge issue for our specific task on network-based recommendations.

2.2 DeepWalk [8] and Node2vec [3]

Similar to the quintessence of word2vec, Perozzi et al. [8] proposed DeepWalk, a novel
approach for learning latent representations of vertices in a network. It uses random walk to
generate sequence data and treats nodes as “words” and generates network embeddings with
skip-gram and hierarchical softmax. Empirically, DeepWalk is scalable and significantly
outperforms other previous methods designed to operate for sparsity (e.g., spectral clustering
[7], edge cluster [9], modularity [6]).

However, DeepWalk suffers from a few problems. On the one hand, its random walk strategy
is not efficient. On the other hand, DeepWalk uses hierarchical softmax, which has been

2

experimented to be inefficient when compared with some other training trick, i.e., negative
sampling, introduced in word2vec.

In order to solve the problems, Grover and Leskovec [3] proposed node2vec. Node2vec uses
negative sampling, where an equal number of node pairs from the network which have no
edge connecting them were sampled. Further, it uses a well-defined random walk strategy.
Specifically, it defines two bias parameters (return the parameter p controls the likelihood of
immediately revisiting a node in a walk; in-out parameter ¢ allows the search to differentiate
between “inward” and “outward” nodes) [3]. Those two parameters work together to allow
us to combine BFS and DFS, which improves the space and time complexity significantly.

Practically, as shown by Grover and Leskovec [3], node2vec outperforms most of previous
work in this area for the task of link prediction. Testing out on three different datasets
(Facebook, Protein-Protein Interactions/PPI, and arXiv ASTRO-PH), node2vec achieves the
best performance in all of the datasets.

Though node2vec has achieved great performances, there are a few things that remain un-
solved. On the one hand, in the paper the authors use grid search to tune the hyperparameters
p and ¢. It would be helpful to explore how to adjust these parameters using grid search
with domain-specific knowledge giving a new dataset. On the other hand, the datasets being
tested all use unweighted graphs [3]. This is fine for some tasks like friendship prediction,
however, it loses important information for tasks that have a strong relationship to weights.
In our task of recommendation system, we need to take into account the user’s ratings toward
the items. Two items may have significantly different degree of similarity if a user rate them
both very high or if the user rate one of them five stars and the other one star. An unweighted
graph will lose such information so finding an effective weighting function is one of the key
tasks.

2.3 Item2vec [1]

Traditional recommendation systems usually use collaborative filtering to perform user-user,
user-item, and item-item recommendations [11; 12; 14]. Not until recently, network based
recommendation has been explored. Although there are some literature that uses node2vec
to perform user-item recommendation tasks (e.g. entity2vec [13], there are few studies on
the item-based recommendation system with node2vec embedding.

Unlike many other recommendation systems that recommend items based on users’ previous
experience, Barkan and Koenigstein [1] present an item-based recommendation algorithm
that is inspired by word2vec [5]. Item2vec treats a basket of items bought by a single user as
a sequence of words in the sense of word2vec. This method then takes each pair of items in
the same set as a positive example and applies skip-gram on such a set of items. The method
is evaluated on a music dataset for genre classification with SVD as a single baseline model.

In this paper, the author uses the length of each user history as the window size, thus
technically building the “context window” around each user. Another approach of generating
the context window could be to build the context window based on the shopping history of
the whole user group. Equivalently, two items are in the context of each other if each user
has bought two items. In all, the paper presents a first step of adopting network embedding
techniques on item-based recommendations.

3 Methods

3.1 Overview

Node2vec outperforms most of the previous work in tasks like link predictions. Word2vec
[5] has shown to have state-of-the-art performances on various natural language processing
tasks. Naturally, it leads us to think about their applications in the recommendation system.

The user-item based recommendation method suffers from the problem of encoding two
different types of data into the same embedding domain. It makes comparing the similarity
not well defined, as it is hard to compare similarity between user and item, which makes
these solutions lose one of the biggest advantages of embeddings. To solve this problem,
inspired by word2vec’s application in finding words in similar context, we propose a novel
approach to apply node2vec in the item-based recommendation task by finding similar items
using item embeddings.

We propose to project the user-item network to an weighted item-item network. To reduce
computational complexity, we perform graph pruning in the projected graph to reduce large
cliques. Then, we apply node2vec on the pruned projected weighted network to retrieve
item embeddings and use the embeddings for item recommendations. We further experiment
with the linear transformations of the item embeddings to see if the embeddings are able to
capture the semantic context of the items.

3.2 Data Collection

We propose to use two public datasets: Amazon product data ! and Yelp open dataset 2.
Since the Yelp dataset has much richer information, we will use the Amazon dataset for
the initial experiments and qualitative evaluation, and use the Yelp dataset for quantitative
evaluation and further exploratory analysis.

The two datasets contain data from very different domains: product reviews from the
largest Internet retailer in the world and online crowd-sourced restaurant reviews. The Yelp
dataset has the richest information including reviews, check-ins, and even user friendship
information. We are interested in exploring the performance of the proposed method on the
three datasets to see what type of data it works best with.

Due to the large size of the datasets, we choose to experiment with a representative subset of
the data. For the Amazon product data, we experiment with a subcategory of the products:
Home and Kitchen. For the Yelp dataset, we choose to limit the city to Toronto, a city
with the third most number of business in this dataset. Table 1 summarizes some basic
information about these datasets.

Dataset \ #Users #Items #Reviews
Amazon | 20,980,000 9,350,000 82,830,000
Amazon: Home and Kitchen 644,510 79,007 24,318,430
Yelp | 1,518,169 188,593 5,996,996
Yelp: Toronto 103,262 18,233 474,803
Table 1: Dataset Statistics

! http://jmcauley.ucsd.edu/data/amazon
2 https://www.yelp.com/dataset

3.3 Graph Construction, Projection and Weighting Algorithms

We construct a bipartite graph G5! 3 using the Amazon home and kitchen dataset. A node
represents a user or a product (item). Each of the user ids and product ids are mapped to a
unique node id. An edge only exists between a user and a product, representing the user
reviewed the product. Figure 1 summarizes the degree distribution of G5*. We can see that
the degrees of user and product node both follow the power law.

Degree Distribution

Log Scale Weight Distribution

Count
Count

.
10° 10! 10? 10° 10* 0.0 0.2 0.4 0.6 0.8 1.0
Out-degrees Weight

Figure 1: Log-log Degree Distribution of G, Figure 2: Log Edge Weight Distribution of G,

We project the user-item bipartite graph G to a weighted one-mode item-item graph G;‘ 4,
In the projected graph, every node presents a unique product. We define the weight of the
edge as
o _ INO NG
T IN@UNQG)

where w;; is the weight of an edge between node i and j in G2, N (i) and N(j) are the
neighbours of node 7 and j in G{! respectively. The formula is based on the Jaccard Index.

One advantage of our proposed method is that by simply changing the weighting function,
the learned embedding can preserve different contextual information. From Figure 2 we
can see that there are a large number of edges with high weights. This is likely because if
there is one and only one user who bought two unpopular items, the edge between the two
products will have a weight of 1. This may be an issue for node2vec as the weight is skewed,
we will discuss possible ways to improve it in Section 5.

The graph G} 3 for Toronto Yelp dataset is contructed in a similar manner, where the node
represents a business or a user and the edge represents the review for a business from the
user. The projected graph G;/ is projected in the same way.

3.4 Graph Pruning

For graph pruning, we use the Amazon dataset as an example, and we apply same techniques
for the Yelp dataset. The projected graph G;f‘ contains only 58,769 nodes but 24,318,430
edges. Projected networks tend to contain many cliques. However, computational complexity

3 b denotes bipartite graphs, and A denotes the Amazon dataset.
4 p denotes projected graphs.
'Y denotes the Yelp dataset.

of node2vec depends on the size and number of large cliques. Hence, we propose two graph
pruning algorithms to reduce the computational complexity.

3.4.1 Simple Pruning

A simple way to prune the graph is to remove all the edges that have weight less than a
threshold value. If a node results in having no edge, we remove the node. From Figure 2 we
can see that the majority of the edges have a relatively small weight. Setting the threshold to
0.15, the pruned graph G, contains 29,682 nodes and 2,863,956 edges.

prl

3.4.2 Node-based Pruning

Although the simple pruning method is efficient and easy to implement, it has several issues.
First, since some of the nodes have no edge and are hence removed, we cannot learn the
embedding for all nodes. Second, if a popular product has a lot of reviewers, it is unlikely
that a large percentage of those reviewers all review another particular product, so the above
method will naturally filter out some popular items with a large amount of reviews.

To address the issues, we design a node-based pruning method. In this method, for each
node, we sort all the edges by weight, and only retain top N edges with the largest weight.
The intuition behind it is that a recommendation engine usually only cares about top N
recommendations. Setting the threshold to 200, the pruned graph G;‘ﬂ contains 58,005
nodes and 2,089,334 edges.

3.4.3 Smooth Pruning

A drawback for the node-based pruning is that any node with more than the threshold value
of edges will have the same number of edges in the pruned graph. Intuitively, we want the
node with larger degrees in the original graph to retain more edges in the pruned graph. We
design a smooth pruning algorithm where we keep the top f(D,T') edges with the largest
weights for each node, where D is the degree of the node and 7" is the threshold. We define

D, if D<T,
f(D,T) = {\/T , ifD>T

The function f(D,T) is monotonically increasing and sub-modular. Hence, this pruning
algorithm results in nice smooth pruned graph. Setting the threshold to 30, the pruned graph
G4, contains 58,096 nodes 2,601,904 edges.

pr3

3.4.4 Comparison

Figure 3 and Figure 4 compare the degree distribution and weight distribution of the resulting
graph pruned by the above methods. As discussed above, the smooth pruning method results
in a much smoother graph and retains the relative degree ordering.

3.5 Node2vec

We run node2vec on the pruned graphs G][,AT2 and G;,“T3 to obtain their item embeddings.

Since we are more interested in the macroscopic view of the network neighbourhoods, we
use the parameters p = 1 and ¢ = 0.5 in node2vec. We leave the dimension size to its
default parameter d = 128. The results will be discussed in the following sections.

6

Degree Distribution Weight Distribution

W Node-based Pruning 10° B Node-based Pruning
Smooth Pruning Smooth Pruning

10°

10* §
10° 4§ 10*

10° 1
10?
10?

10 4 10* 4

10°

200 300 400 500 00 02 04 06 08 10
Count Count

Figure 3: Degree Distribution of Two Pruning Figure 4: Edge Weight Distribution of of Two Pruning

4 Results and Findings

4.1 Qualitative Evaluation

We conduct qualitative evaluation on the Amazon dataset by analyzing the results on a few
random samples. We use the embeddings to find top N similar items for a given item. Here,
similar does not necessarily mean the two items are similar in terms of item type such as
movie, book and electronics; it can mean that they are often bought together or that a user
who likes one item may also like another. We use cosine similarity to evaluate how similar
two items are.

i

Figure 5: Top 3 Similar Embedding to an Electric Wok

We sampled around 10 items and looked up their top N similar items to get a sense of how
well the embedding capture the context information. They are generally reasonable but there
are a few exceptions. For example, Figure 5 presents three items that have most similar
embeddings to an item “Maxim EW70 Professional 6-1/2-Quart Electric Wok”. We can see
that the top two items are quite relevant while the third one is not. Given that the node2vec
iteration parameter was set to only 10 for this experiment, the result is fairly good.

4.2 Quantitative Evaluation

Quantitative evaluation is tough because there is no well-defined downstream task yet.
Therefore, we investigate if the embeddings are semantically meaningful by defining five
heuristic metrics for the Yelp dataset. Based on the available data, we choose five important
factors of choosing a business: price range, star rating, category, location, and popularity.

Due to the limitation of the computational resources, we sampled 1,000 business out of the
18,233 business and use them to test the six different models. For each business b in the
sample, we find top 5 closest embeddings to b and calculate the following metrics:

7

1. Price Range: the Mean Square Error of the price range.

2. Star: the Mean Square Error of the star rating.

3. #Common Cat: percentage of predictions that have at least one common category
4. Distance: the average distance between the two business in km.

5. #Review: the average difference of the logarithmic review number.

We evaluate the following models:

1. Rnd. Node: a null model that takes 5 random nodes as predictions.

2. Rnd. Neighbour: a smarter null model that takes 5 random neighbours as predictions.
3. Jaccard Index: a model that takes 5 neighbours with the highest Jaccard similarity.
4. n2v-r: our node2vec embedding prediction trained with iteration » = 10, 100, 1000.

Notice that model 2 and 3 have one severe drawback - if the degree of the node is less than 5,
it will not provide 5 distinct predictions - while the node2vec models do not suffer from this
problem. Table 2 presents the results of the evaluation. All of the node2vec models were
trained with p = 1, ¢ = 0.5, w = 80 and using the smooth pruning with a threshold of 500
on the Toronto Yelp dataset. We can see that our node2vec embeddings are on par with the
best results, which means the embeddings are able to capture some semantic information.

Model | . Metries . .
Price Range Star #Common Cat Distance #Review

Rnd. Node 0.939 1.729 0.263 7.854 1.292
Rnd. Neighbor 0.825 1.235 0.380 5.846 1.876
Jaccard Index 0.860 1.415 0.399 4.870 0.933
n2v-10 0.900 1.823 0.336 7.024 0.782
n2v-100 0.818 1.545 0.392 5.435 0.824
n2v-1000 0.829 1.500 0.387 5.640 0.931

Table 2: Model Evaluation: Bold denotes the best performance and grey bold denotes the second best.

To investigate the effect of graph pruning. We fix the node2vec parameterstop = 1,q =
0.5,w = 80,r = 100 and compare the performance for the two different smooth pruning
threshold 500 and 1000. While the graph with threshold 1000 triples the memory requirement
for that of 500, Table 3 shows that they have similar performance for the above metrics. It
shows that pruning is an effective way to reduce memory requirements while maintaining
evaluation performance.

Pruning Metrics .)
Price Range Star #Common Cat Distance #Review
500 0.818 1.545 0.392 5.435 0.824
1000 ‘ 0.822 1.481 0.387 5.980 0.997

Table 3: Graph Pruning Evaluation

4.3 Runtime and Memory Performance

In the current node2vec implementation, it is a computationally intensive task if the input
graph contains a lot of nodes with high degrees. In such case, the memory usage does
not scale linearly with the number of edges but rather polynomially. However, from Table
4, we could see that the runtime does scale linearly with the number of iterations and the
computation is trivially parallelable, which makes the task feasible.

8

#lterations | Real Time (min) User Time (min) Memory (GB)

10 4.7 70.0 97
100 13.1 339.7 102
1000 99.0 3076.6 104

Table 4: Runtime and Memory Usage Statistics

4.4 Semantic Evaluation

Inspired by word2vec [5], which successfully encodes semantic information in word embed-
ding, we experiment with the item embedding from node2vec to see if they can capture the
rich contextual information in the network. In word2vec, the result of a vector calculation
vec(‘“Madrid’”) - vec(‘‘Spain’’) + vec(‘‘France’) is closer to vec(‘Paris’’) than
to any other word vector [5].

We tested several combinations of popular chains and most of them yield mean-
ingful result. For example, vec(‘“McDonald’’) - vec(‘“KFC”’) + vec(‘Hudson’s
Bay”’) is close to vec(‘““Yorkdale Shopping Centre’’) and vec(‘‘CF Toronto Eaton
Centre’’) where “Hudson’s Bay”, ““Yorkdale Shopping Centre” and “CF Toronto Eaton
Centre” are all popular shopping centers in Toronto. vec (‘‘McDonald’s”’) - vec(‘“KFC’’)
+ vec(“‘Starbucks”’) is close to vec (‘‘Tim Hortons’’) and Tim Hortons is arguably the

most popular coffee chain in Canada.

Another example is vec(‘Chipotle Mexican Grill”’) - vec(‘‘Taco Bell”) +
vec (‘“‘Sushi Rock”) is close to vec(‘‘Sushi Supreme’’). The first two restaurants are
Mexican and the latter two are both Japanese restaurants, which shows that the embedding
was able to capture some categories information.

A limitation of this experiment is that the Yelp dataset only contains business, which has
much less hierarchical relationship between the nodes than that of the words. Additionally,
one of the differences between word2vec’ linear transformation and node2vec’s is that in
word embedding, each word only has one embedding while in the item embedding, one chain
can have multiple business at different locations and their embeddings may be different,
which adds to the difficulty. We try to overcome this problem by finding more relevant
stores for the first two chain items.

4.5 Challenges

One of the biggest difficulties we face is the intense memory requirement of node2vec.
Based on our past experiments, we found that to run node2vec ® on a projected graph
with around 20 million edges, the amount of memory required is unfeasible. To solve the
problem, we designed several graph pruning algorithms as presented in previous sections.
The simple pruning algorithm reduces the number of edges to around 2 million, which
required around 200 GB of memory for node2vec. We were able to compute the encoding
using an Amazon Web Services (AWS) machine with a large amount of memory. To further
reduce the memory requirement and improve the performance, we identified the bottleneck
and designed a new node-based pruning algorithm and a smooth pruning algorithm which
further reduces the memory requirement to around 70 GB. However, it’s still not feasible on
a laptop computer so we run it on AWS too.

®Using the c++ implementation at https://github.com/snap-stanford/snap/tree/master/
examples/node2vec

Other challenges include efficient hyperparameter tuning and evaluation methods design.
We controlled variables to try to find the optimal values for the pruning threshold and
node2vec hyperparameters. Further, due to the nature of our task, designing qualitative and
quantitative evaluations is a hard task.

5 Future Work

We outline a few future work that may be helpful to improve the performance of our proposed
network embeddings.

1. As shown in Section 4, different node2vec parameters can have significant impact
on the embedding results. A solution is to perform grid search to find the optimal
values for the pruning threshold and node2vec parameters. A more advanced method
may be to use the evaluation metrics as label and the parameters as input the train a
parameter tuner. With enough computational resources, we may perform one of the
above two methods to improve the performance of our embedding.

2. Currently, we use qualitative evaluations and some heuristic metrics as quantitative
evaluations. There may be better way to conduct quantitative evaluations, for exam-
ple, applying the embedding to some downstream task like neural link predictions.

3. In the latest implemention of node2vec, the polynomial memory requirement of
node2vec for clique-like graphs is a major bottleneck. The C++ implementation
suffers from the problem that the function preprocess_transition_probs eats
a lot of memory. When running on the projected/ folded graphs which have a lot
of cliques, the precomputation of transition probability may make the performance
close to O(E?). This issue could be potentially addressed by adding an LRU cache or
adding an option to compute transitional probability on the fly. It is a time-memory
tradeoff but it would be great to not rely on AWS machines to run node2vec.

4. One observation is that the walk length of node2vec is the same for any node, but
some nodes are dead ends, and it may be useful to represent the dead ends in the
random walk to help encode more structural information. In NLP task, this is usually
addressed by adding paddings. It may be worth trying to add similar padding method.

5. We only tested the method on two business-related dataset. To see whether this
model generalizes in other dataset, we crawl a small twitter dataset. Here, we focus
on those users that has a “professor’” mention in their biography. The edge was
defined as a direct mention between two “professors”. However, due to time and
twitter data limitation, we only collected around 71,000 users with 53,000 edges,
which is relatively small. In the future, if we were able to get access to all twitter
data, we may perform a test on Twitter dataset.

6 Conclusion

Recommendation systems play a vital role in our daily life. However, the current widely-
used recommenders mostly use traditional collaborative filtering techniques. In this report,
we address this by adopting network embeddings using node2vec [3]. We show that
network embeddings could learn useful information that could benefit downstreaming
recommendation tasks, and advance the possibility of applying deep learning techniques in
the field of recommendation systems. The code and dataset produced in this work will be
released for public use at https://github.com/VVCepheiA/cs224w-project.

10

Acknowledgement

We thank Michele Catasta, Alexander Haigh, Prof. Jure Leskovec, Srijan Kumar, and all
other CS224W staff for their valuable instructions on this project.

Contribution

B.D. worked on idea brainstorming, literature review, team discussions, result analysis, and
paper writing. X.L. worked on coding, experiments running, idea brainstorming, literature
review, team discussions, result analysis, and paper writing. Z.W. worked on coding, dataset
collection, idea brainstorming, literature review, team discussions, result analysis, and paper
writing. We believe the work was roughly divided as B.D. 20%; X.L. 40%; Z.W. 40%.

References

[1] Oren Barkan and Noam Koenigstein. Item2vec: Neural item embedding for collabo-
rative filtering. CoRR, abs/1603.04259, 2016. URL http://arxiv.org/abs/1603.
04259.

[2] Jesus Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez. Rec-
ommender systems survey. Knowledge-based systems, 46:109-132, 2013.

[3] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.
CoRR, abs/1607.00653, 2016. URL http://arxiv.org/abs/1607.00653.

[4] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013. URL http:
//arxiv.org/abs/1301.3781.

[5] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. CoRR, abs/1310.4546,
2013. URL http://arxiv.org/abs/1310.4546.

[6] Mark EJ Newman. Modularity and community structure in networks. Proceedings of
the national academy of sciences, 103(23):8577-8582, 2006.

[7] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. In Advances in neural information processing systems, pages 849—856,
2002.

[8] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. CoRR, abs/1403.6652, 2014. URL http://arxiv.org/abs/1403.
6652.

[9] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and
Domenico Parisi. Defining and identifying communities in networks. Proceedings of
the National Academy of Sciences, 101(9):2658-2663, 2004.

[10] Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender systems: intro-

duction and challenges. In Recommender systems handbook, pages 1-34. Springer,
2015.

11

[11] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based col-
laborative filtering recommendation algorithms. In Proceedings of the 10th Inter-
national Conference on World Wide Web, WWW 01, pages 285-295, New York,
NY, USA, 2001. ACM. ISBN 1-58113-348-0. doi: 10.1145/371920.372071. URL
http://doi.acm.org/10.1145/371920.372071.

[12] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering techniques.
Adv. Artificial Intellegence, 2009:421425:1-421425:19, 2009. doi: 10.1155/2009/
421425. URL https://doi.org/10.1155/2009/421425.

[13] X. Zhang, C. Zhang, C. Guo, and Y. Ji. A framework for enhancing word embeddings
with task-specific information. In 2018 4th International Conference on Big Data
Computing and Communications (BIGCOM), pages 46—53, Aug 2018. doi: 10.1109/
BIGCOM.2018.00014.

[14] Z. Zhao and M. Shang. User-based collaborative-filtering recommendation algorithms
on hadoop. In 2010 Third International Conference on Knowledge Discovery and Data
Mining, pages 478-481, Jan 2010. doi: 10.1109/WKDD.2010.54.

12

Appendix

Figure 6 contains example preprocessed data used in this project.

RestaurantsPriceRange | business_id categories city latitude longitude |name stars | state | pid numReviews

6 |1.0 9A2quhZLyWkOakUetBd8hQ | Food, Bakeries Toronto | 43.664378 | -79.414424 | Bnc Cake House 4.0 |ON [1675 |7
1 |20 tZnSodhPwNr4bzrwJ1CSbw | Cajun/Creole, Southern, Restaurants Toronto | 43.664125 | -79.411886 | Southern Accent Restaurant 40 |ON |17262(146
23 (2.0 5J3b7j3Fz091SjChmoUocUA Food, Bakeries, Coffee & Tea Toronto | 43.681328 [-79.427884 | Mabel's Bakery 40 |ON (1126823
27 |20 PMDIKLAOMxjOngCpuUmESQ | Restaurants, Food, Canadian (New), Coffee & Tea | Toronto | 43.670885 |-79.392379 | The Coffee Mill Restaurant 3.5 |ON [16729|25
43 |NaN zHwXoh40k86P0aiN1aix9Q Hotels, Hotels & Travel, Event Planning & Serv... Toronto | 43.733395 | -79.224206 | Super 8 by Wyndham Toronto East ON|2.0 |ON [12745(3
51 |NaN WVOKN5x8L2qzKFq_6Hzf9g | Public Services & Government, Landmarks & Hist... | Toronto | 43.661964 | -79.391259 | Legislative Assembly of Ontario 45 |ON |5350 (3
69 (2.0 RJEtBRLJmmiji_QoqSéysjg Music Venues, Arts & Entertainment, Nightlife Toronto | 43.667749 [-79.396167 | Royal Conservatory of Music 45 |ON (4739 (3
80 |1.0 Ylez_A3WOt9J2SXN70OMa2Q | Caribbean, Food, Bakeries, Restaurants Toronto | 43.745928 | -79.324623 | Allwyn's Bakery 4.0 |ON [14814|105
82 |1.0 xuUzASHWRJRFv6Ck5p07g | Food, Bakeries Toronto | 43.649972 | -79.383223 | Fornetti 35 |ON [16014|3
88 |2.0 mr3rQcYBKWuU2L607qtQ9Wg | Restaurants, Food, Coffee & Tea, Breakfast & B... | Toronto | 43.669116 | -79.426021 [Hub Coffee House & Locavorium 40 |ON |7038 (31
95 |2.0 Q_cfbLdAXKLIEZWSTO5T6A | Food, Bakeries Toronto | 43.595149 | -79.529977 | More Than Pies Baking 4.0 |[ON [13900|9
9 (2.0 Ea5a20v4s_D3Vx4j7ikEEg | Drugstores, Shopping Toronto | 43.703344 | -79.415437 | Shoppers Drug Mart 10 [ON [276 |3
97 |20 cuXCQM-9VwpZISneEY1b3w | Nightlife, Wine Bars, Indian, Restaurants, Bars Toronto | 43.708002 | -79.375814 | Indian Street Food Company 3.5 |ON [16045|51
111(2.0 hsWx7ya8jLMhi8ZWX23Thg | American (Traditional), Burgers, Fast Food, Re... Toronto (43.706983 | -79.396499 | Harvey's Restaurants 2.0 |[ON (2737 |5
112 |NaN DcyeRzICLrMkrPpJDzjQ6Q Nightlife, Bars, Restaurants, Canadian (New), ... Toronto | 43.674164 | -79.287392 | Honey's Beestro 20 |ON (8048 (6

Figure 6: Example of Yelp Data

13

