Improving Recall and Precision in Graph
Convolutional Networks for Node Classification using
Node2Vec Embeddings

Julio A Martinez
CS224W Final Report
Stanford University
julioamz@stanford.edu

Abstract

Graph Neural Networks (GCNs) have received a significant amount
of attention recently because of their ability to generalize neural net-
works to graphs. They have shown promise in node classification by
demonstrating the ability to have high accuracy. This works seeks to
show that while GCNs inherently learn embeddings from the graph
structure to make classifications, their recall and precision perfor-
mance can still be improved using unsupervised feature extraction
including Node2Vec and Egonet features with Rolx and Refex. In this
work, I used an email dataset and extract features for node embed-
dings using unsupervised learning. These feature vectors are then fed
into a GCN and demonstrate an improvement in recall and precision
despite a small improvement in accuracy. Thus it is important to note
that while unsupervised embeddings may not significantly improve
accuracy, they provide more robustness in recall and precision.

1 Introduction

Communities often arise in networks, ranging from social networks, biological
networks to technological as well as shopping networks. However, detecting these
densely linked groups is challenging since the notion of a community may vary from
one network to another. Fortunately there are many data sets for which we have
ground-truth communities as in [1] which we can test our ability to test our methods
on identifying a community or testing the score of the goodness of a community.

The problem as mentioned above is that communities may come in different forms.
Take for instance a community based on publications, where a publication can be the
node in a graph and the type of publication is the the topic. In this case, publications
from different topics may be links as well as publications from similar topics (assume
that a link is simply a citation and ignore directed networks). However, a different
network community may be individuals sending emails, where a link between two
individuals exists if these two individuals have exchange an email, and not if these

Final Report Submission (CS224W 2018), Stanford University.

two individuals have not. The type of the node in this network may be the institution
or organization the individual may come from. You can see the in both of these
examples, the networks may exhibit very different properties. It is possible that
in an email network it is very common for individuals to email people across an
organization instead of only within a group or team due to difficulty of getting in
contact. On the other hand the publications community may be such that there is a
strong bias towards citing individuals from the same research areas. Thus defining
community strictly as a strongly linked set of entities may not be the best answer for
every network. Hence we need methods that are able to be robust enough to predict
the community a node belongs to by using node classification.

2 Problem Statement

This work is interested in understanding the robustness of classifying a node’s
community or ground truth label. This project seeks to predict the class a node
belongs to using neural networks. Communities can be thought of as the nodes which
correspond to some specific label. Thus all nodes with the same label belong to the
same community. Since different networks may exhibit different properties with
respect to their communities, machine learning is a great candidate for learning these
properties to classify test nodes. This work uses Graph Convolutional Networks
(GCNs) [5] to learn classifiers that can predict the class of a node. Success is
measured by computing recall, precision, and accuracy of predictions on a test set
and they are compared to a base case using logistic regression.

3 Related Work

In [5] Graph Convolutional Networks are used for classifying nodes. However in
this work features vectors inherent from the data are used instead of using features
extraction. If no feature vectors are available, features are assumed to be the identity
matrix. When relying only on an identity feature matrix the GCN to learns the graph
structure on its own without drawing any correlations from the features since there
are none. However, in this work we will see that although manual extraction of
feature vectors may not significantly improve accuracy for a trained GCN model,
extracting features may lead to improvement in recall and precision.

There are many forms of feature extraction for local structure of nodes. In [3], Rolx
is introduced. Rolx is a method for extracting local node structural features. In
addition to Rolx, Refex is introduced in [4] where recursive calls to Rolx are made
to introduce features that include more information as from further away the node as
each recursive call is made. Although the dimensionality of a Rolx feature vector
is known to grow exponentially, at each recursive call, it provides with each call a
greater scope or understanding of the structure around a node. More recursive calls
include more information about the graph around the node, however they require
significantly larger feature vectors that may be too large for practical use cases.

Node2Vec in [6] is a framework that learns embeddings for nodes in a graph. These
embeddings are learned in an unsupervised manner, by exploring the graph. This
is done by simulating random walks starting from each node. The resulting node
embedding captures and represents the connectivity of that node to the other nodes
in the graph, thus representing the relationship it has with other nodes.

2

Given a node u in a graph, a random walk is simulated with some fixed length. If
we let ¢; represent the i’th node along the random walk then ¢y = u. The result are
nodes ¢; which help define the probability distribution of going from any node to the
next:

P(c; = z|e;_1 = v) (1)

This probability is equal to alpha,,(t, z)w,, where v and z are nodes in the graph
and w,, is simply the edge weight (in this work all edges weights are 1). The way
the random walk is carried out is controlled by two parameters p and ¢ which define
the tendency of the walk to go away or stay within the same distance or come closer
to the starting node u. Hence p is known as the return parameter, smaller p will make
the random walk more likely to return and ¢ is known as the in-out parameter where
low g will make the random walk go further out, and small ¢ will keep the random
walk in close.

4 Data

The dataset used in this project is from [2] which is known as the email-Eu-core
dataset. This dataset contains data from email exchanges from a large European
institution. This is a directed graph where an edge exists between two members
of the institution if member u has sent an email to member v. However for the
purposes of this project, this is treated as undirected, since all we care about is
to know what department (class) does an individual (node) belong to. For each
individual in the institution, the ground-truth community membership is given and
there are 42 communities or departments to which an individual can belong to.

The graph contains 1005 nodes, 16,706 edges, and 42 ground truth labels. Taking a
look at figure 1 we can see that this network of emails shows a typical log distribution.

E-Mail Network: Degree Distribution

10° A

10

Count, P{k}*n

ll}':l 4

109 10t 102
QOut Degree, k

Figure 1: Node Degree Distribution

One thing however, that is important to keep in mind which will come up later in the
results is that the dataset has a significant imbalance representation. In figure 2 we

3

can see that nodes from class 5 (some department) has a very large representation of
over 100 emails. This means this department is very active, sending emails, while
other departments, such as department 19 have only 1 email on record. Because of
this imbalance and low representation of some departments, it will be impossible
to to a data split which contains a nodes for every department in the validation and
test sets. Therefore, I opted to keep the lower represented nodes in the training set,
although, our test sets will never see them, and it will still be possible to predict
them.

E-Mail Network: Node-Class Distribution

Mumber Samples
=

] 5 10 15 20 25 £} 35 A0
Mode-Class

Figure 2: Imbalance in Department Representation

The data split for the email network is done by shuffling the nodes and taking 80%
as the training set, 10% as the validation set, and the remaining 10% as the test set.

S Method and Approach

I used a combination of of techniques in my approach to classification. This section
will talk about these techniques and and how I used and implemented them.

5.1 Rolx and Refex

In order to prepare the dataset to be used by a GCN I first extract the local node
features for each node across the entire network. This is done with the algorithms
Rolx from [3] and ReFex in [4] for structural role and recursive feature extraction
respectively. However, unlike the homework where we simply use the features
extracted from the two algorithms, we used them as feature inputs into the GCN.

As is very well known the number of features using the Rolx and Refex method
increases exponentially upon each recursive call. The trials included in this milestone
vary from O recursive calls (i.e. just using Rolx alone) which gives three features
all the way up to 6 recursive Refex calls which results in 3(6 4 1) = 2, 187 features.
What is clear is as the number of features grows the more information we have on
a particular nodes relationship to the rest of the graph, however, what we will see

4

is that there is a significant trade off between testing accuracy and the number of
features.

Vi) = V() g 30 Vi), Y Vi) @)
)

(U) vEN (u) vEN (u

5.2 Node2Vec

For Node2Vec I ran a number of trials using 80 steps as the length of the walk, a di-
mension of 128 for the embedding, 10 as the number of walks, and experimented with
5 different sets of (p, ¢) pairs. The different pairs were (1,0.1), (0.1, 1), (0.5,0.5),
(0.3,0.8), (0.8,0.3). These embeddings were done with the implementation in [8]

5.3 Logistic Regression Baseline

A multinomial logistic regression model was used as my baseline method. The fea-
ture representations of the nodes, both the Egonet feature vectors and the Node2vec
embeddings, were used as the feature inputs to train the logistic regression models.
This used the same data split mentioned in the data section and which was used
for the GCN model in this work. All classes were treated equally and hence the
imbalance in the data set as discussed previously will play a role in classification
accuracy, precision and recall. The classification task is to classify the node’s label
(department) into one of the 42 labels it can possible belong to.

54 GCN

GCNs as shown in [5] are simply a class of neural networks that generalize the
concept of neural networks to graphs. What is useful here is that GCNs learn a
mapping from the input node features X (which we can assume is an N2 D matrix
for NV nodes where each node is associated with a D dimensional feature vector) and
the input adjacency matrix A which is the adjacency matrix for a graph G = (V, F)
to the output Z (in the case of node embedding a Nz F’ matrix, i.e. /N nodes each of
which has an /' dimensional node embedding).

A given layer [for a Graph Neural Network is then as follows:
fHD A)=o(DV?2(A+ 1D YV2HOWY) (3)

I is the identity matrix which is added to the adjacency matrix to avoid disregarding
the node in question (instead of only aggregating across the node’s neighbors). D is
simply the diagonal node degree matrix (can be computed by summing the across
the rows of A. Thus D acts as a symmetric normalizer of the adjacency matrix
A. Finally o denotes as usual the activation function to be used. In my work the
activation function used is a ReL.U activation.

The complete topology of the network implemented in this work was implemented
by starting with the starter code in [9] and adapting to the following forward pass

5

architecture shown below:

A=A+1Iy “
Dy =) Ay (5)
J
A=DY2AD/? (6)
ZW = ReLU(AXW® (7)
Z@ = Softmam(le(l)W@)))

Important to keep in note is that X is the feature vector that I feed in. This may
either be the identity matrix or the Egonet or Node2Vec embeddings. This entire
feature vector is fed (all train, validation, and test) into the network, along with the
adjacency matrix A. The loss however, uses a mask to only compute the loss over
the training examples. This way we get the added benefit of the entire structure
of the graph, which is not an option in Logistic Regression relying solely on the
node features. The loss is simply a Cross Entropy loss function which we wish to
minimize over using Adam gradient descent.

As shown in [5], the first step is to initialize the weights ¥ randomly and X to
simply be an identity matrix. In my tests, I run Xavier initialization. In the first step,
the forward pass performs convolution on the graph, or convolves the 3-rd order
neighborhood of every node. This simply means that weights W act as a filter that
convolve on the neighbor hood of nodes within 3 hops away from a any node. During
this process the the model produces an embedding. This embedding captures the
community structure of the graph. In fact, this comes at no cost of back propagation
yet. Finally we can start training by updating the weights, this is the part where the
model is expected to linearly separate the communities found in the graph.

6 Results and Findings

The base case was to use logistic regression. Metrics used to measure success are
recall, precision and accuracy. However, since the dataset is imbalanced as shown
previously, a reweighed recall and precision are included in order to weigh the recall
and precision proportionally by the number of samples available for each class or
label.

The first test was using Node2Vec alone. Running initial test on a GCN before tuning
hyperparameters, it was clear that the GCN models could only take advantage of
the Egonet features until they became too large to be useful. In 3, you can see the
progression of accuracy increase and then decrease. This is due to the exponential
growth of the feature vector size having high dimensionality for the dataset size of
the email network.

The first test case was to try logistic regression with the Egonet features and the
Node2vec features. The Egonet features used in the provided results is after 5
iterations of a recursive call to Refex as described in the methods section. As is
clear from the logistic regression table, Node2vec has clear advantages in every
metric. The features leading to best performing logistic regression is Node2vec with
parameters p = 0.1 and ¢ = 1, which keeps the random walk returning to previous
nodes and close in diameter. This may be indicative of the way emails are sent at the

6

Accuracy vs Feature Extraction

04 4

e

Accuracy

0z 4

01

] 500 1000 1500 2000
Number of Features Extracted

Figure 3: Accuracy vs vs Number of Egonet Features on email data

institution, where emails stay within tightly connected departments instead of across
departments.

Logistic Regression

Model Recall W-Recall | Precision | W- Accuracy
Precision

LR-Egonet 0.2 0.18 0.4 0.32 0.4
LR-Node2Vec, 0.68 0.61 0.82 0.77 0.80
p=0.1,q=1
LR-Node2Vec, 0.57 0.52 0.75 0.72 0.75
p=1,g=0.1
LR-Node2Vec, 0.64 0.59 0.78 0.73 0.78
p=0.5,q=0.5
LR-Node2Vec, 0.66 0.58 0.78 0.75 0.78
p=0.3,g=0.8
LR-Node2Vec, 0.59 0.53 0.77 0.74 0.77
p=0.8,g=0.3

The GCN models were trained using training set and validation set to tune the
hyperparameters. The training curve along the validation and test curve are shown
below in figure 4

After running the GCN models we are able to again see similar behavior as shown
in the GCN table. The best peforming GCN has accuracy 0.81 and uses node2vec
feature embeddings with p = 0.1 and ¢ = 1 (as with Logistic Regression). Although
the improvement is only slight with respect to accuracy, it is quite clear that GCN's
have improvement in recall and precision on almost all cases with one minor excep-
tion, the Identity input case. Here we see that the identity feature input case still
manages to get 0.74 in accuracy, however, performs much lower in recall, which
is the number of relevant items actually predicted correctly. We can see that once
we introduce Node2Vec embeddings and even Egonet embeddings, the GCN is

7

Accuracy Curves

10 4
05 -
. LG
(¥
o
5
o
X 04
02~ — ftrain
= validation
— test
DU L T T T T T T
0 100 200 300 400 500

Epochs

Figure 4: Training, Validation, and Test Curves for Accuracy

able quite uniformly improve recall and even precision for all cases except for the
Identity.

Graph Convolutional Network

Model Recall W-Recall | Precision | W- Accuracy
Precision

GCN-Egonet 0.59 0.56 0.80 0.78 0.8
GCN-Identity, 0.51 0.5 0.74 0.76 0.74
GCN-Node2Vec, 0.69 0.66 0.81 0.83 0.81
p=0.1,q=1
GCN-Node2Vec, 0.62 0.63 0.76 0.76 0.76
p=1,g=0.1
GCN-Node2Vec, 0.64 0.65 0.78 0.78 0.78
p=0.5,q=0.5
GCN-Node2Vec, 0.69 0.65 0.78 0.76 0.78
p=0.3,g=0.8
GCN-Node2Vec, 0.67 0.69 0.77 0.84 0.77
p=0.8,g=0.3

Taking a look at a projection of the Egonet embeddings of two departments, we get
the following as shown in figure 5.

In contract, we can compare these to the embeddings from the Node2vec projections
in ??. It is clear from the projections that the Node2vec embeddings allows for
a much more separable data set. While there still exists cases that are difficult,
especially due to low amount of data, Node2vec is clearly much more power than
Egonet and identity when used by GCN since is maintains accuracy and increases
recall and precision.

lell Nodes with Class: 4

"x:‘t.“!:'.""." Le o

-05 00 05 10 15 20 25 30
lel3

lell Nodes with Class: 14

-05 00 05 10 15 20 25 30
lel3

Figure 5: Egonet tsne Projections

Nodes with Class: 4

gy - ; ‘nm.’% -
: L s lapy s B
o ' d 0
-20 o "M".. .-x‘ - ‘&
, - - , , . |
-30 -20 -10 0 10 20 30) 50
Nodes with Class: 14
» LA e -
| vl i .";r}‘; 2
-20 o m. " oo © ° o = x‘“" .—@* -
e .,
30 20 10 0 10 2 0 2 50

Figure 6: Node2Vec tsne Projections

7 Discussion, Conclusion, and Future Steps

It is clear that Node2Vec and Egonet Features provide the GCN with improvements
in precision and recall. One logical explanation for this is that these features provide
more information than the GCN is able to learn on its own. The GCN is limited
by the number of layers it has, in this work 2, and therefore the number of hops at
which it can learn for the structure of the graph is limited. Node2Vec and Egonet
easily provide the GCN to latch onto information that was not available previously
without adding more layers to the network. Although is has not been shown, adding
more layers may lead to over fitting since the dataset is small to being with.

In conclusion, it is clear adding feature embeddings allow the network to be more
robust and achieve higher recall and precision. Some ideas on future work include
verifying this empirically on a variety of datasets. Adding layers to the GCN to see
if the GCN is able to improve in recall and precision without the embeddings fed
into it. Finally, trying different dimensions for embeddings to see the trade off on
dimension vs recall and precision.

References

[1] Yang, Jaewon, and Jure Leskovec. "Defining and evaluating network communities based
on ground-truth." Knowledge and Information Systems 42.1 (2015): 181-213.

[2] Yin, Hao, et al. "Local higher-order graph clustering." Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017.

[3] Henderson, K., et al. RolX: Role Extraction and Mining in Large Networks. No. LLNL-
TR-498952. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States),
2011.

[4] Henderson, Keith, et al. "It’s who you know: graph mining using recursive structural
features." Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2011.

[5] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolu-
tional net- works." arXiv preprint arXiv:1609.02907 (2016).

[6] Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks."
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2016.

[7] Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive Representation Learning
on Large Graphs." arXiv preprint arXiv:1706.02216 (2017).

[8] https://github.com/aditya-grover/node2vec

[9] http://snap.stanford.edu/deepnetbio-ismb/ipynb/Graph+Convolutional+Prediction+of+Protein+Interactions+in+Ye

[10] Final Project Source Code github.com link

10

