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Introduction

Functional magnetic resonance imaging (fMRI) is a clinical, non-invasive tool that
measures changes in the blood oxygen level-dependent signal. These changes are
correlated with an increase in metabolism in certain brain regions, which hint at brain
functionality and the connectedness of different regions (Wang, Zou & He, 2010). fMRI
can represent the brain in a resting state or be task driven. In a graph-based approach,
the connectedness of regions is represented as nodes and edges. The nodes are the
regions of the brain determined to be of interest by the researchers and the edges
indicate if a given fMRI indicates a connection between two regions. The advantages of
graph representations of the brain over more traditional, such as seed-based functional
connectivity, is the ability to quantitatively describe the graph, and as such the individual
brain, as a whole (Wang, et al., 2010). Graph analysis of fMRI data has been applied to
a variety of clinical applications ranging from Alzheimer’s (Supekar, Menon, Rubin,
Musen, & Greicius, 2008) to Attention-deficit hyperactivity disorder (ADHD). When
graph theory is applied to resting-state fMRI data generated from children with and
without ADHD, there has been success in classifying different types of ADHD (dos
Santos Siqueira, et al., 2014), but differentiation between those with and without ADHD
has not been successful. However, differentiation between those with and without
ADHD has been successful through a non-graph-based approach, as well as with
task-based fMRIs (Park, et al., 2016). This paper investigates using graph features to
drive ADHD classification based on resting-state fMRIs.

Related Work

Graph-based fMRI Analysis

It has been hypothesized that as the human brain evolved to become the
complex network it is today, that smaller networks were used as functional and
structural building blocks, which hint at different patterns of interaction and neural
contexts (Sporns, & Kotter, 2004). As such, motif frequency, the prevalence of specific
sub-networks, has been studied and shown to identify underlying neurobiological
functionality (Menon, 2011).

Node centrality measures the individual influence and ability of an individual
node. There are many ways to classify node centrality, the most straightforward being
degree. When the difference in degree between task state and control state for task
driven fMRIs is used to identify brain regions and to classify ADHD, it distinguishes
ADHD-IA and ADHD-C with high accuracy (91.18%) for both gambling punishment and
emotion task paradigms (Park, et al., 2016). Task driven fMRIs, hunger and satiety,
have also been differentiated based on eigen similarity (Lohmann, et al., 2010) . When
a variety of more complex node centrality measures were applied to classifying patients
with or without ADHD based on resting state fMRI data, the classifier was unable to
determine differences between healthy children and ADHD patients, but it could better
discern between the two types of ADHD within the population with a specificity and
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sensitivity around 65% (dos Santos Siqueira, et al., 2014). Rather than looking at the
entire network, psychosis can be diagnosed based on the relative centrality of the node
corresponding to the dorsal anterior cingulate cortex (Lord et al., 2012).

Small-world Model Applied to Brain Connectivity

The small-world model is a network that has high local clustering, implying that
for a given node, many of its neighbors are also connected, and low characteristic path
length, meaning the average path between any pair of nodes in the network is short
(Watts & Strogatz, 1998). A small-world model would be ideal when applied to the brain
as it would allow for modularized information given high connectivity and distributed
information given low characteristic path length (Wang, Zou & He, 2010). In fact,
Alzheimer’s, a neurodegenerative disease, is linked to a loss in small-world
characteristics, as the characteristic path length is significantly higher in the networks of
patients with Alzheimer’s (Stam, et al., 2006).

As a whole, small-world networks maximize efficiency of information passing
while keeping cost, the ratio of existing edges to all possible edges, low. Past research
has shown that both regularly functioning and ADHD brains have small-world
characteristics. However, ADHD fMRI data implies a shift toward more regular
networks as there is increased local efficiency with an overall decrease in global
efficiency (Wang et al., 2009).

Dataset

fMRI images are from the set ADHD_200_CC200 provided via the USC Multimodal
Connectivity Database. The labels of the dataset are “ADHD-Hyperactive/Impulsive”,
“‘ADHD-Inattentive”, “ADHD-Combined”and “Typically Developing”. There are 520 data
points, 109 of them are ADHD-C, 7 are ADHD-H, 74 are ADHD-I and 330 are Typically
Developing. Both males and females are included, with ages range from 7 to 20. Data
correction such as slice timing correction and motion correction have been applied. The
fMRI data was converted into graphs using the Athena pipeline and the blood oxygen
level-dependent signal used as a quantitative way of measuring connectivity between
regions.

Features

Clustering
Clustering within the graph representation of fMRI data is shown to determine functional
subsystems within the brain, such as the motor and visual networks (Van Den Heuvel,
et al., 2008). The clustering coefficient is a measure of local interconnectedness and is
defined for a node j as

2E

kilki — 1)) where E is the number of existing connections between node 7's

neighbors and k; is the degree of node i (Wang, et al., 2010). In addition to the
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clustering coefficient, the clustering coefficient for the graph as a whole, the average
clustering coefficient, will be calculated.

Motif Frequency

Motifs are small graphs that can be seen as building blocks, which are frequently
repeated in order to create a complex network. Motifs occur in sets dependent on M, the
number of nodes within each motif (Sporns, & Kétter, 2004). With M = 3, there are 13
unique, directed subgraphs. The frequency of each of these subgraphs will be
calculated.

Effective Diameter

The effective diameter is the minimum path length such that 90% of node pairs are
reachable by a path of that length or shorter (Leskovec, Kleinberg, & Faloutsos, 2007).
The approximation of the effective diameter will be inputted as a feature, as, like
characteristic path length, effective diameter should give an indication of a networks
ability to quickly distribute information.

Characteristic Path Length

The characteristic path length is defined as the average path length between all pairs of
nodes in a graph. As characteristic path length is a key small-world characteristic, it will
give an indication if the network displays small-world tendencies.

Small-worldness

Small-worldness, a quantitative measurement to describe a graph’s similarity to the
small-world model, is hypothesized to predict brain structure (Wang, et al., 2010).
Definey=C,/C,_.andA=LJL .. ,where C_ .., isthe mean clustering coefficient for
a random graph with the same average degree and node number and L,_,, is the
mean characteristic path length for a random graph with the same average degree and
node number. Then, small-worldness is y/A. .

Nodal Efficiency

Nodal efficiency measures the ability of a node to propagate information to the other
nodes in a network. It's been hypothesized that ADHD brains have increased local
efficiency with an overall decrease in global efficiency (Wang et al., 2009). Average
efficiency measures how easily one packet flows through the network:
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Global efficiency measures how all nodes can exchange packets in a network:
_ _E©
Eglobal(G) - )

Node Centrality
Node centrality is a measure of the importance of a node within a network. As nodes in
graphs based on fMRI data represent brain regions, node centrality measure the
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relative importance of anatomical regions. Several different measures of node centrality
exist and are used as feature inputs.

Betweenness Centrality
Betweenness centrality often identifies nodes that act as information bridges by
connecting separate sections of the brain network (Rubinov & Sporns, 2010). Itis

defined as »<=<c 7 where o, is the number of shortest paths from node m to node n
and o,,,(i) is the number of shortest paths from node m to node n that pass through
node i (Wang, Zou & He, 2010).

Closeness Centrality
Closeness centrality is a measure of how close a node is to all other nodes within a
N -1
C; =
network. This can be written mathematically for a node i as > jzca i where N is the
number of nodes and d; is the shortest path between node i and node j (Wang, Zou &

He, 2010).

Farness Centrality
Farness centrality is a measure of the speed with information from a given node can

N
1
— o;

saturate the network. It is defined for a given node i as ¥ ~ ! kX:l " where o, is the
number of shortest paths from node i to node k (Lord et al., 2012).

Eigenvector Centrality

Eigenvector centrality is high for a node if it is strongly correlated with other nodes that
are determined central to the network. Given Ax =Xx, where A is a square similarity
matrix, the eigenvector centrality of node i is the i-th entry of the normalized eigenvector
that corresponds to the largest eigenvalue of A (Lohmann, et al., 2010). Eigenvector
centrality is closely related to betweenness centrality.

Classification Methods

Multi-class SVM
The multi-class SVM model uses a “one-against-one” approach for classifying. If there

are n potential classes, it trains 7 - (n — 1)/2 classifiers as each classifier trains data
from two distinct classes. Each model maps each point in space so that the different
classes are grouped together. They are divided by a gap that the model attempts to
make as wide as possible. New data points are mapped to the established space and
then assigned a classification based on which side of the gap that they fall (Hsu & Lin,
2002).

Naive Bayes
The naive Bayes model applies Bayes’ theorem and the assumption of independence
between all of the features for a specific instance. Given y, which is the class variable,
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in this instance an integer classification that corresponds to classification as typical
developing or an ADHD type, and a vector of features =1 to =, Bayes’ theorem states:

P(y)P(zy1,...7y | y)
Ply|zy.....: e Y e ,
|z tn) P(xq,...,: Tn)

. . . . 5 = arg max P(y)HP(.z', | y),
As P(x, to x,) is a constant, then the estimated classification, Y is d i=1

Logistic Regression

The logistic regression model attempts to approximate £(¥/%) where ¥ is the class
variable, in this instance an integer classification that corresponds to classification as
typical developing or an ADHD type, and z is a vector of features 1 to 4. For a single

data point, logistic regression assumes that the P(y = 1|z) = (). Where ¢ is the
d
. ) ) z=0y+ Z 0; - x; ] ]
sigmoid function and i=1 . The different values of theta are determined by the
training data using a method called gradient ascent optimization. This method chooses
values of theta which maximize the function

LL(§) = iy(i) log(a(7 - x(i))) +(1- y(i)) log[l — o (67 - x(i))]

where 6 is the vector of trained parameters, z(*) is the ith example, and ¥ is the
corresponding label (Mitchell, 2005).

Multilayer Perceptron

Multilayer perceptrons (MLP) is a feed-forward neural network with an input layer, an
output layer and at least one hidden layers in-between. The input layer consists of the
feature vectors of graphs in our case, while the hidden layers as well as the output layer
contains weights, bias and non-linear activation functions (we use ReLU). We ran MLP
to classify ADHD vs. Typically Developing. Considering the features size is above 1000
while the total number of data is about 500, we setup the network to have hidden sizes
(500, 100, 10), alpha = 0.01 for L2 penalty and Adam optimizer. We use k-fold cross
validation (k = 10) to split training and validation data.

Results

There were two prediction objectives for this project, determining if the given fMRI was
of a patient with or without ADHD and, given that a patient has ADHD, the type of
ADHD. When processing, the data was initially binarized to represent the presence or
absence of ADHD. There are three types of ADHD in the data: Hyperactive/Impulsive,
Inattentive, and Combined. However, while there were over a hundred examples of
Combined and Inattentive, there were only 7 of Hyperactive/Impulsive. Thus, in the task
of classifying ADHD type, Hyperactive/Impulsive was ignored. In addition, with all
classifiers, an 80/20 train and test split was used throughout.

Thresholding
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The given fMRI data reports the blood oxygen level-dependent signal between any two
regions of the brain. The signal strength fluctuates from as little as 0.008 to as high as
0.78. To reduce noise, a threshold was introduced such that edges are not included if
the strength is less than the threshold.

_____

=== ADHD Type
0.45 { === ADHD or Normal Developing

00 01 02 03 04 05
Threshold Value

Figure 1: Graph of accuracy for varying threshold values

With a Naive Bayes classifier, the accuracy for determining the presence or absence of
ADHD was maximized when the threshold was 0.40. Interestingly, a threshold of 0.41
was used to maximize accuracy on similar work done on task-based fMRI data (Park, et
al., 2016). The accuracy for determining ADHD type was maximized when the
threshold was 0.25. This threshold is supported by literatures as it was also used for
similar work on this same dataset (dos Santos Siqueira, et al., 2014).

Classification Methods

For the task of differentiating between a typical developing and ADHD patient, a
multi-class SVM was equivalent to a majority classifier, which is included as reference
for a baseline. Similarly, the MLP neural net had an accuracy equivalent to the majority
classifier, but had a sensitivity of 33% rather than 0%. Logistic regression performed
worse than a majority classifier, but had surprisingly high sensitivity. Naive Bayes had
the highest accuracy as well as the highest sensitivity of 47%.

Table 1: Classification methods and associated statistics on ADHD vs. typical
developing task

Method Accuracy Specificity Sensitivity
Majority Classifier 61% 100% 0%
Multi-class SVM 57% 100% 0%
Logistic Regression 47% 51% 40%

MLP 61% 85% 33%

Naive Bayes 68% 82% 47%

For the task of classifying ADHD type, again, a multi-class SVM was equivalent to a
majority classifier, which is included as reference for a baseline. Logistic regression
was on-par with a majority classifier, but had much higher recall rate for the
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non-majority class. Naive Bayes had the highest accuracy with a recall rate for the
non-majority class roughly equivalent to that for logistic regression.

Table 2: Classification methods and associated statistics on classifying ADHD type

Method Accuracy Recall rate for Recall rate for
ADHD-Combined ADHD-Inattentive

Majority Classifier 59% 100% 0%

Multi-class SVM 57% 100% 0%

Logistic Regression 59% 72% 33%

Naive Bayes 67% 85% 27%

Discussion

ADHD vs. Typical Developing

With Naive Bayes, our feature vectors result in accuracy above industry standard when
classification is based on resting-state fMRIs. Currently, industry standard is 63%
accuracy when taking into account patient information like gender and handedness
(Brown, et al., 2012). Without this additional information, which our algorithm was not
provided, industry standard is an accuracy of 58% with a specificity of 50% (dos Santos
Siqueira, et al., 2014). Our accuracy is 10% higher, though our sensitivity is 3% lower.

Our accuracy of 68% though is quite low and this is because the networks for ADHD
and typically developing brains are very similar. When examining the distribution of
small-worldness, a feature that was hypothesized to be predictive, there is a difference
in the distribution, but a large amount of overlap as well (Wang, et al., 2010). It seems
like typical developing brains have, on average, a slightly lower small worldness value,
implying that those graph more closely resemble a small world model, yet the difference
is subtle. Other features, such as global nodal efficiency, which was hypothesized to be
predictive, don’t seem to have any noticeable difference in distribution when considering
the different diagnosis (Wang et al., 2009).
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Figure 2: Distribution of small worldness for graphs Figure 3: Distribution of global efficiency for graphs
associated with ADHD and those that are not associated with ADHD and those that are not

Though Naive Bayes doesn’t calculate feature importance, when comparing two classes
of features, node-level and graph-level, graph-level features outperformed node-level.
Node-level information about centrality, clustering and efficiency resulted in a classifier
equivalent to a majority classifier, our baseline. Graph-level information such as small
worldness, average clustering coefficient and characteristic path length slightly
increased accuracy and greatly increased specificity. This implies that changes in brain
structure and function that cause ADHD aren’t localized to a few nodes, but rather are
best captured by examining the brain as a whole.
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Figure 4: Confusion matrix for ADHD vs. Typical Figure 5: Confusion matrix for ADHD vs. Typical
Developing task solely using node-level features Developing task solely using graph-level features

ADHD-Combined vs. ADHD-Inattentive

With Naive Bayes, our feature vectors result in accuracy above industry standard when
classifying resting-state fMRI data. Currently, industry standard is an accuracy of 61%,
while our accuracy is 67%. However, our method results in a bias towards the majority
class of ADHD-Combined, while the recall for both the majority and non-maijority class
in previous literature is around 65% (dos Santos Siqueira, et al., 2014). These
comparisons are against similar work on resting-state fMRI data. Industry standard for
tasked-based fMRI analysis is 91% accuracy when differentiating ADHD types.

An accuracy of 67% is quite low and this is because there are slight differences
between networks with different ADHD diagnosis. In past work, betweenness centrality
on a node-level has been used to distinguish between ADHD-Combined and
ADHD-Inattentive (dos Santos Siqueira, et al., 2014). However, when comparing
distributions of betweenness centrality for two regions of the prefrontal cortex
associated with attention and impulse control, the distributions appear different, but
there is significant overlap, which explains the relatively low accuracy (Raiz, et. al,
2018).
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Figure 6: Distribution of betweenness centrality the
Left Precuneous Cortex
on graphs with ADHD-Inattentive or
ADHD-Combined

Figure 7: Distribution of betweenness centrality
for the Right Insular Cortex
On graphs with ADHD-Inattentive or
ADHD-Combined

Though Naive Bayes doesn’t calculate feature importance, when comparing two classes
of features, node-level and graph-level, node-level features slightly outperformed
graph-level for this task. Accuracy was marginally higher using just node-level features
and recall for the non-majority class was significantly better. This implies that
differentiation can be done based on differences between specific regions in the brain.
Though Naive Bayes doesn’t provide an importance weighting by feature, other
classifiers do and future work could identify specific brain regions critical for

differentiation.
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Figure 8: Confusion matrix for ADHD-Combined vs.
ADHD-Inattentive task using node-level features

Figure 9: Confusion matrix for ADHD-Combined vs.
ADHD-Inattentive task using graph-level features

Further Work

Two known ways to increase accuracy are to separate fMRI images by site and
include patient features not found in fMRI data. An accuracy of 63% was reached when
combining patient data, such as gender and handedness, with simple degree
measurements for nodes (Brown, et. al, 2012). While we focused on diagnosis based
on fMRI data alone, including other available patient features should increase accuracy.
In addition, classification by imaging site increases accuracy to above 80% (dos Santos
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Siqueira, et al., 2014). We chose not to separate our images by imaging site as a
robust algorithm should be able to account for imaging differences across machines and
operators.

With adequate training data and computing power, it is feasible to build a
different classifier for every hospital or clinic or add an additional feature to our vector
that represents the imaging site. More parameters in our classifiers led to lower
accuracy and recall. Larger and more balanced classes would improve hospital-specific
models, as well as create more discrimination in between class features vectors, which
more parameterized classifiers can take advantage of. Additionally, to decrease the
input dimension we could reduce the feature space size by removing features that are
highly correlated with other features or have negligible difference between classes.
Using the 2-layer MLP with hidden sizes eight and two resulted in an accuracy <60%,
but using PCA and whitening to pre-process feature vectors may be better step
forward. Recursive feature elimination as used by previous work (Qureshi et. al 2016,
Lin et. al 2012) would find the most discriminative combinations of features.

Alternatively, a better way of ordering features may be helpful. Currently we stack
node features in the order of node ID, but if we can assign ID to nodes in a way that
reveals some structural features, for example, assigning smaller ID to nodes that tend to
be hubs among all graphs, we may be able to cooperate more information to the
features.

Task-based fMRI data has resulted in over 90% accuracy when differentiating
ADHD types (Park, et al., 2016). That analysis solely looked at the degree of individual
nodes. It would be interesting to see if additional features found useful in our method,
such as betweenness centrality, would further increase the already high accuracy. If
task-based fMRI data can inform ADHD type, that fMRI data may also be used to inform
distinguish ADHD from a typical developing child. The one caveat is that task-based
fMRI requires the patient to focus on performing a single task and as ADHD is
commonly diagnosed in elementary-aged children, it's unclear the accuracy of
task-based fMRI for that age group (Holland, et. al, 2001).

Link to Code: https://github.com/kerdma6777/adhd-classification

Distribution of Work

Emma: try traditional methods on different subsets of features, write and tune MLP, report and
the poster

Katherine: data processing, feature extraction (except nodal efficiency), thresholding, data
analysis, writing the report and the poster

Santosh: Nodal efficiency, MLP, ADHD example upsampling, reasoning for classifier results and
dimension/feature elimination in report
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