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Abstract

In modern e-commerce and cryptocurrency
networks user generated reviews provide
traders some transparency into the trust-
worthiness of a potential trading partner. In
the application of bitcoin networks, a signed
social network is a graph where each user is
a node and edges are created per transac-
tion review with edge weights corresponding
to trading relationship sentiment. Knowing
that users rely on these rating platforms to
help them make trading decisions, criminals
have taken advantage of this signed social
network structure to make themselves or a
person or community of their choosing ap-
pear more credible.

In this paper, we propose 2 novel ensem-
ble node embedding methodologies ReFex
+/- and ReFex REV2 +/- for signed so-
cial network applications. For each of these
methodologies we extend the original ReFex
algorithm, created for positive weight net-
works, to handle signed social networks. Fur-
thermore, for the ReFex REV2 + /- we add
the REV2 fairness and goodness score of a
user to the basic ReFex feature list. We then
use these embeddings along with ground truth
labels to develop models to classify unla-

beled nodes. We apply our embedding method-

ologies to Bitcoin trading platform dataset,
and show that including REV2 scores as fea-

tures of the ReFeX embeddings can help im-
prove the prediction accuracy. Specifically,
we were able to achieve an average AUC
score of greater than 90% using a decision
tree model trained on our ReFex REV2 + /-
node embeddings. This model is robust to
the percent training data used, with an aver-
age AUC greater than 90% for all percent-
ages of training data tested between 10%-
90%. Finally, we used our node embedding
as inputs to K-Means/HDBSCAN to see if
nodes of the same classification clustered to-
gether. The result of clustering nodes based
on their feature vectors show that for clus-
ters with many ground truth nodes, these
nodes are typically dominated by one type
of ground truth users, either good or bad.
This indicates that our algorithm succeeds
in producing embedded vectors that could
be used to separate between good and bad
users.

1 Introduction

Bitcoin is a pseudo-anonymous decentral-
ized cryptocurrency built on the blockchain
technology [13], in which each user is uniquely
identified by their anonymous public keys
and authorize payments via their private keys;
their transaction history, however, is trans-
parent. Thanks to the use of blockchain



as a transaction ledger, bitcoin is fully de-
centralized and resistant to data modifica-
tion. Unfortunately however, it is not by
any means immune to scams, frauds, and
theft. These risks include account hacking,
platform hacking, fraudulent cryptocurrency
and exchange platforms.

Users in a bitcoin network could indicate
their trust to another user; thus a Bitcoin
network could be thought of as a weighted
graph with positive edges indicating trust
and negative edges indicating distrust. Be-
cause users in a Bitcoin network prefer to
trade with others who have a history of pos-
itive feedback ratings, there is a huge mon-
etary incentive for fraudulent users to in-
crease their perceived trustworthiness. The
bitcoin network is anonymous and decen-
tralized, making it almost impossible to link
a fraudulent users to their deceitful transac-
tions. The anonymous nature of the Bit-
coin network makes relying on features out-
side of those provided by the network struc-
ture difficult. As a result, the existence for
an algorithm that could adequately repre-
sent the features of nodes in a Bitcoin net-
work through embedded vectors is crucial
for many machine learning and fraud detect-
ing job on a Bitcoin network.

In this paper, we present ReFex + /- and
ReFex REV2 + /- feature learning algorithms
to generate embedded vectors for each user
in a Bitcoin network. We experimented with
the two algorithms ReFeX [5] and REV2 [9]
and combined them in multiple ways to find
the best method for feature learning. Our
result, ReFeX + /-, produce a feature vector
for each node by combining the feature vec-
tors received from two ReFeX runs, one on
positive edge subgraph of the Bitcoin net-
work, and one on the negative edge sub-
graph. This algorithm could be combined
with features received from REV2 to im-
prove the representation capability, result-

ing in ReFeX REV2 +/-.

Our contribution from this paper includes:

e Experiment with multiple ways of com-
binig ReFeX and REV2 to improve the
feature learning capability, resulting in
two algoritms ReFeX +/- and ReFeX
REV2 +/-

e Show that these two algorithms gives
better learning capability compared to
current algorithms.

e Explore several methods of classifying
nodes based on the embedded vectors
returned by our algorithm, and show-
ing how HDBSCAN [12][3] and De-
cision Tree could be sucessfully com-
bined with our algorithm to give a bet-
ter understanding of a Bitcoin network
structure.

2 Related Work

2.1 BIRDNEST Algorithm

One tactic that businesses often employ to
increase the popularity of their products is
using fake positive ratings. The fraudulent
users giving these ratings could be detected
through their skewed rating distribution and
the irregularity of their ratings. The
BIRDNEST fraud detection algorithm, pre-
sented by Hooi et al. analyses the review
distribution and average ratings of users to
identify fraudulent reviewers and fraudulently
rated products using Bayesian inference [6].
Abnormality in review intervals, such as huge
spikes in the number of ratings given in a
short period of time, or periodic ratings, are
also taken into account.

BIRDNEST was tested on Flipkart prod-
uct reviews network, where it identified 250



of the most suspicious users of which 211
we identified as fraudulent users. While the
it delivers impressive results, BIRDNEST
does not take advantage of more useful in-
formation that could be extracted from the
review network structure, such as network
cluster, nodes’ roles, among others. It also
specifically focuses on e-commerce sites and
thus could be unsuitable for detecting un-

common schemes in e-commerce, such as Ponzi

[2] schemes.

2.2 REV2 Algorithm

Kumar et al developed the REV2 algorithm
to predict fraudulent users in ratings plat-
forms such as e-commerce platforms. REV2
defines three interdependent quality metrics
to predict fraudulent users product qual-
ity, review reliability, and user fairness. The
authors then established six logical relation-
ships between these metrics: for example, a
fair user is more likely to give reliable re-
views, a good product is more likely to re-
ceive a reliable positive review, etc. By for-
malizing these relationships through mathe-
matical formulas, they define a system of lin-
ear algebra equations calculating each score
which can be solved for through iterative
methods.

The authors of REV2 also integrates other
methods such as smoothing coefficients to
deal with the “cold start problem” and
BIRDNEST to punish suspicious user pat-
terns such as burstiness in active time, etc.

The complete REV2 formulation is then solved

iteratively. The REV2 authors compared
their algorithms performance to nine state-
of-the-art fraud detection algorithms, with
REV?2 outperforming all of them on exten-
sive experiments on 5 datasets. Addition-
ally, the algorithm has a linear running time
with the number of edges. However, we be-

lieve that by augmenting the REV2 with
more bitcoin network-specific local features,
performance could be improved.

We believe that by adding simple node
and egonet level properties, we could ler-
age more network properties to aide in node
classification. Network properties such as in
and out degrees and edge count within an
egonet will be similar for the good and bad
users in the network. This belief is based on
the fact that good an bad users haven shown
interact in ways that create distinct node
level and egonet network embeddings. For
example, Pandit et al. explain how fraud-
sters interact with users via the a handful of
"accomplice nodes” but never directly with
other fraudulent or good users. Conversely,
friendly users may interact with a couple
accomplice node in addition to many other
friendly nodes who will make 2-way trades
with them. [14] These unique trading pat-
ters will result in unique network properties.

2.3 ReFeX

An important task in learning about a net-
work is to encode the structure of the net-
work into feature vectors for use in a wide
array of learning tasks. Henderson et al pro-
pose ReFeX [5], which is a recursive algo-
rithm for learning about the structure of the
neighbor network of each node. The algo-
rithm starts by assigning the degree of each
node as the starting feature. In addition to
degree, other features can be appended to
the feature vector. The algorithm then re-
cursively appends the mean and sum of the
feature vectors of the neighbors of a node to
its feature vector. By recursively apply this
algorithm, we end up with a feature vec-
tor that could represent the structure of the
network on a local scale.

One notable drawback of the algorithm



is that the dimension of feature vectors in-

creases exponentially, causing the curse of
dimension for learning algorithm using ReFeX’s

result. The authors propose to mitigate this
problem by pruning features that are highly
correlated. Another drawback of this algo-
rithm in respect to signed social network ap-
plications, is that it does not differentiate
between negative and positive weight edges
in a network. Kim et al. have explored
how positive and negative weight edges have
very different interpretations and should be
treated differently [7].

3 Dataset Description

For our experiments, we use the signed so-
cial network dataset from the Bitcoin trad-
ing platform Bitcoin Alpha. To calculate
the REV2 fairness and goodness score, we
use the REV2 code provided to convert the
dataset to a bipartite graph, where one set
of the graph is the rater user and the other
set is the user whose trustworthiness is be-
ing rated (product). Edges in the graph are
always directed and originate in the rater
set of nodes with destination always being
a node in the set of users being rated. The
edge weights correspond to the strength of a
raters sentiment. The ground truth of each
dataset was determined by the respective
platforms founder. Users are identified as
trustworthy if the founder identified them
as trustworthy, a trustworthiness rating <
.5. Conversely users were identified as non
trustworthy if the found assigned them a
trustworthiness < —.5. We use the original
user to user network (non-bipartite graph)
to extract the network properties used in the
ReFeX and ReFeX +/- algorithms.

‘ # Users

% fair
3.57

% unfair

2.70

# Edges
24185

% labeled ‘

3782 6.27

Table 1: Bitcoin Alpha Dataset Statistics

Ground Truth Fraudulent ﬁ
Ground Truth Friendly User
Ground Truth Unlabeled User

Figure 1: Original Network Plotted Using
Networkx Spring Layout

4 Methodology and Algo-
rithm

For our project, we developed an ensemble
model that uses basic node level and ego-
net level properties such as node in and out
degree, and intra egonet edge count in ad-
dition to the more complex REV2 score to
create recursive node embeddings using the
ReFeX algorithm. We then use these em-
beddings along with ground truth labels to
develop algorithms and models that can po-
tentially be used to classify unlabeled nodes.

4.1 Embedding Methodologies

For our experimentation, we define 3 differ-
ent node vector embeddings. These embed-
dings are all based on the ReFeX algorithm.
The baseline ReFeX vector embedding for
our experiments is V9 where i is the level
of recursion. V,”) is the set of 4 basic local
node features. Prioz to recursion, there is a

a feature vector V(u) € R* for every node
u. The features include the following: (1)



Figure 2: Methodology and Algorithm
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the in-degree of node v, (2) the out-degree
of node v, (3) the number of edges within
the egoNet of v, (4) the number of edges
connecting the egoNet of v to the rest of the
graph. We then recursively extend the fea-
tures of v, using the following formula:

) ) 1
VJI)Z[VJO);W( 7 > Vs YV

vEN (u) vEN (u)

Where N(u) is the set of us neighbors in
the graph. If N(u) = () , set the mean and
sum to 0. After K iterations, we obtain the
overall feature matrix

V = VE R

For our experiments for each of the embed-
ding features, we will do 3 iterations. Since

we includes the neighbors edges and its egoNet

edges, with the iterations, we can detect the
users who have similar local and global (neigh-
bors neighbor) network pattern, then help
us detect the community the user belong to.

Because we believe there is an intrinsic
difference between the meaning of negative
and positive weights within a network, our
second version of vector embeddings,ReFeX

+/-, is the same as the traditional ReFeX al-
gorithm but we separate the network into a
network of all positive weights, and a second
network of all negative weights. We then ap-
pend the ReFeX embedding of the positive
weight only network to the embedding for
the negative weight only network.

Vi, = Vi Vi)

—Uu

Finally we define the ReFeX REV2 +/-
vector embedding, which is nearly identical
to the ReFeX +/- embedding with 2 ad-
ditional local feature added, REV2’s Fair-
ness(v) and Goodness(v) values.

We combine REV2 features together with
other network structural features and com-
pare the results with and without REV2.

4.2 REV2 Score Calculation

We calculated REV2 user fairness and good-
ness scores by running the code provided by
the REV2 authors on the same dataset used
for their paper’s results with the parame-
ters they noted gave the best results. The
parameter values which gave the best results
are the following:

a;=0,a0=0,6,=0,6,=0
Y1 = 001,")’2 — 001,")’3 =0

We experimented with other combinations
of values for these parameters, and appended
each resulting pair of fairness and goodness
to our vector embeddings. However, we did
not see any improvement in prediction per-
formance. Because of this, we decided to
only use the pair of fairness and goodness
values resultant from all 0 parameters.

In REV2, the original network is trans-
formed into an bipartite network, where nodes



are divided into two types, users and prod-
ucts. User nodes only have out-coming rat-
ings, and product nodes only have in-coming
nodes. Only user nodes have fairness score,
while product nodes have goodness score.
These are the values we use in our ReFeX
REV2 +/- algorithm.

4.3 Similarity Algorithms

To quantify how similar the vector embed-
dings of 2 nodes are. We use the Cosine and
L2 similarity formulas.

4.3.1 Cosine Similarity

For any pair of the nodes u and v, we use
cosine similarity to measure how similar two
nodes are according to their feature vectors
x and y:

Simcosine(‘Ta y) - |$|2|y|2

lz>=0 or |y*=0, Sim(z,y)=0.

4.3.2 L2 Similarity

Similarly, we also calculate the 12 distance
for each pair of the nodes u and v.

Simy, (z,y) = Z(@ —y)?)

4.4 Clusterings

The embedded feature vectors have a very
high dimension, posing a challenge to effec-
tively learn and visualize about them. To
mitigate this issue, we first use t-SNE [11]
to reduce the number of dimensions down

to two. Then we apply two clustering al-
gorithms and graph their results to visual-
ize clusters with a high number of good /bad
ground truth nodes.

4.4.1 K-Means Algorithm

K-Means Algorithm: We first use this clas-
sic clustering algorithms to cluster our data
points. One downside of K-Means is that
the clusters produced are usually round in
shape and this cluster shape characteristic
does not represent the structure of the our
generated node embedding vectors naturally.

4.4.2 HDBScan

We also use HDBScan [12][3] to overcome
this cluster shape issue. HDBScan uses the
density of the nodes in the vector space to
detect the nodes that are naturally connected
with one another. The algorithm builds a
spanning tree of the nodes in the vector space
and group nodes that could be reached through
short edges together. The downside is that
this algorithm may and up grouping nodes
that are very far from each other to the same
cluster if the happen to be closely connected
to a string of other nodes.

5 Experimental Evaluation

In this section we assess the effectiveness of
our methodologies by presenting our exper-
imental results. All of our experiments were
conducted on the bitcoin Alpha dataset. Our
experiments show these major results (i) We
compare our custom algorithms (ReFeX + /-
and ReFeX REV2 +/-) to standard ReFeX
and the original REV2 algorithm and see
that, REV2 performs significantly better than
our custom models. However our ReFeX



+/- algorithm performs the best in com-
parison to all of our custom models is ro-
bust to the amount of training data, and
offers slight improvement in comparison to
the plain ReFeX algorithm that ignores edge
weight sign. (ii) We also show that using
our vector embeddings we are able to make
use of classification and clustering algorithm
such as Decision Tree, k-Means, and HDB-
SCAN to detect the groups of users.

5.1 Baselines

We compare our ReFeX +/-; and ReFeX
REV2 +/- algorithm performance with the
original ReFeX algorithm and REV2 algo-
rithm. The baseline algorithms are imple-
mented as described in their corresponding
subsection in the background section.

5.2 Experiment 1: Naive Sim-
ilarity Evaluation

For our first experiment, we completed a
naive analysis of our embeddings from the
ReFex +/- and ReFex REV2 +/- embed-
dings. This gave us a rough idea on whether
the REV2 features improve the classifica-
tion precision with our augmented ReFeX
methodologies.

We do above calculation for ReFex +/-
embedding with and without REV2 features,
from the diagram below, it is obvious that
REV2 features helps on prediction. Because
of the naiveness of this method, we not ex-
pected higher precision (Y axis), but it does
help us make the decision to move forward
with our analysis below.

In this step, we also compared the perfor-
mance of similarity algorithms Cosine and
L2, overall L2 shows better performance on

prediction. Hence in our final algorithm above,

Algorithm 1 Experiment 1: Naive Similar-
ity Evaluation
for K in range(5 to 50 by 5) do
for user u in ground truth do
for other node v in Graph do
similarity score = (simpa(u,v) +
8iMcosine (U, V)) /2
end for
nodes = scores.sort(desc)
top_k = nodes[:K]
last_k = nodes[:-K]
p_top_k = intersect(top_k, gt nodes
of same class)/K
p_last_ k = intersect(last k, gt nodes
of opposite class)/K
precision = (p_top_k+ p_last_k)/2
end for
end for

Naive Similarity Score comparison w/wo REV2 features

—— features
features_pos_neg
—— features_pos_neg_rev2

0.450

0.425

0.400 -

0.375 1

0.350 1

| \ / \
0.325 / \ /[ \ A\

\ \
\ / \ / \
0.300 ‘5 T \ J / 3
/ \/ L 4 X / =
\ \/

0.275 1

% on K of intersected nodes within GT (the higher the better)

10 20 30 40 50
How many nodes picked from the sorted similarity score (K)

Figure 3: Naive Similarity Score (ReFeX
+/-) vs. (ReFeX +/- Plus REV2)



we use an average value of cosine and L2. In
this experiment, we believe the selection of
similarity algorithms does not impact the fi-
nal result.

We also aware that bad user’s friends not
have to be bad user, and same for good user.
In this Naive algorithms we does not care
about the precision, but focus more on the
precision delta between (ReFeX +/-) and
(ReFeX +/- Plus REV2).

5.3 Experiment 2: Supervised
Similarity Prediction

For this set of experiments, we aim to rank
the users on how similar their node embed-
dings are to fraudulent “anchor node” em-
beddings. We define anchor nodes as fraud-
ulent nodes we have selected from the ground
truth data at random. Using the anchor
nodes, will give all of the other users in the
network a score based on their similarity to
the set of fraudulent anchor nodes. We de-
fine this similarity score as:

Score(u) = mazx(a € 1,Sim(a,u)) where
1, is the set of anchor nodes.

The similarity formulas we evaluated for
our experiments were Cosine similarity and
L2 similarity.

We measure the performance of the simi-
larity scores for each of the embeddings us-
ing the Average Precision scores, which mea-
sures the relative similarity orderings of each
of the nodes from the embedding algorithms.
Performance is evaluated on all nodes with
ground truth labels, and corresponds to the
area under the precision-recall curve. Figure
4 shows the precision@K results, displaying
how the Average Precision values change as
we increase the number of anchors nodes.
Overall, using the similarity of a node’s em-

—— cosine, features —— cosine, features_pos_neg_rev2 —— 12, features_pos_neg
- cosine, features_pos_neg —— 12, features — 12, features_pos_neg_rev2

10 20 30 40 50 60 70 80 90
Number of Anchor Nodes

Figure 4: Average Precision of Similarity
Based Prediction

bedding to an anchor node is not an effec-
tive classification technique as seen in the
figure. Furthermore, including the ReFex
+/- and REV2 features in our embeddings
makes almost no difference in Average Pre-
cision, leading us to believe our anchor node
based classification mode is ineffective using
our embbedding methodologies.

5.4 Experiment 3: Supervised
Embedding Based Classi-
fier

For our third set of experiments, we trained
decisions trees to predict the class of a node
based on the vector emeddings produced from
our 3 node-embedding algorithms. Decision
trees are a type of supervised classification
model, which are trained by splitting at de-
cision nodes with respect to certain met-
rics, such as minimizing information impu-
rity post-split. Classification on test data
can then be made by walking down the tree
to a leaf node after the tree has been trained.

Figure 5 summarizes the AUCQK results,
showing how the AUC values change as we
increase the number of nodes used in the
training set. This figure shows the results
from our algorithms in addition to the aver-
age AUC reported from the REV2 authors
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Figure 5: AUC of Decision Tree Classifiers
compared to Reported REV2 Results

in their paper. Here we see, our vector em-
beddings from ReFeX REV2 +/- perform
the best, consistently getting an average AUC
score greater than 90%.This leads us to be-
lieve that the behavioral and network prop-
erties captured in the REV2 fairness and
goodness scores, in addition to the positive

and negative network ReFeX embeddings gives

the best feature set for classifying a node.
Interestingly, we see no improvement in per-
formance when we create embeddings on tra-
ditional ReFeX compared to our ReFeX +/-
which treats the positive and negative weight
edges properties of the network as different
features.

5.5 Experiment 4: Clustering
Users

For this experiment we cluster users based
on their embedded feature vectors and check
which cluster has a high concentration of
ground truth good and bad users. To im-
prove the effectiveness of the algorithm and
facilitate visualization, we preprocess the fea-
ture vectors with t-SNE [11] to reduce each
feature vector to only two elements without
sacrificing their similarity. Then we cluster
these new feature vectors using k-Means and
HDBSCAN, and plot these clusters along

Figure 6: Clustering of ReFeX REV2 +/-
embeddings using HDBSCAN

—-60 —40 =20 0 20 40 60 80

Figure 7: Clustering of ReFeX REV2 +/-
embeddings using k-Means

with the ground truth good and bad users.
The results are shown in Figure 6 and 7.
In both figures, the black nodes are ground
truth bad users, white nodes are ground truth
good users, and each color is a cluster.

Our first observation is that the ground
truth users concentrate much more in some
clusters than others, with some clusters hav-
ing very few ground truth datapoints. This
puts a limit on testing the accuracy of our al-
gorithm. On the other hand, ReFeX REV2
+ /- gives embedded feature vectors that are
naturally clustered, and the clusters that do



have many ground truth users all have their
ground truth users overwhelmingly lean to-
wards one side, either good or bad users.
This result indicates that ReFeX REV2 +/-
successfully captures the main properties of
the nodes in the network.

For the clustering algorithm itself, we see
that HDBSCAN clusters users much more
naturally than k-Means and would be our
recommendation for the clustering method
for our algorithm. On improvement that
could be made to HDBSCAN is the set a
maximum diameter of each cluster to avoid
creating a sprawling cluster.

6 Conclusion

In this paper, we presented the ReFex +/-
and the ReFex REV + /- ensemble node em-
bedding algorithms.

e Algorithm: For both ReFex +/- and
the ReFex REV +/-, we define a way
to extend the ReFex algorithm to di-
rected signed social networks. Addi-
tionally in ReFex REV + /-, we extend
the ReFex embedding model beyond it
original base feature, and include the
REV2 goodness and fairness scores of
a user to capture complicated behav-
ioral and network properties.

e Effectiveness: While our “anchor node”
similarity classification methodology is
ineffective compared to current state
of the art fraud detection algorithms,
our decision tree based model performed
well. It consistently achieved greater
than 90% average AUC while being ro-
bust to the amount of training data
used.

e Cluster Representation: The result of
clustering nodes based on their feature

10

vectors show that for clusters with many
ground truth nodes, these nodes are
typically dominated by one type of ground
truth users,, either good or bad. This
indicates that our algorithm succeeds

in producing embedded vectors that
could be used to separate between good
and bad users.
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Appendix

7.1 node2vec Algorithm

An important part of learning about roles of nodes in network is to categorize them into
suitable buckets. By correctly grouping similar nodes, we could quickly categorize nodes
given the known roles of a few nodes and predict the possibility of connection between nodes
given the graph’s structure. For our bitcoin signed network, this means if we could find
a few initial fraud users we could quickly find similar fraud users and predict their future
transaction, timely preventing damage from their scam. This process is often achieved
through node embedding, which is the process of representing a node in a network as a low
dimensional feature vector.

Grover et al. proposes node2vec, an algrorithm designed to categorize the roles of nodes
in a graph reliably using only the structure of the graph itself [4]. node2vec uses random
walks from nodes in a graph, with parameters to prevent returning to a node already in the
walks and sets bias in favor of a certain length of walk. Since the algorithm only utilizes
features of the graph structure itself, it is trivial to generalize for a wide variety of problems.
The algorithm is also proved to outperform all other algorithms solving the same problem,
and scale linearly with the number of nodes in the graph. It however does not specify an
approach to negative node weight, which is prevalent in a bitcoin signed network, and thus
could be unsuitable for our challenge.

7.2 SIDE Algorithm

The SIDE algorithm for extracting node embeddings by Kim et al., which leverages theo-
ries from socio-psychology to embed nodes from a signed social network into representative
vectors [7]. SIDE utilizes three main techniques. First, it uses balance theory to predict the
sentiment of two nodes based on the sign of the links between them. Second, it takes advan-
tage of the principle that two nodes with similar properties are more likely to be connected.
And third, it realizes that connections are asymmetric and determined on a per node basis.

The SIDE Algorithm is made up of 2 stages. The first stage builds a set of random walks
starting a each node, and the second stage of the algorithm uses these random walks to
perform gradient descent on the node embeddings. The likelihood optimization equation is
based on the principles described above. This algorithm is more suitable than node2vec for
signed networks as it takes the sign of edges into its calculations. However, this algorithm
may not be suitable for fraud detection applications as frausters have shown to avoid each
other in real world networks, in attempts avoid being caught in mass. Pandit et al. explain
how fraudsters interact with users via the role of an accomplicate but never directly with
other fraudulent users.|7]
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7.3 Sockpuppet

Many online communities have sockpuppet users, fake users who create multiple identities
to deceive others or manipulate discussions. Srijan et al did the study of the sockpuppet [8]
in 9 online communities to identify basic features that can be used to identify sockpuppets:
similar names, emails, linguistic traits, arguments, suspicious behaviors, abnormal network
structure, etc.

The techniques they developed to identify sockpuppet users include filtering IP addresses,
linguistic traits, activities and interactions of sockpuppet. The methods used in identifying
these traits could be adapted to identifying suspicious traits in the bitcoin network. Some of
the feature definitions, like activity features (how they create posts, participate in discussions
and subdiscussions), community features (the users they interact with and how positive
the interactions are) and post features (word choice, hoaxes and deceptive styles) also can
be applied to bitcoin network with little necessary modifications.Since the paper focuses
on online forums only, features used in detecting sockpuppets such as linguistic traits and
usernames would not be applicable for a bitcoin network.

7.4 Dataset Analysis

We explored summary statistics of the two user classes, fraudsters and friendly users, in our
bitcoin network to determine if there were significant general quantifiable differences in the
properties of users from each group.

The first summary statistics we looked at were indegree to outdegree and histograms, see
figure 8 in Appendix. This histogram revealed that fraudsters had a much lower outdegree
median of 2, where the median outdegree for friendly users was 14. This makes sense, as
we do not expect fraudulent users make many payments to other users. We also noticed
that the average indegree of friendly users was much higher comparatively. Initially, We
expected fraudsters to have a high indegree because they were accepting a large number of
payments. One possible explanation for this trend is that fraudsters create multiple accounts,
and abandon accounts quickly after making a small number of transactions.

Presumably, a fraudsters main goal in a bitcoin network is to maximize profits. One way
to achieve this goal, is to have a larger network of users you accept payments from compared
to the size of the network of users you make payments to. To explore this hypothesis, we
compared the length of the list of unique users a user accepted payments from (incoming
edges) to the length of the list of the number of users they made payments to (outgoing
edges), see figure 10 in Appendix. An interesting trend we see here is that fraudulent users
are much more likely to have a larger network of nodes they accept payments from compared
to the network of nodes they make payments to.

Next we wanted to explore the summary statistics for the time between payments for each
user type, see Appendix figure 9. In the corresponding plots we see that fraudulent users ex-
hibit the bursty behavior described the the REV2 authors. Fraudsters have a comparatively
lower mean and median for incoming, outgoing and all payment types compared to friendly
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users.

From the initial summary statistics shown above, we will try adding a behavioral compo-
nent to the REV2 algorithm, that penalize a users trustworthiness if the have a ration of into
coming to outgoing neighbor set < .25 and they have and average § T between transactions
< 1 second.

7.5 Algorithm

Algorithm 2 Calculate Per Node Embedding

for user in Graph.getNodes() do
fairness = REV2 algorithm score for user’s fairness and goodness
ReFeX vector = ReFeX node structural embedding
ReFeX + vector = ReFeX node structural embedding of positive rating network
ReFeX - vector = ReFeX node structural embedding of negative rating network
ReFeX +/- Plus REV2 vector = Include fairness score as feature to calculate an aug-
mented ReFeX node embedding

end for

Analyze these embeddings using 4 different clustering / classification algorithms, Cosine

Similarity, L2 Similarity, K-mean and Decision Tree.

7.6 Figures

7.7 Feature Augmentation

We then combine all these features together, and run recursive iteration to augments the
features. We use mean and sum as aggregation functions.

—

Initially, we have a feature vector V(u) € R?® for every node u. In the first iteration, we

—

concatenate the mean of all us neighbors feature vectors to V(u), and do the same for sum,

W _ . L . 5
W= My 2 T 2

vEN (u) vEN (u)
where N(u) is the set of us neighbors in the graph. If N(u) = () , set the mean and sum to
0.After K iterations, we obtain the overall feature matrix

V = VE RS

For each of the embedding features, we will do 3 iterations. Since we includes the neighbors
edges and its egoNet edges, with the iterations, we can detect the users who have similar
local and global (neighbors neighbor) network pattern, then help us detect the community
the user belong to.
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Figure 8: Node Indegree and Outdegree Histograms
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Figure 10: Number of Unique Incoming and Outgoing Trading Partners
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