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Abstract— Interactions and relationships in social net-
works can be either positive or negative. Link sign
prediction can be used to infer relationships that are
present, but whose nature remain undetermined. Under-
standing the ’sign’ of these links and relationships is
highly relevant to a number of interesting applications,
ranging from friend recommendation to fraud detection.

Our project studied two datasets, Wiki-Vote and
Slashdot, and conducted link sign prediction on them.
We extracted node degree features, low order features,
high order features, and defined a new node embedding
algorithm: CSN2V, as features for link prediction. We
fed features into two machine learning models, logistic re-
gression and fully connected neural network, to make the
prediction. We made performance comparisons among
different feature combinations, classifiers, configurations
of the CSN2V random walk (different q, p settings),
etc. Our experimental results provide insights into which
features work best on which dataset and the reason
behind it. Moreover, our CSN2V algorithm confirms the
utility of the Theory of Balance. Overall, this paper
serves as another evidence that the sign of a link can
be informed by the relationships its endpoints have with
others of the surrounding social network. 4.

[. INTRODUCTION

Social interaction on the social network can
be both positive and negative — explicit signed
links can represent relationships between people:
friendship or enemy, support or disagreement,
approval or disapproval. Link prediction can
be used to infer latent relationships that are
present but not recorded by explicit links, the
sign prediction problem can be used to estimate
the sentiment of individuals toward each other,
given information about other sentiments in
the network [11]. The interplay of positive and
negative relations is very important in many
social network settings, while the vast majority
of online social network research has considered
only positive relationships [10]. Therefore, We
conducted signed Link prediction of in our project.
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Our project draws inspiration from 4 link pre-
diction papers [1 — 4]. We conducted performance
analysis on signed link prediction of existing links
using different combinations of degree-type, low
and high-order features with machine learning
based prediction algorithm. Our evaluation metrics
will account for false positive/negative rates too.
Furthermore, we explored more combinations of
features in effort to further improve performance
on different networks and gain insights.

A. Problem Statement

Given a graph G with nodes V and edges E,
where the edges could have positive or negative
signs; the task is to predict the unknown sign of
an existing edge given the rest of the network.

II. RELATED WORK

Liben[l] provides an overview of similarity
based methods for solving the “unsigned” link
prediction problem. It implemented different
methods for computing the similarity” score
between nodes. However, the prediction accuracy
only achieves to 54.8%, which can be further
improved and the methods discussed cannot infer
specific characteristics of interactions.

Jure[2| studied signed link prediction for online
social networks, where the sign denotes positive or
negative relationships between nodes. The paper
extracted two types of features from the network
(signed degree of nodes, sub-structure/triad
counts) and utilized a machine learning model,
Logistic Regression, for prediction. The paper
showed a great accuracy and suggested that triad
features perform better than the degree features for
predicitng edges of higher embeddedness. Their
prediction model provides insight into Theories
of Balance and Status from social psychology
[7], which is broadly utilized in link prediction



[2, 8]. However, the author only considered graph
features on node-degree level and on traid (loop
of length 3) level, instead of considering larger
sub-structures (e.g. 4-5 nodes subgraph), or other
network metrics like Motifs and graphlets, or even
node roles.

Kai-Yang[3] conducted a similar study to
the last one in the sense that they both stem
from the Social Balance theory, but his study
recognized aspects that were overlooked by the
previous paper. For example, it recognized false
positive rate as an essential evaluation metric, and
exploited higher-order features. With these higher
order features added, this paper discovers that
the false positive rate also drops on 3 real-world
networks: Epinions, Slashdot and Wiki-Vote. This
paper also abandoned using degree-type features,
such as positive in-degree of a node, as they
believe that nodes have their own predispositions
that don’t necessarily extrapolate well to the rest
of the network.

Yuan[4] presented a “signed” network
embedding model called SNE. The SNE adopts
the log-bilinear model, assigning a pair of ’source’
and ’target’ feature vectors to each node. Then,
the ’source’ embeddings of all nodes along
a given path multiplied with two signed-type
vectors, corresponding to the positive or negative
sign of each edge along the path, to obtain the
‘target’ node embedding for the destination node
of any given walk [4]. A reverse pass is used to
derive the ’source’ embeddings, aggregated from
target embeddings of nodes along a walk. This
paper also presented a simpler version of their
algorithm, called SNEs, where only 1 embedding
is used instead of the pair of source and target
embeddings. The paper conducted link prediction,
on both directed and undirected signed networks
and showed the effectiveness of their signed
network embedding by comparing results against
three state-of-the-art unsigned network embedding
models.

Jerome[9] used various signed spectral similarity
measures, including squared adjacency matrix,
matrix exponential, and Inverted Laplacian with

dimensionality reduction. The study showed that
the network exhibits multiplicative transitivity,
which is consistent with the Balance theory [7].
However, the prediction accuracy can be further
improved, as its best model only achieves 67%
accuracy with no mentioning of AUC.

IITI. DATASET

We firstly built three simple, signed, and
directed graphs with different numbers of 4/5-
order cycles, triads, etc., to test the validity of our
feature extraction implementations.

Then, Wiki-Vote dataset and Slashdot dataset
were utilized after successfully conducting tests
on our toy graphs. The reason we chose these
datasets is that they are used across most of
our referenced papers, using these 2 datasets
then allow us to compare our results against the
existing papers.

Wiki-Vote is a network corresponding to votes
cast by Wikipedia users in elections for promoting
individuals to the role of admin. A signed link
indicates a positive or negative vote by one user
on the promotion of another (+ for a supporting
vote and for an opposing vote). It has 2,794
elections with 103,747 total votes and 7,118 users
participating in the elections (either casting a
vote or being voted on). The resulting network
contains 7,118 nodes (users) and 103,747 edges
of which 78.7% are positive.

Slashdot is a network from the technology-
related news website, Slashdot, where users con-
nect to each other as friends or foes. This network
contains 82,144 nodes (users), and 549,202 edges
(relationships) of which 77.4% are positive. 70,284
users received at least one signed edge, and there
are 32,188 users with non-zero in- and out-degree.

The following table summarizes some key charac-
teristics of our 2 datasets which we will reference
later on.
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Slashdot
Dataset Wiki Slashdot
Nodes 7,115 82,168
Edges 103,689 | 948,464
Avg Clustering Coeff | 0.1409 | 0.0603
Num Triangles 608,389 | 602,592
TABLE I

DATASET CHARACTERISTICS

IV. METHODS

We utilized two machine learning models:
logistic regression and multi-layer perceptron
(MLP) with 3 hidden layers of size 64, 32, 32
respectively. We feed classifiers with combinations
of different per-edge features.

Logistic regression learns a model of the form

1

P(+|z) =

Where z is feature vector, and bg, by, ...,b, are
feature weights we estimate based on training
data [5].

MLP is a supervised learning algorithm that
learns a non-linear function by training on a
dataset. Given a feature vector f and a target ¢, it
can learn a non-linear function approximator for
either classification or regression. It is different
from logistic regression, in that between the input
and the output layer, there can be one or more
non-linear layers, called hidden layers. As a result,
an MLP can model more complex functions and
could fit to the underlying pattern of datasets



better.

Inorder to be able to compare our results with
existing papers, we adopt their common training
scheme. We partition all edges of a network to
10% as validation set, and 90% as training set. We
then train our model with 10 fold cross-validation,
and average our results.

Algorithms discussed below are used for feature
extraction.

Existing Algorithms

Signed Triad Motif counts We consider each
triad involving the edge (u,v) with another node
w. There are 16 distinct types of triads involving
(u,v), by considering edge directions and edge
signs of edges between u, w and v, w, which leads
to 2-2-2-2 =16 permutations. Each of these 16
triad types may provide different evidence about
the sign of (u, v), adhering to Theory of Balance
in Sociology. We encode this information in a
16-dimensional vector specifying the number of
triads of each type that (u, v) is involved in.

Signed k-th order path counts (High Order
Feature) As described in the project proposal, the
counts of all different configurations of length k
path with end points (i, j) can be found from the
(1, j)-th entry of all permutations of:

(Af0

where 1 is identify and T is transpose (they
counts for different edge directions), + means
only keeping the positively weighted adjacencies
and - means keeping only the negative.

Some of our other features:

[ Similarity Score | Expression |
common neighbors [ T(z)NT(y) |
Jaccards coefficient H:Ei;&l:ggl
preferential attachment | | T'(z) | * | T'(y) |

TABLE II
DIFFERENT SIMILARITY SCORE

Cumulative Signed Node2vec

After reading the SNE paper[4], we discovered
a shortcoming with their algorithm. Thus, we
proposed a better algorithm for obtaining node
embeddings in signed networks, and we call it
Cumulative Signed Node2vec (CSN).

But first, let’s analyze the embedding formulation
described in the paper:

Given a random walk path [h, ui, ug, ... , ul,
where h is our starter/target node.
1
VO =3 govtD
i=1
where ¢; ;= cp if Wy, .., = 1 and ¢; := c_ if
Wui»ui—o—l = =1

V' is node embedding, W, ., is edge weight, c
and c_ are 2 trainable vectors of the same size
to the embedding, t is time step, and ® denotes
element-wise multiplication.

For a new stop(node) in the path, this formulation
does not consider signs of all previous edges
when incorporating the new node’s embedding
to that of the target node; rather, their algorithm
is only concerned with the sign of a single local
step. Drawing from the Theory of Balance, this
formulation is not ideal, and a simple example
can illustrate why:

(a)— 1 (py 1 (o) (a)—1 (p)y 1 (¢
2 {b, (&) vs. @) b (<)

Say that we have 3 nodes a, b, and c. In
the first configuration, when we look at edge
(b, c), it makes sense that ¢’s embedding should
contribute negatively to a, since an enemy(c) of
my friend(b) is also an enemy to me(a). While in
the second configuration, when we look at edge
(b, ¢), it instead makes sense that c¢’s embedding
should contribute positively to a because enemy(c)
of my enemy(b) should be my friend (a).

Thus, although the weight of edge (b, c) are
both negative in the above 2 configurations. The
effect they imply on c¢’s contribution to a are
different. And the type of contribution of some
node, positive or negative, would actually be



better captured by multiplying all the signs of
edges up until that node in the walk. This is
consistent with the Theory of Balance, and is the
intuition behind our own algorithm.

Therefore, we propose a new formulation for
node embedding derivation based on Word2Vec:
we treat each random walk as a sentence, and
each node visited in a walk is a word. Each node
v is associated with 2 “signed” word: w,; and
w,—, and which word to use for a node depends
on the “cumulative sign” of the node in the walk
from the starter. We define the cumulative sign
for node v; as follows:

-1
sign(v;) = H sign(vs, Viy1)
1=start
Where sign(v;,v;y1) denotes the sign, 1 or -1, of
edge (v;,v;y1). Then we use w,, if sign(v) =1
and w,_ otherwise.

For example, in the first configuration above, the
”sentence” starting from a would be {a, b, -c},
while the “sentence” would be {a, -b, c} for the
second configuration.

Using the power iteration approach, for each
random walk [vg, vy, v9 ... v;], we update the
embedding of start node v, at time step t with the
following formula:

-1

EUO (t) = H Sign(vi’ Ui+1>EUi+1 (t - 1)
=0

Then, we keep updating the embeddings until
convergence.

In reality, we train for the embedding of all
the signed words using a standard word2vec
model, and the final embedding for a node v is
the element-wise sum of its negative and positive
word embeddings. This is from the intuition that
both the positive and negative embedding of a
node captures “meaning”’, structural and semantic,
about a given node, and adding them up would
aggregate these meanings. e.g —x negatively
contributes to y, and x contributes to z; then z
should be a combination of both.

Our algorithm generates node embeddings,
but the link sign prediction problem requires
edge features. Thus, the edge feature should be
generated from the node embeddings of its two
endpoint nodes. Their are many ways to combine
node features, including concatenation, hadarmard
product, dot product, and 12 distance; all of which
will be explored in our experiments to determine
the optimal way of combining features.

V. RESULTS AND DISCUSSION

It’s mentioned that Wiki Election dataset only
contains 21.6% negative edges, which means
classes are imbalanced. Therefore, accuracy will
not be a good enough metric in this case, which
is why we also use AUC, a more robust metric.

The experiments we carried out aim to verify
4 things. First, whether a more sophisticated
machine learning model will help improve our
prediction performance. Second, exactly which
configuration of second-order random walk (q,
p value) will give us the most effective CSN2V
node embeddings for link prediction. Third,
which way of combining our CSN2V node
embeddings make up the best edge feature for
the best prediction performance. Lastly, which
combination of features (each optimally tuned)
arrive at the best prediction AUC and accuracy.

For our first goal, we adopted a simple
Logistic Regression machine learning model, and
later a 3 layered Neural Network with ReLu
activation to compare their performances.

Feature Combination | Logistic Regression | Neural Network
Low 0.675 0.676
High 0.752 0.781
Low + High 0.828 0.828
TABLE III
LOGISTIC REGRESSION VS. NEURAL NETWORK - AUC,
WIKI-VOTE

As we can see from the above results, using
the 3 layered neural network achieves slightly



Feature Combination | Logistic Regression | Neural Network
Low 0.609 0.636
High 0.792 0.892
Low + high 0.829 0.917
TABLE IV

LOGISTIC REGRESSION VS. NEURAL NETWORK - AUC,
SLASHDOT

better results in general, and the intuition is that
a deeper model can model more sophisticated
mathematical functions and thus fitting to the
underlying pattern of our data better.

For our second goal, we considered 4
configurations of q and p of our second-order
random walk[12]. To give some background, p is
the unnormalized return probability, which is the
probability to return back to the previous node,
and q is unnormalized walkaway probability,
which is the probability to move outwards. We
then derived CSN2V node embeddings for these
4 configurations, and used them for the link sign
prediction task individually. Finally, we compared
results.

The 4 configurations of p and q pairs are:
(=land p=1),(q@=001 and p=1), (q =
100 and p = 1), (@ = 100 and p = 0.01). We
always walk 10 times from each node, and the
walk length is always 80. We also selected to use
the concatenation of node embeddings and their
hadamard product for every edge as its features,
as this combination in general produce better
accuracy than others (more details later on).

Configuration AUC Accuracy

q=1p=1 0.547 0.7964

q=100,p=1 0.6024 | 0.808

q =100, p=0.01 | 0.6148 | 0.81

q=001,p=1 0.5384 | 0.7971
TABLE V

DIFFERENT CONFIGURATION OF CSN2V ON WIKI-VOTE

As shown in the above table, the configuration
of (@ = 100, and p = 0.01) achieves the best
AUC and prediction accuracy. The intuition is

Configuration AUC Accuracy

q=1p=1 0.564 0.7811

q=100,p=1 0.662 0.8103

q =100, p=0.01 | 0.692 0.8253

q=001,p=1 0.5508 | 0.7781
TABLE VI

DIFFERENT CONFIGURATION OF CSN2V ON SLASHDOT

and low p prioritizes BFS styled exploration,
which gives the structural role of each node.
In our case, the BFS styled random walk
explored the close neighborhood of each node,
understanding possible triads within its egonet.
This is equivalent to deriving the low-order triad
features, and unsurprisingly, its performance is
very similar to that of the low order features. One
could argue that a deeper BFS might account
for the high order features as well, but that
would require longer and more walks and careful
tuning of p and q, which we have not explored yet.

For our third goal, we experimented with 4
ways of utilizing the 2 endpoint-nodes’ embed-
dings for edge features: dot product, hadamard
product, concatenation, and 12 distance. We con-
trast their performances below:

Configuration AUC Accuracy

Hada 0.5310 | 0.7878

Hada + Concat 0.6148 | 0.8134

Hada + Concat + L2 | 0.6208 | 0.8116

Hada + Concat + dot | 0.6193 | 0.8101
TABLE VII

DIFFERENT EMBEDDINGS IN WIKI-VOTE

Configuration AUC | Accuracy

Hada 0.564 | 0.782

Hada + Concat 0.692 | 0.825

Hada + Concat + L2 | 0.696 | 0.822

Hada + Concat + dot | 0.688 | 0.824
TABLE VIII

DIFFERENT EMBEDDINGS IN SLASHDOT

Based on AUC, we determined that the best
way to combine node embeddings of 2 endpoints
1s to concatenate their node vectors with their

that second-order random-walk with a high q hadamard product and 12 distance, despite that
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using 12 distance seems to lower the accuracy.
Thus, all the experimental results tabulated below
use this specific node embedding combination.

For our last goal, we combine four types of
features: node degree features (Deg), Low order
features (Low), high order features (High), and
Cumulative Signed Node2vec features (CSN2V).

Node degree features corresponds to the following
7 properties for a directed edge (u,v): di,;(u),
dout (1), dip (V) din (V). C(u,0), dguy(u) + dous (1),
di (v) + d;,(v), where C(u,v) is the total number
of common neighbors of v and v in an undirected
sense. Low order feature corresponds to number
of different triad motifs the given edge is involved
in, where there are 16 types of triads in total
considering 2 different edge directions and edge
signs. High order feature corresponds to number
of different types of length 4 or 5 cycles that the
given edge is involved in.

Metrics AUC | Accuracy
Low 0.675 | 0.818
Low + Deg 0.572 | 0.565
Low + High 0.828 | 0.893
Low + High + Deg 0.786 | 0.896
Low + CSN2V(q, p=1) 0.673 | 0.783
Low + CSN2V(q, p=1) + Deg | 0.531 | 0.638

TABLE IX
PERFORMANCE FEATURE COMBINATIONS WITH DEG AND
WITHOUT DEG ON WIKI-VOTE

One observation is that Degree features only
lower the performance when combined with any
other features. This confirms with the intuition of
chiangl1 [3] (section 2).

Now, given the information we have from the
previous experiments, we use Neural Network
as our final prediction model. For our CSN2V,
we select the node embeddings derived from a
random walk of (q = 100, p = 0.01), and we
combine the node embeddings by concatenating
their node embeddings, hadamard product, and
12 distance. Then the different combinations of
features are up for comparison below:

Metrics AUC Accuracy

Low 0.6355 | 0.8103

High 0.7715 | 0.8923

Low + high 0.8292 | 0.917

CSN2V (q = 100, p = 0.01) | 0.696 0.822
TABLE X

DIFFERENT FEATURE COMBINATIONS ON SLASHDOT

Metrics AUC Accuracy

Low 0.676 0.834

High 0.7812 | 0.8837

Low + High 0.828 0.886

CSN2V(q=100, p=0.01) | 0.6148 | 0.81
TABLE XI

DIFFERENT FEATURE COMBINATIONS ON WIKI-VOTE

From above results, we have the following
observations and discussion:

o High order features outperform low order
features.
First of all, both networks had small clustering
coefficients. The Wiki-Vote network has an
average clustering coefficient of 0.14, and the
Slashdot has only 0.06, this confirms with
the reasoning in Chiang[3] that there isn’t
enough low order triads to sufficiently inform
link sign prediction. Indeed, the high order
features helped achieve greater prediction
accuracy and AUC on its own, and when
combined with lower order features, we
obtain our best results across the 2 datasets.

o High order features outperforms low order
features by a larger margin on Slashdot.
Given the properties of the Wiki-Vote and
Slashdot networks[secion III] mentioned in
the above point, this observation can also be
justified. It is worth noting that although the
Slashdot network had more than 10 times the
nodes of Wiki-Vote, it had less triangles than
Wiki-Vote, this fact could explain why Low
order features performed worse on Slashdot
than on Wiki-Vote. By the same token, the
high order feature outperforms the low order
feature by a larger margin on the Slashdot
network.



o Low + High performs the best.

This confirms what’s proposed in the
chiangl1l paper, that for many nodes with
low clustering coefficient (not in any
triads), high order features serve as a
great supplement and improve overall link
prediction performance. Moreover, high order
features brings more information from larger
parts of the graph, which aids the other more
local features.

We also compare our CSN2V performance with
SNEs. The reason we are not comparing with
SNEst is that our algorithm does not assign 2
embeddings to each node, aka a source embedding
and a target embedding. Our algorithm uses the
same embedding regardless of whether a node is
pointed to or from in a random walk, thus making
CSN2V most comparable to SNEs where each
node is assigned 1 embedding only. It is also
worth mentioning that the SNE paper did not use
AUC as a metric, and accuracy is not a good
metric due to the class imbalance of the dataset.
Since the only common dataset we used with the
SNE paper is Slashdot, we tabulate the results
below:

Method | Accuracy
CSN2V | 0.822
SNEs 0.6080
SNEst 0.9328
TABLE XII

CSN2V vs SNES ON SLASHDOT

This shows that our algorithm outperforms
SNEs on the Slashdot dataset, which validates our
hypothesis that introducing the Theory of Balance
will improve signed-node2vec’s applicability
to the specific task of link sign prediction.
Furthermore, this result may entail that our
CSN2V algorithm, if incorporate the 2-embedding
approach, could potentially achieve better results
too, and this is an exciting future direction that we
would love to explore. Moreover, the AUC of the
SNE algorithms was not calculated in the paper, so
the comparison of our results are not as legitimate.

To find our code and result:
https://github.com/Matt-F-Wu/CS224W _Project

VI. CONCLUSION

Link sign prediction is a well studied problem
with many proposed solutions. Given only the
structure of the network, we can achieve more
than 82% AUC and over 90% accuracy on datasets
like Wiki-Vote and Slashdot with low-order and
high-order features combined. We also saw
the potential of a Cumulative Signed Node2vec
algorithm in the task of link sign prediction, which
draws inspiration from the Theory of Balance.
It is worth noting that each of these algorithms
corresponds to and may even stem from theories in
sociology and the deep understanding of different
types of human interaction. By understanding the
type of the networks and the nature of interactions
within them, we may be able to develop better-
performing algorithms that are customized for the
data and the problem we have.
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