
CS224W: Analysis of Networks Fall 2017

Handout: Power Laws and Preferential Attachment

1 Preferential Attachment

Empirical studies of real world networks revealed that degree distribution often follows a heavy-
tailed distribution, a power law. At that time, there were two kinds of network models: the
Erdos-Renyi random graph Gn,p and the Small World graphs of Watts and Strogatz. In both
models the degrees were very close to the mean degree and there was little variation. Thus, there
was the question of finding natural processes that could generate graphs with power law degree
distributions. In 1999 Barabasi and Albert reinvented the model of Preferential Attachment (de
Solla Price had introduced a similar model called Price’s model in 1976, which in fact generalized the
Simon’s model introduced by Herbert Simon in 1955) that exhibited power-law degree distribution
and renewed interest in the study of networks.

Definition 1 (Preferential Attachment (PA)) Consider the sequence of directed graphs {Gt}t≥0
where Gt = (Vt, Et), Vt is the vertex set and En the edge set. Given G0, the graph Gt+1 is con-
structed from Gt according to the following rule:

1. A new vertex vt+1 is introduced: Vt+1 = Vt ∪ {vt+1}

2. We add a single directed edge from vt+1 to a vertex u in Vt, Et+1 = Et∪{(vt+1, u)}, according
to the following scheme.

• (Uniform Attachment) With probability p < 1 we pick a vertex u uniformly at random.

• (Preferential Attachment) With probability q = 1 − p we pick a vertex u ∈ Vt with
probability proportional to its in-degree q(u) ∝ du,

The intuition behind the model stemmed from the general belief that power-laws correspond to
underlying organization principles and feedback mechanisms. In particular, in the PA model the
rich get richer effect is explicitly incorporated through the growth process. Since, then preferential
attachment models and their variants have been extensively studied and their various descendants
are employed to generate realistic network models.

The challenge with the PA model and similar growth models is to make precise quantitative pre-
dictions about them despite their intricate incremental construction. The basic tool that enables
the analysis of such models is the Differential Equation Method.

1.1 Differential Equation Method

In order to analyze any complex process one needs to distinguish between the few variables that
really matter and omit minor details or intricacies. In our case, incremental growth processes can
be seen as mappings from one graph to a new graph. The hope is that each step will not change
the properties of the graph too much and thus we hope to be able to make predictions. The ability
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of analysis depends on whether we can track the evolution of the process using only a handful of
manageable quantities. To this end, given the probabilistic nature of the PA model, the following
concept is indispensable:

Definition 2 A sequence of random variables (or vectors) {X(t)}t≥0 is called Markov iff

P(X(t+ 1)|X(1), . . . , X(t)) = P (X(t+ 1)|X(t)) (1)

Intuitively, our aim is to find a (vector) Xt such that we can summarize the state of our process, in
the sense that in order to track how Xt+1 changes we only need the current values Xt and nothing
else. This is essentially the usefulness of the Markov property. Next, we show how to utilize this
concept to analyze the Preferential Attachment model through the Differential Equation Method.
The basic steps of the method are:

1. Markovian Dynamics: Find a (vector) function Z = f(G) of a graph G such that the
sequence {Zt}t≥0 = {f(Gt)}t≥0 is (approximately) Markov.

2. Conditional Change: assuming that the state Zt is known, compute the conditional ex-
pectation at time t+ 1:

E[Zt+1 − Zt|Zt] = f(Zt) (2)

3. Rate Equation: If the function f is (approximately) linear f(Zt) = AtZt+bt, set z(t) = E[Zt]
and take expectation with respect to Zt:

z(t+ 1)− z(t) = Atz(t) + bt (3)

4. Fluid limit: consider the ordinary differential equation approximation for large t� 1:

ż(t) = Atz(t) + b(t) (4)

5. Solution of Ordinary Differential Equation (ODE): use the boundary conditions and
solve the ODE for z(t).

6. Concentration: argue that the probability that the random vector Zt deviates significantly
from its expectation z(t) is very small.

The last step is beyond the scope of the class at is very technically involved. What we gain by using
the differential equation method is that we are able to work effectively with expected deterministic
quantities and track their changes instead of working with random variables. That is the power
of the method. What allows us to carry out Step 2 is the Markov property and Step 3 is possible
because of linearity of expectation and the following property.

Lemma 1 (Tower Property) Given random variables X,Y , it holds that E[X] = E[E[X|Y ]]
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Proof: Here, we prove the lemma only for discrete random variables but the general case follows
easily.

E[X] =
∑
x

xP (X = x) (5)

=
∑
x

x
∑
y

P (X = x, Y = y) (6)

=
∑
x

x
∑
y

P (X = x|Y = y)P (Y = y) (7)

=
∑
y

P (Y = y)
∑
x

xP (X = x|y = y) (8)

=
∑
y

P (Y = y)E[X|Y = y] (9)

= E[E[X|Y ]] (10)

where in Equation (6) we used the law of total probability and Bayes rule in Eq. (7).

Next, we will concretely instantiate the above framework in our analysis of Preferential Attachment.

1.2 Power Law degree distribution of PA graphs

Before starting the analysis we first compute the normalizing constant involved in the Preferential
Attachment step of the growth process. In our model, at time t ≥ 1 there are exactly t vertices
and t− 1 directed edges. The exact probability of connecting to a node of degree k is:

1

Zt

∑
u

du =
1

Zt
|Et| = 1⇒ Zt = |Et| = (t− 1) ≈ t

We start now with the first step of the method:

Markovian Dynamics: Let Dk(t) be the number of vertices of in-degree k of the graph Gt and
consider the random vector Dt = (D0(t), . . . , Dt−1(t)). A moment’s thought reveals that: (i) Dt

t is
the in-degree distribution of the graph Gt, (ii) the sequence {Dt}t≥0 is Markov with respect to the
preferential attachment process.

Conditional Change: To calculate the expected change of Dt+1 given Dt we focus on Dk(t+ 1)
the number of nodes with a particular degree k:

• Increase: Dk(t + 1) can only increase by one if the new vertex inserted at time t connects
to one vertex with degree k − 1 at time t. This happens with probability:

p
Dk−1(t)

t
+ q(k − 1)

Dk−1(t)

t
(11)

as with probability p we would have to select one of Dk−1(t) out of t vertices in the graph, and
with probability q the total “weight” of the vertices in the preferential attachment scheme is
given by (k − 1)Dk−1(t).



CS224W: Analysis of Networks: Power Laws and Preferential Attachment 4

• Decrease: respectively Dk(t+ 1) can only decrease by one if the new edge inserted lands on
one of the vertices of degree k. This happens with probability:

p
Dk(t)

t
+ qk

Dk(t)

t
(12)

Rate Equation: Define dk(t) = E[Dk(t)] to be the expected number of vertices having in-degree
k at time t. Adding Eq. (11), subtracting Eq. (12) and taking expectations, we obtain:

dk(t+ 1)− dk(t) = p

(
dk−1(t)− dk(t)

t

)
+ q

(
(k − 1)dk−1(t)− kdk(t)

t

)
(13)

Fluid Limit: For t� 1, the left hand side approximates the derivative:

d

dt
dk(t) = p

(
dk−1(t)− dk(t)

t

)
+ q

(
(k − 1)dk−1(t)− kdk(t)

t

)
(14)

The previous equation holds for all k ≥ 1, for k = 0 we have:

d

dt
d0(t) = p

(
1− d0(t)

t

)
+ q

(
1− d0(t)

t

)
(15)

as the only way to increase the number of vertices of degree 1 is for the new vertex to connect to
a vertex with degree greater than one.

Solution of ODE: To solve the differential equation we assume the following form for the solution
dk(t) = pk · t. Substituting in equations Eq. (14) and Eq. (15) we get:

(1 + p+ kq) pk = (p+ (k − 1)q) pk−1 (16)

(1 + p+ q) p0 = 1 (17)

(1 + p+ 1− p) p0 = 1 (18)

The above equations allow us to form a recurrence for pk:

pk =

(
p+ (k − 1)q

1 + p+ kq

)
pk−1 (19)

=

(
1− 1 + q

1 + p+ kq

)
pk−1 (20)

≈
(

1− (1 + q)/q

k

)
pk−1 (21)

≈
(
k − 1

k

) 1+q
q

pk−1 (22)

From (18) we see that p0 = 1
2 , so iterating (22) we get that:

pk ≈ k−
1+q
q = k

− 2−p
1−p = k

−1− 1
1−p (23)

That is we have shown heuristically that the degree distribution of the preferential attachment
model follows a power law with exponent α = 2−p

1−p = 1 + 1
1−p .
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2 Power Laws

Statistical modeling of data involves gathering enough data such that reasonable models can be
built and from there informed inferences can be carried out. One can make a very broad distinc-
tion between different random variables as to the extent that they are close their expected behavior
(value). People speak broadly of heavy-tailed phenomena where extremes are possible (even fre-
quent) and light tailed phenomena where things are well behaved within limits. The prototypical
example of heavy-tailed behavior are power-law distributed random variables.

Definition 3 A random variable X is said to follow a power law with exponent α if for large
x� 1, P(X = x) ∝ x−α.

The past decades numerous empirical studies have identified power laws in almost every imaginable
aspect of the world. In our course, power-laws will show up when looking at various statistics of
networks, most predominantly the degree-distribution.

There are two flavors of power-laws one for continuous and one for discrete data. For the purposes
of this note, we will focus almost exclusively on continuous random variables and simply allude to
the fact that discrete data can be very accurately simulated by appropriately binning (rounding to
the closer integer) the continuous data. We start with some calculations.

2.1 Normalizing Constant

A continuous random variable would have a density p(x)dx = P (x ≤ X ≤ x+ dx) = Cx−α. Since
the density diverges for x → 0 we need to impose a lower bound xmin on the values of X. For all
α > 1 and given xmin > 0 the normalization constant C(α, xmin) is given by:∫ ∞

xmin

p(x)dx = C

∫ ∞
xmin

x−αdx = C
1

α− 1

[
x−a+1

]xmin
∞ = 1⇒ C(α, xmin) =

α− 1

(xmin)α−1

The final form of a continuous (pure) power law distribution is:

p(x) =
α− 1

xmin

(
x

xmin

)−α
(24)

For a discrete random variable following a power law p(k) = Dk−α we get the following expression
for the normalizing constant D(α, xmin):

∞∑
xmin

p(k) = D

∞∑
n=0

(xmin + n)−α = 1⇒ D(α, xmin) =
1

ζ(α, xmin)

The function ζ(α, xmin) =
∑∞

n=0(n + xmin)−α is called the Hurwitz zeta function. The final form
for a discrete (pure) power law distribution is:

p(x) =
x−α

ζ(α, xmin)
(25)
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2.2 Tail Distribution

Power laws and heavy-tailed distributions in general are typically contrasted to the Normal distri-
bution. The pronounced difference is in their tail distribution.

Definition 4 The tail distribution T (x) of a random variable x is defined as T (x) = P(X ≥ x).

Definition 5 A random variable is heavy-tailed if ∀λ > 0, limx→∞

[
T (x)
e−λx

]
=∞.

From the definition it is easy to see that Normal distribution does not have heavy-tails whereas
power laws do. The tail distribution for continuous and discrete power-law distributions are:

Tc(x) = P(X ≥ x) =

∫ ∞
x

α− 1

xmin

(
z

xmin

)−α
dz =

(
x

xmin

)−α+1

Td(x) = P(X ≥ x) =

∞∑
z=x

z−α

ζ(α, xmin)
=

ζ(α, x)

ζ(α, xmin)

2.3 Moments

One of the consequences of power-law behaviour is that depending on the exponent α certain
moments diverge.

E[Xk] =

∫ ∞
xmin

p(x)xkdx (26)

=

∫ ∞
xmin

α− 1

x1−αmin

xk−αdx (27)

=

{
α−1

α−k−1 (xmin)k k < α− 1

∞ k ≥ α− 1
(28)

For instance if α ≤ 3 the variance diverges, whereas for α ≤ 2 the mean diverges.

2.4 Generation

For a continuous CDF, the function F (x) is one-to-one. Using the transformation method we can
generate power-law distributed data using only a uniform random variable:

U = 1−
(

X

xmin

)−α+1

⇒ ln(1− U) = (1− α)[ln(X)− ln(xmin)] (29)

⇒ − 1

α− 1
ln(1− U) + ln(xmin) = ln(X) (30)

⇒ X = xmin (1− U)−
1

α−1 (31)



CS224W: Analysis of Networks: Power Laws and Preferential Attachment 7

2.5 MLE for the Scaling Parameter

Due to the peculiar statistical properties of power-law random variables, caution must be practiced
when estimating the parameters. The best way to estimate the scaling exponent is to use Maximum
Likelihood Estimation (MLE). We first derive an expression for the log-likelihood for n independent
samples:

L(α) = ln p(x1, . . . , xn) (32)

= ln

[
n∏
i=1

p(xi)

]
(33)

=
n∑
i=1

ln[p(xi)] (34)

=
n∑
i=1

[
ln(α− 1)− ln(xmin)− α ln

(
xi
xmin

)]
(35)

= n[ln(α− 1)− ln(xmin)]− α
n∑
i=1

ln

(
xi
xmin

)
(36)

Next we are going to find the value â that maximizes the likelihood:

∂L(α)

∂α

∣∣∣∣
α=α̂

= 0 ⇔ n

α̂− 1
−

n∑
i=1

ln

(
xi
xmin

)
= 0 (37)

⇔ α̂ = 1 + n

[
n∑
i=1

ln

(
xi
xmin

)]−1
(38)
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