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The study of biological networks, their analysis and modeling are important tasks in life

sciences today. Most biological networks are still far from being complete and they are often

difficult to interpret due to the complexity of relationships and the peculiarities of the data.

This worksheet describes major types of biological networks and useful public databases that

contain biological networks.

Types of Biological Networks

Many important biological networks are defined on molecules such as DNA, RNA, proteins

and metabolites, and the networks describe interactions between these molecules. Gene

co-expression networks are constructed by looking for pairs of genes which show similar ex-

pression patterns across biological conditions, where the activation levels of two co-expressed

genes rise and fall together across conditions. Signal transduction and gene regulatory net-

works describe how genes can be activated or repressed, and therefore contain information

about which proteins are produced in a cell at a particular time. Protein-protein interaction

networks represent interactions between proteins such as the building of protein complexes

and the activation of one protein by another protein. Metabolic networks show how metabo-

lites are transformed, for example to produce energy or to synthesize specific substances.

Other types of biological networks include phylogenetic trees, special networks and hierar-

chies which are often built based on information from molecular biology such as DNA and

protein sequences. Phylogenetic trees represent the ancestral relationships between different

organisms, i.e., their origins, how they survive or become extinct.

Gene regulatory, signal transduction, protein-protein interaction and metabolic networks in-

teract with each other and build a complex biological network. Furthermore, these networks

are not universal but are organism-specific and environment-specific, i.e. the same network

differs between different organisms and environments in which these organisms live.

Biology is often more complicated than what appears in a network. For example, protein-

protein interactions can be dependent on the location within the cell. Another such complex-

ity level is the time dimension. For example, one protein can be at one time bound to another

protein, suppressing its activity, and at other time this protein can be bound to a third pro-

tein, in which case it cannot bind to the second protein. Both interactions will appear in

the protein-protein interaction network, although they do not occur simultaneously.
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Gene Co-expression Networks

Gene co-expression is the process by which a set of genes are expressed in coordination to

produce proteins. A gene co-expression network captures information on the correlation of

gene expression in different biological conditions, such as during the time when cells are

activity dividing, or when cells are reacting to a particular drug treatment.

A gene co-expression network is a weighted undirected network G = (V,E, δ), where the set

of nodes V represent genes, the set of edges E represent pairs of genes that are significantly

co-expressed, and edge weights δ : E → [−1, 1] represent correlation of pairs of genes. A

pair of nodes is connected with an edge if the corresponding genes have significantly similar

expression patterns, meaning that the genes are active under the same biological conditions.

Major public databases: The Cancer Genome Atlas [1], NCBI Gene Expression Om-

nibus [2], GeneMANIA [3], EBI Array Express [4], GTEx Data Portal [5], MGI-Mouse Gene

Expression Database [6], STRING [7], Bgee [8].

Signal Transduction and Gene Regulatory Networks

Signal transduction is a communication process within a cell to coordinate its responses to

an environmental change. The response is a reaction of the cell, e.g., the activation of a gene

or the production of energy. A signal transduction pathway is a directed network of chemical

reactions in a cell from a stimulus (an external molecule which binds to a receptor on the

cell membrane) to the response (e.g., a gene whose activity is changed due to the binding of

external molecule). The signal transduction network of a cell is the complete network of all

signal transduction pathways.

Gene regulation can also be seen as the response of a cell to an internal stimulus. Often one

gene is regulated by another gene via the corresponding protein that is called a transcription

factor. Gene regulation is thus coordinated in a gene regulatory network. A gene regulatory

network is a directed network where nodes represent genes and directed edges represent

regulatory interactions, such as binding of a transcription factor (i.e., source of an edge) to a

gene (i.e., target of an edge). Compared to a gene co-expression network, a gene regulatory

network attempts to represent the causal (direct) relationships between genes. Ideally, a

directed edge in a gene regulatory network from node vi to node vj is present if and only if

a causal effect runs from node vi to vj and there exist no nodes or subsets of nodes that are

intermediating the causal influence.
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Major public databases: Netpath [9], Pathway Commons [10], WikiPathways [11], NCI-

Nature Pathway Interaction Database [12], RegulonDB [13], TRANSFAC [14].

Protein-Protein Interaction Networks

Protein-protein interaction networks are networks where nodes represent proteins and edges

represent interactions, that is, two proteins are connected if they interact with each other.

A protein can interact with another protein, e.g., to build a protein complex or to activate

it.

A protein-protein interaction network is an undirected graph G = (V,E, τ) where V is

the set of proteins, E the set of interactions, and τ : E → T defines the type of each

edge (interaction type). Often only the existence of an interaction between two proteins is

known, but the interaction type T , such as “activation”, “binding to”, or “phosphorylation”,

remains unknown. However, for the understanding of biological processes, information about

the interaction type is crucial, although up to now databases contain little information about

that. It is also possible to represent a protein-protein interaction network with a directed

graph G, in this case, E denotes a set of directed interactions where a protein initiating

the interaction defines the source of an edge. Protein-protein interaction networks can be

derived from databases such as BioGRID [15] and STRING [16].

Major public databases: BioGRID [15], HPRD [17], MIntAct [18], STRING [16], Gene-

MANIA [19], CCSB Interactome [20], DIP [21], MINT [22].

Metabolic Networks

Metabolic networks are directed networks where each node represents a metabolite (a molecule)

and and edge represents a metabolic reaction. A metabolic reaction is a chemical process

that transforms chemical substances or metabolites (i.e., reactants) into other substances

(i.e., products) usually catalyzed by enzymes.

Metabolic reactions interact with each other, i.e., the product of one reaction is usually a

reactant of another reaction. A metabolic path P = (R1, . . . , Rn) is a sequence of metabolic

reactionsRi where for all 1 ≤ i ≤ n at least one product of reactionRi is a reactant of reaction

Ri+1. The metabolic network or metabolism of an organism is then the complete network of

metabolic reactions of this organism. A metabolic pathway is a connected sub-network of the

metabolic network either representing specific processes or defined by functional boundaries,
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e.g., the network between an initial and a final chemical substance.

Formally, metabolic pathway is a hyper-graph. The nodes represent the substances and the

hyper-edges represent the reactions. A hyper-edge connects all substances of a reaction, is di-

rected from reactants to products and is labeled with the enzymes that catalyze the reaction.

Additionally to the nodes representing substances, metabolic reactions are nodes and edges

are binary relations connecting the substances of a reaction with the corresponding reaction

node. A metabolic pathway is modeled as a directed bipartite graph G = (Vs, Vr, E) with

nodes u1, . . . , un, w1, . . . , wm ∈ Vs representing substances, nodes v1, . . . , vk ∈ Vr represent-

ing metabolic reactions and directed edges (u1, v1), . . . , (un1 , v1), (v1, w1), . . . , (v, wm1) ∈ E

representing the transformation of substances u1, . . . , un1 to substances w1, . . . , wm1 by the

reaction v1.

Major public databases: BRENDA [23], KEGG PATHWAY Database [24], MANET [25],

Reactome [26], Small Molecule Pathway Database [27], MetaNetX [28].

Phylogenetic Trees, Special Networks and Hierarchies

One of the fundamental principles in biology is the hierarchical organization of organisms

in an evolutionary context, i.e., reconstruction of ancestral relationships between different

species, genes, or DNA sequences. The common representation for analyzing such relation-

ships is a phylogenetic tree. A phylogenetic tree (in literature also called evolutionary tree)

T = (V,E, δ) is a tree consisting of nodes V (i.e., taxons) and edges E (i.e., links). Leaf

nodes, i.e., nodes with exactly one link, represent species, sequences, or similar entities.

Internal nodes represent (hypothetical) ancestors generated based on phylogenetic analysis.

The edge weights δ : E → R+
0 quantify biological divergence between incident nodes, e.g.,

biological time or genetic distance.

One example of special networks are gene-phenotype networks, such as [29, 30, 31]. A

gene-phenotype network is a bipartite network with two sets of nodes. One set represent

phenotypes, e.g., diseases, of a particular organism (e.g., humans) and the other set represents

organism’s genes. A gene and a phenotype are connected by an edge if the gene is involved

in the disease (e.g., causal disease genes).

A very prominent example of biological data hierarchies is the Gene Ontology (http:

//geneontology.org) [32]. The Gene Ontology is a major organism-agnostic bioinformat-

ics initiative that develops a computational representation of our evolving knowledge of how

genes encode biological functions at the molecular, cellular and tissue systems levels. The

Gene Ontology provides controlled vocabularies of terms representing gene properties. The
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vocabularies cover three domains: cellular components, the parts of a cell and its extracel-

lular environment; molecular functions, the activities of genes at the molecular level, such

as binding and catalysis; and biological processes, operations or sets of molecular events

with a defined beginning and end that are relevant for the functioning of living systems.

The Gene Ontology is structured as a directed acyclic graph where each term has defined

relationships to one or more other terms. Additionally, the Gene Ontology provides gene

annotations, which assign Gene Ontology terms to genes. Gene annotations are lists of gene-

Gene Ontology term pairs that are often used as gold standard when analyzing data (e.g.,

[33]).

Major public databases: Gene Ontology [32], Disease Ontology [34], OMIM Inherited Dis-

eases [29], The Comparative Toxicogenomics Database [30], DisGeNET [31], DrugBank [35],

STITCH [36], STRING [16], MSigDB [37], UniProt [38], ENCODE [39], NCBI Taxon-

omy [40].
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