Automatic Feature Learning
In Graphs



Machine Learning in Networks
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Machine Learning Lifecycle

(Supervised) Machine Learning
Lifecycle: This feature, that feature.
Every single time!

Raw Structured Learning
Data Data Algorithm

t Automatically Downstream
Engt 0g learn the features prediction task
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Feature Learning in Graphs

Goal: Efficient task-independent feature learning
for machine learning

in networks!
node o vec
u >
d
U = N Y,
fru—->R -
Rd

Feature representation,
embedding
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Why network embedding?

We map each node in a network into a low-
dimensional space

Distributed representation for nodes

Similarity between nodes indicates link strength

Encode network information and generate node
representation

Latent Dimensions

)

\ d << |Vv|

e Anomaly Detection

e Attribute Prediction
>e Clustering

e Link Prediction
o ..

Adjacency Matrix

12/4/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



E]E

Zachary’s Karate Club network:
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Why Is It Hard?

Graph representation learning is hard:
Images are fixed size

Convolutions (CNNs)
Text is linear

Sliding window (word2vec)

Graphs are neither of these! e [@TE T |,
Node numbering is arbitrary
(node isomorphism problem) Sqommessnon, |

Projection layer |the cat sits on thelmatl
Much more complicated structure S —
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node2vec: Random Walk

Based (Unsupervised)
Feature Learning

node?2vec: Scalable Feature Learning for Networks
A. Grover, J. Leskovec. KDD 2016.




Overview of node2vec
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Goal: Embed nodes with similar network
neighborhoods close in the feature space.

We frame this goal as prediction-task
independent maximum likelihood optimization
problem.

Key observation: Flexible notion of network
neighborhood Ng(u) of node u leads to rich
features.

Develop biased 2" order random walk procedure
S to generate network neighborhood Ng(u) of
node u.
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Unsupervised Feature Learning
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Intuition: Find embedding of nodes to
d-dimensions that preserves similarity

ldea: Learn node embedding such that nearby
nodes are close together

Given a node u, how do we define nearby
nodes?

N¢(u) ... neighbourhood of u obtained by some
strategy S

ure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



Feature learning as optimization

12/4/17

Given G = (V,E),
Our goal is to learn a mapping f:u - R<.

Log-likelihood objective:
max 5, ey log Pr(Ns ()| £ (u))

where Ng(u) is neighborhood of node w.

Given node u, we want to learn feature
representations predictive of nodes in its
neighborhood Ng(u).

W ysis of Networks, http://cs224w.stanford.edu



Feature learning as optimization

max > logPr(Ns(w)| £(w))

uev
Assumption: Conditional likelihood factorizes

over the set of neighbors.

log Pr(Ns(ulf (W) = > logPr(f(n)| f(w)

n;ENg(u)
Softmax parametrization:

_ exp(f(n) f(w)
Pr(f ()l f (W) = 5= oy F ooy
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Negative Sampling

max

12/4/17

z Z log exp(f(ny) - f(u))
L, L T exp(F) - F()))
Maximize the objective using Stochastic
Gradient descent with negative sampling.

Computing the summation is expensive

Idea: Just sample a couple of “negative nodes”

This means at each iteration only embeddings of a
few nodes will be updated at a time

Much faster training of embeddings
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How to determine N¢(u)

Two classic strategies to define a neighborhood
N¢(u) of a given node u:

Npps(u) = {51,52,83}  Local microscopic view
Nprs(u) = {s4,55,5¢}  Global macroscopic view

12/4/17 htto://cs22



BFS vs. DFS

BFS:
Micro-view of
neighbourhood

DFS:
Macro-view of
neighbourhood
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Interpolating BFS and DFS

Biased random walk S that given a node u
generates neighborhood N¢(u)
Two parameters:
Return parameter p:
Return back to the previous node

In-out parameter q:
Moving outwards (DFS) vs. inwards (BFS)
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Biased Random Walks

N ¢(u): Biased 2"-order random walks explore
network neighborhoods:

BFS-like: low value of p
DFS-like: low value of q

p, q can learned in a semi-supervised way
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node2vec algorithm

1) Compute random walk probs.
2) Simulate r random walks of length [ starting

from each node u
3) Optimize the node2vec objective using

Stochastic Gradient Descent

Linear-time complexity.
All 3 steps are individually parallelizable
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Experiments: Micro vs. Macro

Interactions of characters in a novel:

Sep © 000
.: * %" o,
*2> @ 0 @94

o=1, g=2
Microscopic view of the
network neighbourhood

o=1, g=0.5
Macroscopic view of the
network neighbourhood
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Scalability of node2vec

Sbcalability on Erdos-Renyi graphs with average degree 10

oo with SGD 1 1 ;
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Incomplete Network Data (PPI)
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node2vec: Discussion

General-purpose feature learning in networks:

12/4/17

An explicit locality preserving objective for
feature learning.

Biased random walks capture diversity of
network patterns.

Scalable and robust algorithm with excellent
empirical performance.

Future extensions would involve designing
random walk strategies entailed to network
with specific structure such as heterogeneous
networks and signed networks.

ure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



OhmNet: Extension to

Hierarchical Networks




Multilayer Networks

Let’s generalize node2vec to
multilayer networks!
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Multi-Layer Networks

Each network is a layer G; = (V}, E;)
Similarities between layers are given in
hierarchy M', map m encodes parent-child
relationships

12/4/17



The Approach

Computational framework that learns
features of every node and at every scale
based on:

Edges within each layer

Inter-layer relationships between nodes active
on different layers
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: Given layers
G; and hierarchy M,
learn node features £
captured by functions f;

f’i 9 Gk
Functions f; embed EG é EG;
( J

eyery n_Ode inad- A multi-layer network with four
dimensional feature layers and a two-level hierarchy M

space

A\ R



Features in Multi-Layer Network

Given: Layers {G;} , hierarchy M
Layers {G;};—, 7 are in leaves of M
Goal: Learn functions: f;: V; > R%

12/4/17



Features in Multi-Layer Network

Approach has two components:

Per-layer objectives: Nodes with similar network
neighborhoods in each layer are embedded close
together

Hierarchical dependency objectives: Nodes in
nearby layers in hierarchy are encouraged to share
similar features
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Per-Layer Objective: node2vec

12/4/17

Intuition: For each layer, find a mapping of
nodes to d-dimensions that preserves node
similarity

Approach: Similarity of nodes u and v is
defined based on similarity of their network
neighborhoods

Given node u in layer i we define nearby
nodes N;(u) based on random walks starting
at node u



Per-Layer Objective: node2vec

Given node u in layer i, learn u’s representation
such that it predicts nearby nodes N;(u):

w;(u) = log Pr(N;(u)|fi(u))

Given T layers, maximize:

Qi = » wi(u), fori=1,2,...,T

ueV;
Nodes in different networks representing
the same entity have different features
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Interdependent Layers

So far, we did not consider hierarchy M’
Node representations in different layers are
learned independently of each other

How to model dependencies between
layers when learning node features?
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Hierarchical reqularization

We use regularization to share information
across the hierarchy

We want to enforce similarity between
feature representations of networks that are
located nearby in the hierarchy
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Interdependent Layers

Given node u, learn u’s representation in
layer i to be close to u’s representation in
parent m(i):

1
ci(u) = §||fz'(u) — Froy (W15
Multi-scale: Repeat at every level of M

L; has all layers appearing in sub-hierarchy rooted at i % %
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Implications

Nodes in different layers representing the same
entity have the same features in hierarchy
ancestors

We learn feature representations at multiple
scales:

features of nodes in the layers
features of nodes in non-leaves in the hierarchy

This model is more efficient than the fully
pairwise model, where dependencies between
layers are modeled by pairwise comparisons of
nodes across all pairs of layers
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OhmNet: Final Model

Learning node features in multi-layer networks

Solve maximum likelihood problem:

—/\Z C;

jeM

max
fi,f2,-fim

Per-layer
network
objectives
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Application: Protein function

Structural and Mechanical

Proteins are worker molecules
Understanding protein function has == =" =
l 1 H ( \iw\fp
great biomedical and pharmaceutical - =
implications ¢

Function of proteins depends on

their tissue context
[Greene et al., Nat Genet ‘15]
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Protein functions are tissue-specific

Tissue-specific protein
interaction networks

The precise function of
proteins depends on their
tissue context (Greene et
al., Nat Genet 2015)
Diseases result from the
failure of tissue-specific
processes (Hu et al., Nat
Rev Genet 2016)

Current models assume
that protein functions are
constant across tissues



Multi-layer tissue network

A multi-layer tissue
network has many
network layers (tissues)
Each layer corresponds
to one tissue-specific
protein interaction
network

Hierarchy M encodes
niological similarities
oetween the tissues at
multiple scales

~
-
..........
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Experiments: Biological Nets

107 genome-wide @ @R
tissue-specific
protein interaction
networks
584 tissue-specific cellular functions
Examples (tissue, cellular function):

Parietal Occipital  Temporal
lobe lobe lobe

Midbrain  Substantia Pons Medulla
nigra oblongata

(renal cortex, cortex development)
(artery, pulmonary artery morphogenesis)

12/4/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 41



Brain Tissues

Brainstem

Brainstem

Cerebellum Frontal
lobe

Parietal Occipital  Temporal . _
lobe lobe lobe Midbrain

Midbrain  Substantia Pons Medulla _
nigra oblongata Basilar artery

Vertebral arteries

9 brain tissue PPl networks
In two-level hierarchy
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Meaningful Node Embeddings

Brainstem Brain

Brainstem

Cerebellum e Frontal lobe Parietal lobe \
Medulla oblongata Temporal lobe Occipital lobe
Substantia nigra e Pons e Midbrain i

Pons

Medulla

Basilar artery
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Experimental setup

Cellular function prediction is a multi-label node
classification task

Every node (protein) is assigned one or more labels
(cellular functions)

Setup:

We apply OhmNet, which for every node in every layer learns a
separate feature vector in an unsupervised way.

For every layer and every function we then train a separate one-
vs-all regularized linear classifier using the modified Huber loss

During the training phase, we observe only a certain fraction of
proteins and all their cellular functions across the layers

The task is then to predict the tissue-specific functions for the
remaining proteins
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Protein Function Prediction

OhmNet

Tissue-specific network propagation

Network-based tissue-specific SVM

GeneMania

Collapsed Node2vec

Independent Node2vec

Collapsed LINE

Independent LINE

Minimum curvilinear embedding

Tensor decomposition

o
w
o
o
o
u

42% improvement
over state-of-the-art
on the same dataset

0.8 0.9 1

AUROC
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Transfer Learning

Transfer functions to unannotated tissues
Task: Predict functions in target tissue without
access to any annotation/label in that tissue

Placenta 0.758 0.684 11%
Spleen 0.779 0.712 10%
Liver 0.741 0.553 34%
Forebrain 0.755 0.632 20%
Blood plasma 0.703 0.540 40%
Smooth muscle 0.729 0.583 25%
Average 0.746 0.617 21%

Reported are AUC values
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