
CS224W: Analysis of Networks
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

? ?

?
?

?
Machine
Learning

Node classification

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 212/4/17

3

Raw
Data

Structured
Data

Learning
Algorithm Model

Downstream
prediction task

Feature
Engineering

Automatically
learn the features

¡ (Supervised)	Machine	Learning	
Lifecycle:	This	feature,	that	feature.	
Every	single	time!

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu12/4/17

Goal:	Efficient	task-independent	feature	learning	
for	machine	learning	

in	networks!

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 4

vecnode 2
𝑓: 𝑢 → ℝ&

ℝ&
Feature representation,

embedding

u

12/4/17

¡ We	map	each	node	in	a	network	into	a	low-
dimensional	space
§ Distributed	representation	for	nodes
§ Similarity	between	nodes	indicates	link	strength
§ Encode	network	information	and	generate	node	
representation

12/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 5

What is network embedding?
• We map each node in a network into a low-

dimensional space
– Distributed representation for nodes
– Similarity between nodes indicate the link

strength
– Encode network information and generate node

representation

17

¡ Zachary’s	Karate	Club	network:

12/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 6

Example

• Zachary’s Karate Network:

18

Graph	representation	learning	is	hard:
¡ Images	are	fixed	size
§ Convolutions	(CNNs)

¡ Text	is	linear
§ Sliding	window	(word2vec)

¡ Graphs	are	neither	of	these!
§ Node	numbering	is	arbitrary	
(node	isomorphism	problem)

§ Much	more	complicated	structure

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 712/4/17

8

node2vec: Random Walk
Based (Unsupervised)

Feature Learning

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

node2vec: Scalable Feature Learning for Networks
A. Grover, J. Leskovec. KDD 2016.

12/4/17

¡ Goal: Embed	nodes	with	similar	network	
neighborhoods	close	in	the	feature	space.

¡ We	frame	this	goal	as	prediction-task	
independent	maximum	likelihood	optimization	
problem.

¡ Key	observation:	Flexible	notion	of	network	
neighborhood		𝑁𝑆(𝑢) of	node	u	leads	to	rich	
features.

¡ Develop	biased	2nd order	random	walk	procedure	
S	to	generate	network	neighborhood	𝑁𝑆(𝑢) of	
node	u.

12/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 9

¡ Intuition: Find	embedding	of	nodes	to	
d-dimensions	that	preserves	similarity

¡ Idea:	Learn	node	embedding	such	that	nearby
nodes	are	close	together

¡ Given	a	node	u,	how	do	we	define	nearby	
nodes?
§ 𝑁+ 𝑢 …	neighbourhood	of	u obtained	by	some	
strategy	S

10Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu12/4/17

¡ Given	𝐺 = (𝑉, 𝐸),	
¡ Our	goal	is	to	learn	a	mapping	𝑓: 𝑢 → ℝ𝑑.

¡ Log-likelihood	objective:
max
𝑓
∑ log Pr(𝑁𝑆(𝑢)|	𝑓 𝑢)�
𝑢	∈𝑉

§ where	𝑁𝑆(𝑢) is	neighborhood	of	node	𝑢.

¡ Given	node	𝑢,	we	want	to	learn	feature	
representations	predictive	of		nodes	in	its	
neighborhood	𝑁𝑆(𝑢).

12/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 11

max
𝑓

? log Pr(𝑁𝑆(𝑢)|	𝑓 𝑢)
�

𝑢	∈𝑉
¡ Assumption: Conditional	likelihood	factorizes	
over	the	set	of	neighbors.

log Pr(𝑁+(𝑢|𝑓 𝑢) = ? log Pr	(𝑓(𝑛A)|	𝑓 𝑢)
�

BC∈DE(F)
¡ Softmax parametrization:
Pr(𝑓(𝑛𝑖)|	𝑓 𝑢) = exp(𝑓 𝑛𝑖 ⋅𝑓(𝑢))

∑ exp(𝑓 𝑣 ⋅𝑓(𝑢)))�
𝑣∈𝑉

12/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 12

max
L

? ? log
exp(𝑓 𝑛A ⋅ 𝑓(𝑢))

∑ exp(𝑓 𝑣 ⋅ 𝑓(𝑢)))�
M∈N

�

B∈DO(F)

�

F	∈N
¡ Maximize	the	objective	using	Stochastic	
Gradient	descent	with	negative	sampling.
§ Computing	the	summation is	expensive
§ Idea: Just	sample	a	couple	of	“negative	nodes”
§ This	means	at	each	iteration	only	embeddings of	a	
few	nodes	will	be	updated	at	a	time

§ Much	faster	training	of	embeddings

12/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 13

Two	classic	strategies	to	define	a	neighborhood	
𝑁+ 𝑢 of	a	given	node	𝑢:

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT
Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-
search in the broader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features
themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Here we propose node2vec , an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec , we
learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-
work neighborhoods of nodes. We define a flexible notion of node’s
network neighborhood and design a biased random walk proce-
dure, which efficiently explores diverse neighborhoods and leads to
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we
demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-
tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning
state-of-the-art task-independent node representations in complex
networks.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining; I.2.6 [Artificial In-
telligence]: Learning
General Terms: Algorithms; Experimentation.
Keywords: Information networks, Feature learning, Node embed-
dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of
nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-
protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should
have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us
discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that
one has to construct a feature vector representation for the nodes

u

s3

s2
s1

s4

s8

s9

s6

s7

s5

BFS

DFS

Figure 1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to the same community exhibit homophily, while the hub nodes
u and s6 in the two communities are structurally equivalent. Real-

14

𝑁PQ+ 𝑢 = {	𝑠T, 𝑠U, 𝑠V}

𝑁XQ+ 𝑢 = {	𝑠Y, 𝑠Z, 𝑠[}
Local microscopic view
Global macroscopic view

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	
http://cs224w.stanford.edu12/4/17

BFS:
Micro-view of

neighbourhood

u

DFS:
Macro-view of
neighbourhood

15Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu12/4/17

Biased	random	walk	𝑆 that	given	a	node	𝑢
generates	neighborhood	𝑁+ 𝑢
¡ Two	parameters:
§ Return	parameter	𝑝:

§ Return	back	to	the	previous	node

§ In-out	parameter	𝑞:
§ Moving	outwards	(DFS)	vs.	inwards	(BFS)

16Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu12/4/17

𝑵𝑺(𝒖):	Biased	2nd-order	random	walks	explore	
network	neighborhoods:

§ BFS-like:	low	value	of	𝑝
§ DFS-like:	low	value	of	𝑞

𝑝, 𝑞 can	learned	in	a	semi-supervised	way

u → s4 → ? u
s1
s5

u

s1

s4

s5
1

1/q

1/p

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 1712/4/17

¡ 1)	Compute	random	walk	probs.
¡ 2)	Simulate	𝑟 random	walks	of	length	𝑙 starting	
from	each	node	u

¡ 3) Optimize	the	node2vec	objective	using	
Stochastic	Gradient	Descent

Linear-time	complexity.	
All	3	steps	are	individually	parallelizable

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 1812/4/17

Interactions	of	characters	in	a	novel:

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec
parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table 2 and the relative performance

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec
parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table 2 and the relative performance

p=1, q=2
Microscopic view of the
network neighbourhood

p=1, q=0.5
Macroscopic view of the
network neighbourhood

19Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu12/4/17

20Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu12/4/17

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fraction of missing edges

0.00

0.05

0.10

0.15

0.20

M
ac

ro
-F

1
sc

or
e

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fraction of additional edges

0.00

0.05

0.10

0.15

0.20

M
ac

ro
-F

1
sc

or
e

21Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu12/4/17

General-purpose	feature	learning	in	networks:
¡ An	explicit	locality	preserving	objective	for	
feature	learning.

¡ Biased	random	walks	capture	diversity	of	
network	patterns.

¡ Scalable	and	robust	algorithm	with	excellent	
empirical	performance.

¡ Future	extensions	would	involve	designing	
random	walk	strategies	entailed	to	network	
with	specific	structure	such	as	heterogeneous	
networks	and	signed	networks.

12/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 22

23

OhmNet: Extension to
Hierarchical Networks

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu12/4/17

Let’s	generalize	node2vec	to	
multilayer	networks!

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 2412/4/17

¡ Each	network	is	a	layer	𝐺A = (𝑉A, 𝐸A)
¡ Similarities	between	layers	are	given	in	
hierarchy	ℳ,	map	𝜋 encodes parent-child	
relationships

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 2512/4/17

¡ Computational	framework	that	learns	
features	of	every	node	and	at	every	scale	
based	on:
§ Edges	within	each	layer
§ Inter-layer	relationships	between	nodes	active	

on	different	layers

26Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu12/4/17

27

Input
Output: embeddings of
nodes in layers as well as

internal levels of the hierarchy

𝐺A 𝐺e

𝐺f 𝐺g

2

3

1

• OhmNet: Given	layers	
Gi and	hierarchy	M,	
learn	node	features	
captured	by	functions	fi

• Functions	fi embed	
every	node	in	a	d-
dimensional	feature	
space

28

A multi-layer network with four
layers and a two-level hierarchy M

¡ Given:	Layers	 𝐺A ,	hierarchy	ℳ
§ Layers	 𝐺A AhT..j are	in	leaves	of	ℳ

¡ Goal:	Learn	functions:	𝑓A: 𝑉A →ℝ&

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 2912/4/17

¡ Approach	has	two	components:
§ Per-layer	objectives:	Nodes	with	similar	network	
neighborhoods in	each	layer	are	embedded	close	
together

§ Hierarchical	dependency	objectives:	Nodes	in	
nearby	layers	in	hierarchy	are	encouraged	to	share	
similar	features

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 3012/4/17

¡ Intuition: For	each	layer,	find	a	mapping	of	
nodes	to	𝑑-dimensions	that	preserves	node	
similarity

¡ Approach:	Similarity	of	nodes	𝑢 and	𝑣 is	
defined	based	on	similarity	of	their	network	
neighborhoods

¡ Given	node	𝑢 in	layer	𝑖 we	define	nearby	
nodes	𝑁A(𝑢) based	on	random	walks	starting	
at	node	𝑢

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 3112/4/17

¡ Given	node	𝑢 in	layer	𝑖,	learn	𝑢’s	representation	
such	that	it	predicts	nearby	nodes	𝑁A(𝑢):

¡ Given	𝑇 layers,	maximize:

¡ Notice: Nodes	in	different	networks	representing	
the	same	entity	have	different	features

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 32

Predicting multicellular function through multi-layer tissue networks 3

neural network embedding based approaches. In matrix factorization,
a network is expressed as a data matrix where the entries represent
relationships. The data matrix is projected to a low dimensional space
using linear techniques based on SVD (Tang et al., 2012), or non-linear
techniques based on multi-dimensional scaling (Tenenbaum et al., 2000;
Belkin and Niyogi, 2001; Hou et al., 2014). These methods have two
important drawbacks. First, they do not account for important structures
typically exhibited in networks such as high sparsity and skewed degree
distribution. Second, matrix factorization methods perform a global
factorization of the data matrix while a local-centric method might often
yield more useful feature representations (Kramer et al., 2014).

Limitations of matrix factorization are overcome by neural network
embeddings. Recent studies focused on embedding nodes into low-
dimensional vector spaces by first using random walks to construct the
network neighborhood of every node in the graph, and then optimizing an
objective function with network neighborhoods as input (Perozzi et al.,
2014; Tang et al., 2015; Grover and Leskovec, 2016). The objective
function is carefully designed to preserve both the local and global network
structures. A state-of-the-art neural network embedding algorithm is the
Node2vec algorithm (Grover and Leskovec, 2016), which learns feature
representations as follows: it scans over the nodes in a network, and for
every node it aims to embed it such that the node’s features can predict
nearby nodes, that is, node’s feature predict which other nodes are part
of its network neighborhood. Node2vec can explore different network
neighborhoods to embed nodes based on the principles of homophily (i.e.,
network communities) as well as structural equivalence (i.e., structural
roles of nodes).

A challenging problem for neural network embedding-based methods
is to learn features in multi-layer networks. Existing methods can learn
features in multi-layer networks either by treating each layer independently
of other layers, or by aggregating the layers into a single (weighted)
network. However, neglecting the existence of multiple layers or
aggregating the layers into a single network, alters topological properties
of the system as well as the importance of individual nodes with respect to
the entire network structure (De Domenico et al., 2016). This is a major
shortcoming of prior work that can lead to a wrong identification of the
most versatile nodes (De Domenico et al., 2015) and overestimation of
the importance of more marginal nodes (De Domenico et al., 2014). As
we shall show, this shortcoming also affects predictive accuracy of the
learned features. Our approach OhmNet overcomes this limitation since it
learns features in a multi-layer network in the context of the entire system
structure, bridging together different layers and generalizing methods
developed for learning features in single-layer networks (Section 3).

Finally, there exists recent work for task-dependent feature learning
based on graph-specific deep network architectures (Zhai and Zhang,
2015; Li et al., 2015; Xiaoyi et al., 2014; Wang et al., 2016a). Our
approach differs from those approaches in two important ways. First,
those architectures are task-dependent, meaning they directly optimize
the objective function for a downstream prediction task, such as cellular
function prediction in a particular tissue, using several layers of non-linear
transformations. Second, those architectures do not model rich graph
structures, such as multi-layer graphs with hierarchies.

3 Hierarchy-aware feature learning in

multi-layer networks

We formulate feature learning in multi-layer networks with hierarchical
dependencies as a maximum likelihood optimization problem. Let V be a
given set ofN nodes (e.g., proteins) {u1, u2, . . . , uN}, and let there beT

types of edges (e.g., protein interactions in different tissues) between pairs
of nodes u1, u2, . . . , uN . A multi-layer network is a general system in
which each biological context is represented by a distinct layer i (where
i = 1, 2, . . . , T) of a system (Figure 1). We use the term single-layer

network (layer) for the network Gi = (Vi, Ei) that indicates the edges
Ei between nodesVi ✓ V within the same layer i. Our analysis is general
and applies to any (un)directed, (un)weighted multi-layer network.

We take into account the possibility that a node uk from layer i can be
related to any other node uh in any other layer j. We encode information
about the dependencies between layers in a hierarchical manner that we use
in the learning process. Let the hierarchy be a directed treeM defined over
a setM of objects by the parent-child relationships given by⇡ : M ! M,

where ⇡(i) is the parent of object i (Figure 1). For convenience, let Ci

denote the set of all children of object i in the hierarchy. Let T ⇢ M be
the set of all leaf objects in the hierarchy. We assume that each layer Gi is
attached to one leaf object in the hierarchy. As a result, the hierarchy has
exactly T leaf objects.

The problem of feature learning in a multi-layer network is to learn
functions f1, f2, . . . , fT , such that each function fi : Vi ! Rd maps
nodes in Vi to feature representations in Rd. Here, d is a parameter
specifying the number of dimensions in the feature representation of one
node. Equivalently, fi is a matrix of |Vi|⇥ d parameters.

We proceed by describing OhmNet, our approach for feature learning
in multi-layer networks. OhmNet has two components:

• single-layer network objectives, in which nodes with similar network
neighborhoods in each layer are encouraged to share similar features,
and

• hierarchical dependency objective, in which nodes in nearby layers
in the hierarchy are encouraged to share similar features.

We start by describing the model that considers the layers independently
of each other. We then extend the model to encourage nodes which are
nearby in the hierarchy to have similar features.

3.1 Single-layer network objectives

We start by formalizing the intuition that nodes with similar network
neighborhoods in each layer should share similar features. For that, we
specify one objective for each layer in a given multi-layer network. We
shall later discuss how OhmNet incorporates the dependencies between
different layers.

Our goal is to take layer Gi and learn fi which embeds nodes from
similar network regions, or nodes with similar structural roles, closely
together. In OhmNet, we aim to achieve this goal by specifying the
following objective function for each layer Gi. Given a node u 2 Vi,
the objective function !i seeks to predict, which nodes are members of
u’s network neighborhood Ni(u) based on the learned node features fi:

!i(u) = logPr(Ni(u)|fi(u)), (1)

where the conditional likelihood of every node-neighborhood node pair
is modeled as an independent softmax unit parameterized by a dot
product of nodes’ features, which corresponds to a single-layer feed-
forward neural network (Grover and Leskovec, 2016). Given a node
u, maximization of !i(u) tries to maximize classification of nodes in
u’s network neighborhood based on u’s learned representation. More
precisely, we use each current node as an input to a log-linear classifier,
and predict nodes that are in the neighborhood of the current node.

The objective ⌦i is defined for each layer i:

⌦i =
X

u2Vi

!i(u), for i = 1, 2, . . . , T. (2)for

Predicting multicellular function through multi-layer tissue networks 3

neural network embedding based approaches. In matrix factorization,
a network is expressed as a data matrix where the entries represent
relationships. The data matrix is projected to a low dimensional space
using linear techniques based on SVD (Tang et al., 2012), or non-linear
techniques based on multi-dimensional scaling (Tenenbaum et al., 2000;
Belkin and Niyogi, 2001; Hou et al., 2014). These methods have two
important drawbacks. First, they do not account for important structures
typically exhibited in networks such as high sparsity and skewed degree
distribution. Second, matrix factorization methods perform a global
factorization of the data matrix while a local-centric method might often
yield more useful feature representations (Kramer et al., 2014).

Limitations of matrix factorization are overcome by neural network
embeddings. Recent studies focused on embedding nodes into low-
dimensional vector spaces by first using random walks to construct the
network neighborhood of every node in the graph, and then optimizing an
objective function with network neighborhoods as input (Perozzi et al.,
2014; Tang et al., 2015; Grover and Leskovec, 2016). The objective
function is carefully designed to preserve both the local and global network
structures. A state-of-the-art neural network embedding algorithm is the
Node2vec algorithm (Grover and Leskovec, 2016), which learns feature
representations as follows: it scans over the nodes in a network, and for
every node it aims to embed it such that the node’s features can predict
nearby nodes, that is, node’s feature predict which other nodes are part
of its network neighborhood. Node2vec can explore different network
neighborhoods to embed nodes based on the principles of homophily (i.e.,
network communities) as well as structural equivalence (i.e., structural
roles of nodes).

A challenging problem for neural network embedding-based methods
is to learn features in multi-layer networks. Existing methods can learn
features in multi-layer networks either by treating each layer independently
of other layers, or by aggregating the layers into a single (weighted)
network. However, neglecting the existence of multiple layers or
aggregating the layers into a single network, alters topological properties
of the system as well as the importance of individual nodes with respect to
the entire network structure (De Domenico et al., 2016). This is a major
shortcoming of prior work that can lead to a wrong identification of the
most versatile nodes (De Domenico et al., 2015) and overestimation of
the importance of more marginal nodes (De Domenico et al., 2014). As
we shall show, this shortcoming also affects predictive accuracy of the
learned features. Our approach OhmNet overcomes this limitation since it
learns features in a multi-layer network in the context of the entire system
structure, bridging together different layers and generalizing methods
developed for learning features in single-layer networks (Section 3).

Finally, there exists recent work for task-dependent feature learning
based on graph-specific deep network architectures (Zhai and Zhang,
2015; Li et al., 2015; Xiaoyi et al., 2014; Wang et al., 2016a). Our
approach differs from those approaches in two important ways. First,
those architectures are task-dependent, meaning they directly optimize
the objective function for a downstream prediction task, such as cellular
function prediction in a particular tissue, using several layers of non-linear
transformations. Second, those architectures do not model rich graph
structures, such as multi-layer graphs with hierarchies.

3 Hierarchy-aware feature learning in

multi-layer networks

We formulate feature learning in multi-layer networks with hierarchical
dependencies as a maximum likelihood optimization problem. Let V be a
given set ofN nodes (e.g., proteins) {u1, u2, . . . , uN}, and let there beT

types of edges (e.g., protein interactions in different tissues) between pairs
of nodes u1, u2, . . . , uN . A multi-layer network is a general system in
which each biological context is represented by a distinct layer i (where
i = 1, 2, . . . , T) of a system (Figure 1). We use the term single-layer

network (layer) for the network Gi = (Vi, Ei) that indicates the edges
Ei between nodesVi ✓ V within the same layer i. Our analysis is general
and applies to any (un)directed, (un)weighted multi-layer network.

We take into account the possibility that a node uk from layer i can be
related to any other node uh in any other layer j. We encode information
about the dependencies between layers in a hierarchical manner that we use
in the learning process. Let the hierarchy be a directed treeM defined over
a setM of objects by the parent-child relationships given by⇡ : M ! M,

where ⇡(i) is the parent of object i (Figure 1). For convenience, let Ci

denote the set of all children of object i in the hierarchy. Let T ⇢ M be
the set of all leaf objects in the hierarchy. We assume that each layer Gi is
attached to one leaf object in the hierarchy. As a result, the hierarchy has
exactly T leaf objects.

The problem of feature learning in a multi-layer network is to learn
functions f1, f2, . . . , fT , such that each function fi : Vi ! Rd maps
nodes in Vi to feature representations in Rd. Here, d is a parameter
specifying the number of dimensions in the feature representation of one
node. Equivalently, fi is a matrix of |Vi|⇥ d parameters.

We proceed by describing OhmNet, our approach for feature learning
in multi-layer networks. OhmNet has two components:

• single-layer network objectives, in which nodes with similar network
neighborhoods in each layer are encouraged to share similar features,
and

• hierarchical dependency objective, in which nodes in nearby layers
in the hierarchy are encouraged to share similar features.

We start by describing the model that considers the layers independently
of each other. We then extend the model to encourage nodes which are
nearby in the hierarchy to have similar features.

3.1 Single-layer network objectives

We start by formalizing the intuition that nodes with similar network
neighborhoods in each layer should share similar features. For that, we
specify one objective for each layer in a given multi-layer network. We
shall later discuss how OhmNet incorporates the dependencies between
different layers.

Our goal is to take layer Gi and learn fi which embeds nodes from
similar network regions, or nodes with similar structural roles, closely
together. In OhmNet, we aim to achieve this goal by specifying the
following objective function for each layer Gi. Given a node u 2 Vi,
the objective function !i seeks to predict, which nodes are members of
u’s network neighborhood Ni(u) based on the learned node features fi:

!i(u) = logPr(Ni(u)|fi(u)), (1)

where the conditional likelihood of every node-neighborhood node pair
is modeled as an independent softmax unit parameterized by a dot
product of nodes’ features, which corresponds to a single-layer feed-
forward neural network (Grover and Leskovec, 2016). Given a node
u, maximization of !i(u) tries to maximize classification of nodes in
u’s network neighborhood based on u’s learned representation. More
precisely, we use each current node as an input to a log-linear classifier,
and predict nodes that are in the neighborhood of the current node.

The objective ⌦i is defined for each layer i:

⌦i =
X

u2Vi

!i(u), for i = 1, 2, . . . , T. (2)

12/4/17

¡ So	far,	we	did	not	consider	hierarchy	ℳ
¡ Node	representations	in	different	layers	are	
learned	independently	of	each	other

How	to	model	dependencies	between	
layers	when	learning	node	features?

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 3312/4/17

¡ We	use	regularization	to	share	information	
across	the	hierarchy

¡ We	want	to	enforce	similarity	between	
feature	representations	of	networks	that	are	
located	nearby	in	the	hierarchy

3412/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

¡ Given	node	𝑢,	learn	𝑢’s	representation	in	
layer	𝑖 to	be	close	to	𝑢’s	representation	in	
parent	𝜋(𝑖):

¡ Multi-scale:	Repeat	at	every	level	of	ℳ

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 35

4 Zitnik & Leskovec

The objective is inspired by the intuition that nodes with similar network
neighborhoods tend to have similar meanings, or roles, in a network.
It formalizes this intuition by encouraging nodes in similar network
neighborhoods to share similar features.

We found that a flexible notion of a network neighborhoodNi is crucial
to achieve excellent predictive accuracy on a downstream cellular function
prediction task (Grover and Leskovec, 2016). For that reason, we use a
randomized procedure to sample many different neighborhoods of a given
node u. Technically, the network neighborhood Ni(u) is a set of nodes
that appear in an appropriately biased random walk defined on layer Gi

and started at node u (Grover and Leskovec, 2016). The neighborhoods
Ni(u) are not restricted to just immediate neighbors but can have vastly
different structures depending on the sampling strategy.

Next, we expand OhmNet’s single-layer network objectives to leverage
information provided by the tissue taxonomy and this way inform
embeddings across different layers.

3.2 Hierarchical dependency objective

So far, we specified T layer-by-layer objectives each of which estimates
node features in its layer independently of node features in other layers.
This means that nodes in different layers representing the same entity have
features that are learned independently of each other.

To harness the dependencies between the layers, we expand OhmNet

with terms that encourage sharing of protein features between the layers.
Our approach is based on the assumption that nearby layers in the
hierarchy are semantically close to each other and hence proteins/nodes
in them should share similar features. For example, in the tissue multi-
layer network, we model the fact that the “medulla” layer is part of the
“brainstem” layer, which is, in turn, part of the “brain” layer. We use the
dependencies among the layers to define a joint objective for regularization
of the learned features of proteins.

We propose to use the hierarchy in the learning process by
incorporating a recursive structure into the regularization term for every
object in the hierarchy. Specifically, we propose the following form of
regularization for node u that resides in hierarchy i:

ci(u) =
1

2
kfi(u)� f⇡(i)(u)k22. (3)

This recursive form of regularization enforces the features of node u in
the hierarchy i to be similar to the features of node u in i’s parent ⇡(i)
under the Euclidean norm. When regularizing features of all nodes in the
elements i of the hierarchy, we obtain:

Ci =
X

u2Li

ci(u), (4)

where Li = Vi if i 2 T is a leaf object in the hierarchy, and otherwise
Li = [j2TiVj . Here, Ti denotes the set of leaf objects in the sub-
hierarchy rooted at i. In words, we specify the features for both leaf as well
as internal, i.e., non-leaf, objects in the hierarchy, and we regularize the
features of sibling (i.e., sharing the same parent) objects towards features
in the common parent object in the hierarchy.

It is important to notice that OhmNet’s structured regularization allows
us to learn feature representations at multiple scales. For example, consider
a multi-layer network in Figure 2, consisting of four layers that are
interrelated by a two-level hierarchy. OhmNet learns the mappings fi, fj ,
fk , and fl that map nodes in each layer into a d-dimensional feature space.
Additionally, OhmNet also learns the mapping f2 representing features
for nodes V2 = Vi [Vj at an intermediate scale, and the mapping f1

representing features for nodes V1 = Vi [Vj [Vk [Vl at the highest
scale.

Fig. 2: A multi-layer network with four layers. Relationships between
the layers are encoded by a two-level hierarchyM. Leaves of the hierarchy
correspond to the network layers. Given networks Gi and hierarchy M,
OhmNet learns node embeddings captured by functions fi.

The modeling of relationships between layers in a multi-layer network
has several implications:

• First, the model encourages nodes which are in nearby layers in the
hierarchy to share similar features.

• Second, the model shares statistical strength across the hierarchy as
nodes in different layers representing the same protein share features
through ancestors in the hierarchy.

• Third, this model is more efficient than the fully pairwise model.
In the fully pairwise model, the dependencies between layers are
modeled by pairwise comparisons of nodes across all pairs of layers,
which takes O(T 2

N) time, where T is the number of layers and
N is the number of nodes. In contrast, OhmNet models inter-layer
dependencies according to the parent-child relationships specified by
the hierarchy, which takes only O(|M |N) time. Since OhmNet’s
hierarchy is a tree, it holds that |M | ⌧ T

2, meaning that the proposed
model scales more easily to large multi-layer networks than the fully
pairwise model.

• Finally, the hierarchy is a natural way to represent and model biological
systems spanning many different biological scales (Carvunis and
Ideker, 2014; Greene et al., 2015; Yu et al., 2016).

3.3 Full OhmNet model

Given a multi-layer network consisting of layers G1, G2, . . . , GT , and a
hierarchy encoding relationships between the layers, the OhmNet’s goal
is to learn the functions f1, f2, . . . , fT that map from nodes in each layer
to feature representations. OhmNet achieves this goal by fitting its feature
learning model to a given multi-layer network and a given hierarchy, i.e.,
by finding the mapping functions f1, f2, . . . , fT that maximize the data
likelihood.

Given the data, OhmNet aims to solve the following maximum
likelihood optimization problem:

max
f1,f2,...,f|M|

X

i2T
⌦i � �

X

j2M
Cj , (5)

which includes the single-layer network objectives for all network layers,
and the hierarchical dependency objectives for all hierarchy objects.
In Eq. (5), parameter � is a user-specified parameter representing the

4 Zitnik & Leskovec

The objective is inspired by the intuition that nodes with similar network
neighborhoods tend to have similar meanings, or roles, in a network.
It formalizes this intuition by encouraging nodes in similar network
neighborhoods to share similar features.

We found that a flexible notion of a network neighborhoodNi is crucial
to achieve excellent predictive accuracy on a downstream cellular function
prediction task (Grover and Leskovec, 2016). For that reason, we use a
randomized procedure to sample many different neighborhoods of a given
node u. Technically, the network neighborhood Ni(u) is a set of nodes
that appear in an appropriately biased random walk defined on layer Gi

and started at node u (Grover and Leskovec, 2016). The neighborhoods
Ni(u) are not restricted to just immediate neighbors but can have vastly
different structures depending on the sampling strategy.

Next, we expand OhmNet’s single-layer network objectives to leverage
information provided by the tissue taxonomy and this way inform
embeddings across different layers.

3.2 Hierarchical dependency objective

So far, we specified T layer-by-layer objectives each of which estimates
node features in its layer independently of node features in other layers.
This means that nodes in different layers representing the same entity have
features that are learned independently of each other.

To harness the dependencies between the layers, we expand OhmNet

with terms that encourage sharing of protein features between the layers.
Our approach is based on the assumption that nearby layers in the
hierarchy are semantically close to each other and hence proteins/nodes
in them should share similar features. For example, in the tissue multi-
layer network, we model the fact that the “medulla” layer is part of the
“brainstem” layer, which is, in turn, part of the “brain” layer. We use the
dependencies among the layers to define a joint objective for regularization
of the learned features of proteins.

We propose to use the hierarchy in the learning process by
incorporating a recursive structure into the regularization term for every
object in the hierarchy. Specifically, we propose the following form of
regularization for node u that resides in hierarchy i:

ci(u) =
1

2
kfi(u)� f⇡(i)(u)k22. (3)

This recursive form of regularization enforces the features of node u in
the hierarchy i to be similar to the features of node u in i’s parent ⇡(i)
under the Euclidean norm. When regularizing features of all nodes in the
elements i of the hierarchy, we obtain:

Ci =
X

u2Li

ci(u), (4)

where Li = Vi if i 2 T is a leaf object in the hierarchy, and otherwise
Li = [j2TiVj . Here, Ti denotes the set of leaf objects in the sub-
hierarchy rooted at i. In words, we specify the features for both leaf as well
as internal, i.e., non-leaf, objects in the hierarchy, and we regularize the
features of sibling (i.e., sharing the same parent) objects towards features
in the common parent object in the hierarchy.

It is important to notice that OhmNet’s structured regularization allows
us to learn feature representations at multiple scales. For example, consider
a multi-layer network in Figure 2, consisting of four layers that are
interrelated by a two-level hierarchy. OhmNet learns the mappings fi, fj ,
fk , and fl that map nodes in each layer into a d-dimensional feature space.
Additionally, OhmNet also learns the mapping f2 representing features
for nodes V2 = Vi [Vj at an intermediate scale, and the mapping f1

representing features for nodes V1 = Vi [Vj [Vk [Vl at the highest
scale.

Fig. 2: A multi-layer network with four layers. Relationships between
the layers are encoded by a two-level hierarchyM. Leaves of the hierarchy
correspond to the network layers. Given networks Gi and hierarchy M,
OhmNet learns node embeddings captured by functions fi.

The modeling of relationships between layers in a multi-layer network
has several implications:

• First, the model encourages nodes which are in nearby layers in the
hierarchy to share similar features.

• Second, the model shares statistical strength across the hierarchy as
nodes in different layers representing the same protein share features
through ancestors in the hierarchy.

• Third, this model is more efficient than the fully pairwise model.
In the fully pairwise model, the dependencies between layers are
modeled by pairwise comparisons of nodes across all pairs of layers,
which takes O(T 2

N) time, where T is the number of layers and
N is the number of nodes. In contrast, OhmNet models inter-layer
dependencies according to the parent-child relationships specified by
the hierarchy, which takes only O(|M |N) time. Since OhmNet’s
hierarchy is a tree, it holds that |M | ⌧ T

2, meaning that the proposed
model scales more easily to large multi-layer networks than the fully
pairwise model.

• Finally, the hierarchy is a natural way to represent and model biological
systems spanning many different biological scales (Carvunis and
Ideker, 2014; Greene et al., 2015; Yu et al., 2016).

3.3 Full OhmNet model

Given a multi-layer network consisting of layers G1, G2, . . . , GT , and a
hierarchy encoding relationships between the layers, the OhmNet’s goal
is to learn the functions f1, f2, . . . , fT that map from nodes in each layer
to feature representations. OhmNet achieves this goal by fitting its feature
learning model to a given multi-layer network and a given hierarchy, i.e.,
by finding the mapping functions f1, f2, . . . , fT that maximize the data
likelihood.

Given the data, OhmNet aims to solve the following maximum
likelihood optimization problem:

max
f1,f2,...,f|M|

X

i2T
⌦i � �

X

j2M
Cj , (5)

which includes the single-layer network objectives for all network layers,
and the hierarchical dependency objectives for all hierarchy objects.
In Eq. (5), parameter � is a user-specified parameter representing the

𝐿A has all layers appearing in sub-hierarchy rooted at 𝑖
12/4/17

¡ Nodes	in	different	layers	representing	the	same	
entity	have	the	same	features	in	hierarchy	
ancestors

¡ We	learn	feature	representations	at	multiple	
scales:
§ features	of	nodes	in	the	layers	
§ features	of	nodes	in	non-leaves	in	the	hierarchy

¡ This	model	is	more	efficient	than	the	fully	
pairwise	model,	where	dependencies	between	
layers	are	modeled	by	pairwise	comparisons	of	
nodes	across	all	pairs	of	layers

3612/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

37

Learning node features in multi-layer networks

Solve maximum likelihood problem:

4 Zitnik & Leskovec

The objective is inspired by the intuition that nodes with similar network
neighborhoods tend to have similar meanings, or roles, in a network.
It formalizes this intuition by encouraging nodes in similar network
neighborhoods to share similar features.

We found that a flexible notion of a network neighborhoodNi is crucial
to achieve excellent predictive accuracy on a downstream cellular function
prediction task (Grover and Leskovec, 2016). For that reason, we use a
randomized procedure to sample many different neighborhoods of a given
node u. Technically, the network neighborhood Ni(u) is a set of nodes
that appear in an appropriately biased random walk defined on layer Gi

and started at node u (Grover and Leskovec, 2016). The neighborhoods
Ni(u) are not restricted to just immediate neighbors but can have vastly
different structures depending on the sampling strategy.

Next, we expand OhmNet’s single-layer network objectives to leverage
information provided by the tissue taxonomy and this way inform
embeddings across different layers.

3.2 Hierarchical dependency objective

So far, we specified T layer-by-layer objectives each of which estimates
node features in its layer independently of node features in other layers.
This means that nodes in different layers representing the same entity have
features that are learned independently of each other.

To harness the dependencies between the layers, we expand OhmNet

with terms that encourage sharing of protein features between the layers.
Our approach is based on the assumption that nearby layers in the
hierarchy are semantically close to each other and hence proteins/nodes
in them should share similar features. For example, in the tissue multi-
layer network, we model the fact that the “medulla” layer is part of the
“brainstem” layer, which is, in turn, part of the “brain” layer. We use the
dependencies among the layers to define a joint objective for regularization
of the learned features of proteins.

We propose to use the hierarchy in the learning process by
incorporating a recursive structure into the regularization term for every
object in the hierarchy. Specifically, we propose the following form of
regularization for node u that resides in hierarchy i:

ci(u) =
1

2
kfi(u)� f⇡(i)(u)k22. (3)

This recursive form of regularization enforces the features of node u in
the hierarchy i to be similar to the features of node u in i’s parent ⇡(i)
under the Euclidean norm. When regularizing features of all nodes in the
elements i of the hierarchy, we obtain:

Ci =
X

u2Li

ci(u), (4)

where Li = Vi if i 2 T is a leaf object in the hierarchy, and otherwise
Li = [j2TiVj . Here, Ti denotes the set of leaf objects in the sub-
hierarchy rooted at i. In words, we specify the features for both leaf as well
as internal, i.e., non-leaf, objects in the hierarchy, and we regularize the
features of sibling (i.e., sharing the same parent) objects towards features
in the common parent object in the hierarchy.

It is important to notice that OhmNet’s structured regularization allows
us to learn feature representations at multiple scales. For example, consider
a multi-layer network in Figure 2, consisting of four layers that are
interrelated by a two-level hierarchy. OhmNet learns the mappings fi, fj ,
fk , and fl that map nodes in each layer into a d-dimensional feature space.
Additionally, OhmNet also learns the mapping f2 representing features
for nodes V2 = Vi [Vj at an intermediate scale, and the mapping f1

representing features for nodes V1 = Vi [Vj [Vk [Vl at the highest
scale.

Fig. 2: A multi-layer network with four layers. Relationships between
the layers are encoded by a two-level hierarchyM. Leaves of the hierarchy
correspond to the network layers. Given networks Gi and hierarchy M,
OhmNet learns node embeddings captured by functions fi.

The modeling of relationships between layers in a multi-layer network
has several implications:

• First, the model encourages nodes which are in nearby layers in the
hierarchy to share similar features.

• Second, the model shares statistical strength across the hierarchy as
nodes in different layers representing the same protein share features
through ancestors in the hierarchy.

• Third, this model is more efficient than the fully pairwise model.
In the fully pairwise model, the dependencies between layers are
modeled by pairwise comparisons of nodes across all pairs of layers,
which takes O(T 2

N) time, where T is the number of layers and
N is the number of nodes. In contrast, OhmNet models inter-layer
dependencies according to the parent-child relationships specified by
the hierarchy, which takes only O(|M |N) time. Since OhmNet’s
hierarchy is a tree, it holds that |M | ⌧ T

2, meaning that the proposed
model scales more easily to large multi-layer networks than the fully
pairwise model.

• Finally, the hierarchy is a natural way to represent and model biological
systems spanning many different biological scales (Carvunis and
Ideker, 2014; Greene et al., 2015; Yu et al., 2016).

3.3 Full OhmNet model

Given a multi-layer network consisting of layers G1, G2, . . . , GT , and a
hierarchy encoding relationships between the layers, the OhmNet’s goal
is to learn the functions f1, f2, . . . , fT that map from nodes in each layer
to feature representations. OhmNet achieves this goal by fitting its feature
learning model to a given multi-layer network and a given hierarchy, i.e.,
by finding the mapping functions f1, f2, . . . , fT that maximize the data
likelihood.

Given the data, OhmNet aims to solve the following maximum
likelihood optimization problem:

max
f1,f2,...,f|M|

X

i2T
⌦i � �

X

j2M
Cj , (5)

which includes the single-layer network objectives for all network layers,
and the hierarchical dependency objectives for all hierarchy objects.
In Eq. (5), parameter � is a user-specified parameter representing the

Per-layer
network

objectives

Hierarchical
dependency
objectives

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu12/4/17

¡ Proteins	are	worker	molecules
§ Understanding	protein	function	has	
great	biomedical	and	pharmaceutical	
implications

¡ Function	of	proteins	depends	on	
their	tissue	context	
[Greene	et	al.,	Nat	Genet	‘15]

38

G1
G2

G3
G4

12/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

¡ The	precise	function	of	
proteins	depends	on	their	
tissue	context	(Greene	et	
al.,	Nat	Genet	2015)

¡ Diseases	result	from	the	
failure	of	tissue-specific	
processes	(Hu	et	al.,	Nat	
Rev	Genet	2016)

¡ Current	models	assume	
that	protein	functions	are	
constant	across	tissues

39

Tissue-specific protein
interaction networks

G1
G2

G3
G4

¡ A	multi-layer	tissue	
network	has	many	
network	layers	(tissues)

¡ Each	layer	corresponds	
to	one	tissue-specific	
protein	interaction	
network

¡ Hierarchy	M	encodes	
biological	similarities	
between	the	tissues	at	
multiple	scales

4012/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

107	genome-wide	
tissue-specific	
protein	interaction	
networks
¡ 584	tissue-specific	cellular	functions	
¡ Examples	(tissue,	cellular	function):	
§ (renal	cortex,	cortex	development)
§ (artery,	pulmonary	artery	morphogenesis)

41Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

Frontal
lobe

Medulla
oblongata

PonsSubstantia
nigra

Midbrain

Parietal
lobe

Occipital
lobe

Temporal
lobe

Brainstem

Brain

Cerebellum

12/4/17

Frontal
lobe

Medulla
oblongata

PonsSubstantia
nigra

Midbrain

Parietal
lobe

Occipital
lobe

Temporal
lobe

Brainstem

Brain

Cerebellum

42

9 brain tissue PPI networks
in two-level hierarchy

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu12/4/17

43Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu12/4/17

¡ Cellular	function	prediction	is	a	multi-label	node	
classification	task

¡ Every	node	(protein)	is	assigned	one	or	more	labels	
(cellular	functions)

¡ Setup:
§ We	apply	OhmNet,	which	for	every	node	in	every	layer	learns	a	
separate	feature	vector	in	an	unsupervised	way.	

§ For	every	layer	and	every	function	we	then	train	a	separate	one-
vs-all	regularized	linear	classifier	using	the	modified	Huber	loss	

§ During	the	training	phase,	we	observe	only	a	certain	fraction	of	
proteins	and	all	their	cellular	functions	across	the	layers	

§ The	task	is	then	to	predict	the	tissue-specific	functions	for	the	
remaining	proteins

4412/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

Tissues
12/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 45

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 46

¡ 42%	improvement	
over	state-of-the-art	
on	the	same	dataset

12/4/17

Transfer functions	to	unannotated	tissues
¡ Task:	Predict	functions	in	target	tissue	without	
access	to	any	annotation/label	in	that	tissue

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 47

Target tissue OhmNet Tissue non-
specific

Improvement

Placenta 0.758 0.684 11%
Spleen 0.779 0.712 10%
Liver 0.741 0.553 34%
Forebrain 0.755 0.632 20%
Blood plasma 0.703 0.540 40%
Smooth muscle 0.729 0.583 25%
Average 0.746 0.617 21%

Reported are AUC values
12/4/17

