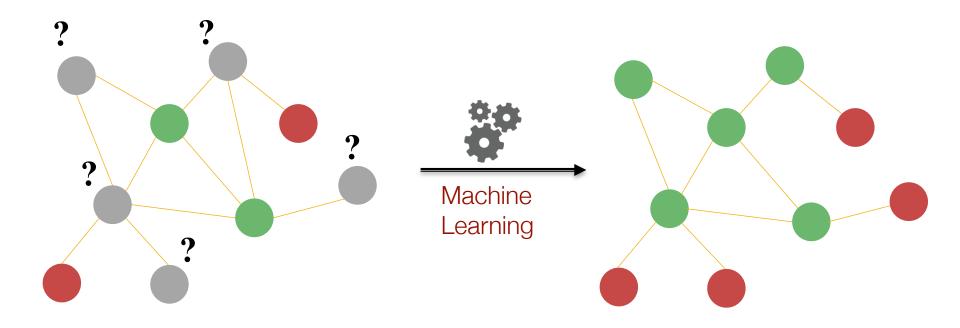
Automatic Feature Learning In Graphs

CS224W: Analysis of Networks
Jure Leskovec, Stanford University
http://cs224w.stanford.edu

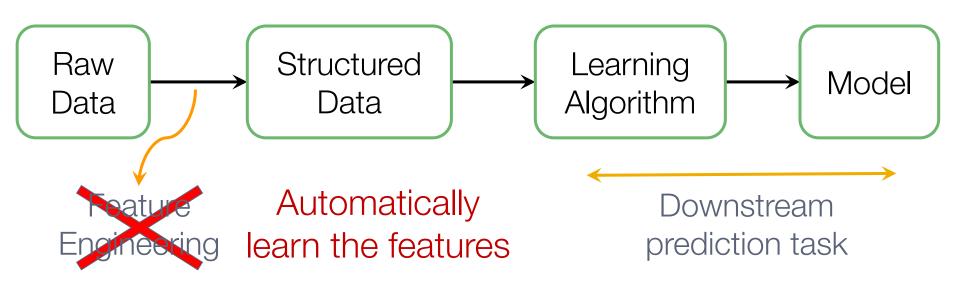
Machine Learning in Networks



Node classification

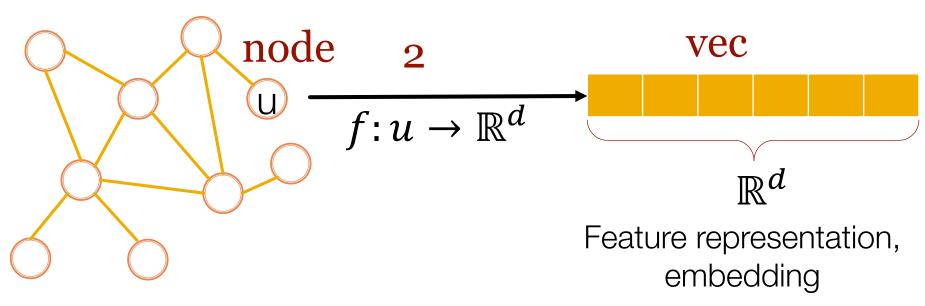
Machine Learning Lifecycle

 (Supervised) Machine Learning Lifecycle: This feature, that feature.
 Every single time!



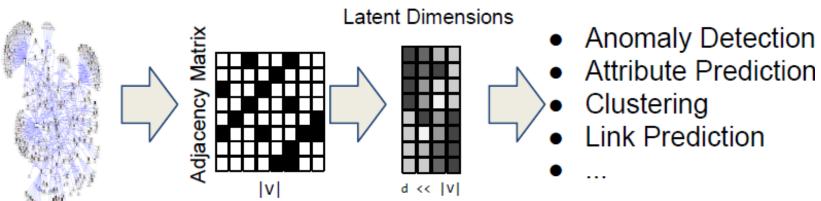
Feature Learning in Graphs

Goal: Efficient task-independent feature learning for machine learning in networks!



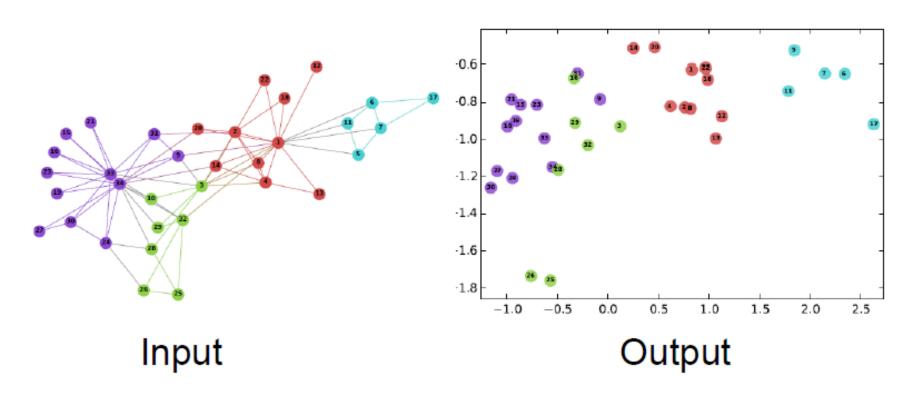
Why network embedding?

- We map each node in a network into a lowdimensional space
 - Distributed representation for nodes
 - Similarity between nodes indicates link strength
 - Encode network information and generate node representation



Example

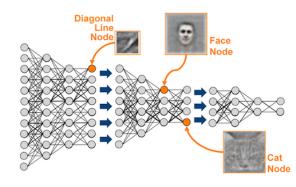
Zachary's Karate Club network:

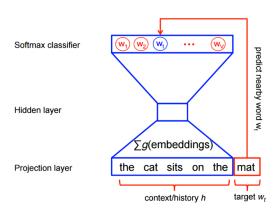


Why Is It Hard?

Graph representation learning is hard:

- Images are fixed size
 - Convolutions (CNNs)
- Text is linear
 - Sliding window (word2vec)
- Graphs are neither of these!
 - Node numbering is arbitrary (node isomorphism problem)
 - Much more complicated structure





node2vec: Random Walk Based (Unsupervised) Feature Learning

node2vec: Scalable Feature Learning for Networks

A. Grover, J. Leskovec. KDD 2016.

Overview of node2vec

- Goal: Embed nodes with similar network neighborhoods close in the feature space.
- We frame this goal as prediction-task independent maximum likelihood optimization problem.
- Key observation: Flexible notion of network neighborhood $N_S(u)$ of node u leads to rich features.
- Develop biased 2nd order random walk procedure S to generate network neighborhood $N_S(u)$ of node u.

Unsupervised Feature Learning

- Intuition: Find embedding of nodes to d-dimensions that preserves similarity
- Idea: Learn node embedding such that nearby nodes are close together
- Given a node u, how do we define nearby nodes?
 - $N_S(u)$... neighbourhood of u obtained by some strategy S

Feature learning as optimization

- Given G = (V, E),
- Our goal is to learn a mapping $f: u \to \mathbb{R}^d$.
- Log-likelihood objective: $\max_{f} \sum_{u \in V} \log \Pr(N_S(u) | f(u))$
 - where $N_S(u)$ is neighborhood of node u.
- Given node u, we want to learn feature representations predictive of nodes in its neighborhood $N_S(u)$.

Feature learning as optimization

$$\max_{f} \sum_{u \in V} \log \Pr(N_S(u) | f(u))$$

Assumption: Conditional likelihood factorizes over the set of neighbors.

$$\log \Pr(N_S(u|f(u))) = \sum_{n_i \in N_S(u)} \log \Pr(f(n_i)|f(u))$$

Softmax parametrization:

$$\Pr(f(n_i)|f(u)) = \frac{\exp(f(n_i)\cdot f(u))}{\sum_{v\in V} \exp(f(v)\cdot f(u)))}$$

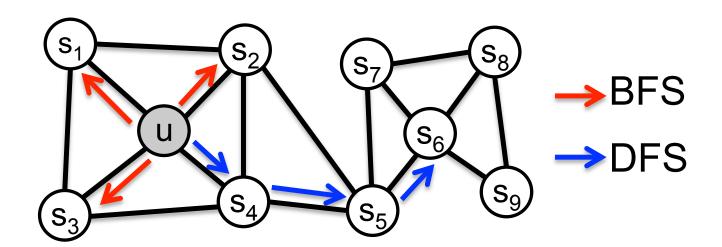
Negative Sampling

$$\max_{f} \sum_{u \in V} \sum_{n \in N_S(u)} \log \frac{\exp(f(n_i) \cdot f(u))}{\sum_{v \in V} \exp(f(v) \cdot f(u)))}$$

- Maximize the objective using Stochastic Gradient descent with negative sampling.
 - Computing the summation is expensive
 - Idea: Just sample a couple of "negative nodes"
 - This means at each iteration only embeddings of a few nodes will be updated at a time
 - Much faster training of embeddings

How to determine $N_S(u)$

Two classic strategies to define a neighborhood $N_S(u)$ of a given node u:



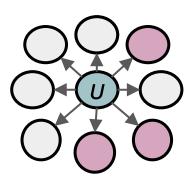
$$N_{BFS}(u) = \{ s_1, s_2, s_3 \}$$

Local microscopic view

$$N_{DFS}(u) = \{ s_4, s_5, s_6 \}$$

Global macroscopic view

BFS vs. DFS



BFS:

Micro-view of neighbourhood

DFS:

Macro-view of neighbourhood

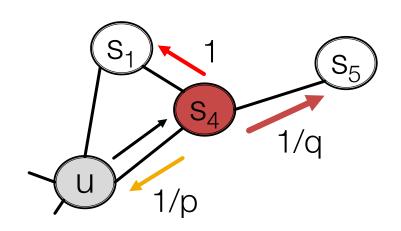
Interpolating BFS and DFS

Biased random walk S that given a node u generates neighborhood $N_S(u)$

- Two parameters:
 - Return parameter p:
 - Return back to the previous node
 - In-out parameter q:
 - Moving outwards (DFS) vs. inwards (BFS)

Biased Random Walks

 $N_S(u)$: Biased 2nd-order random walks explore network neighborhoods:



 $U \rightarrow S_{\Delta} \rightarrow ?$

U S₁ S₅

- BFS-like: low value of p
- DFS-like: low value of q

p,q can learned in a semi-supervised way

node2vec algorithm

- 1) Compute random walk probs.
- ullet 2) Simulate r random walks of length l starting from each node u
- 3) Optimize the node2vec objective using Stochastic Gradient Descent

Linear-time complexity.

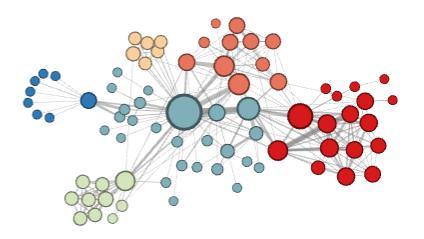
All 3 steps are individually parallelizable

Experiments: Micro vs. Macro

Interactions of characters in a novel:



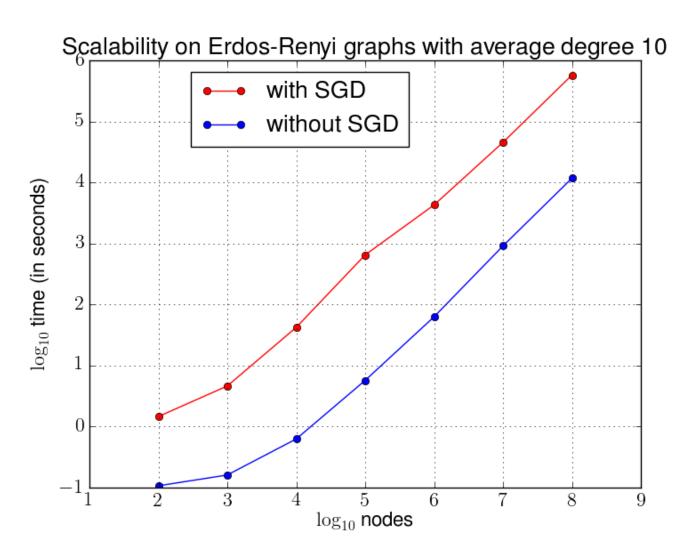
p=1, q=2 Microscopic view of the network neighbourhood



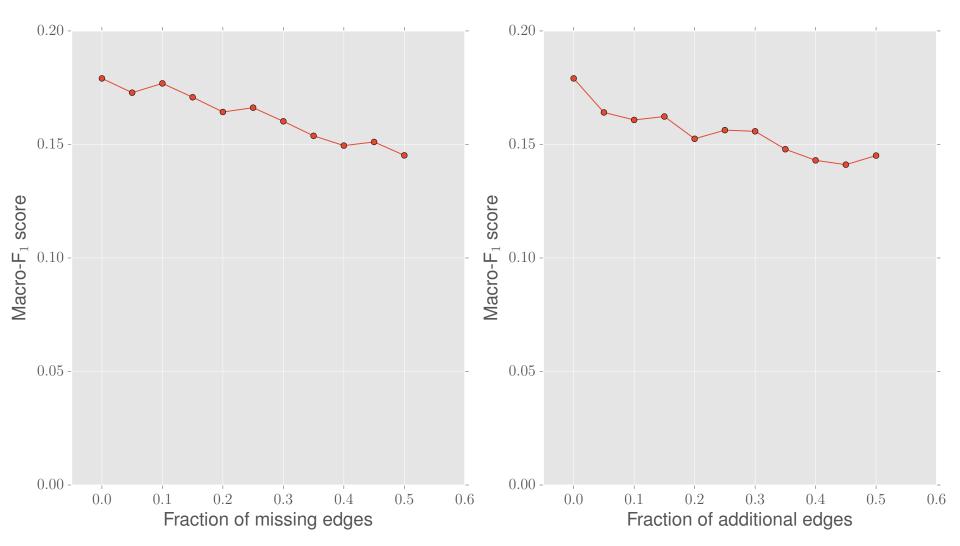
$$p=1, q=0.5$$

Macroscopic view of the network neighbourhood

Scalability of node2vec



Incomplete Network Data (PPI)



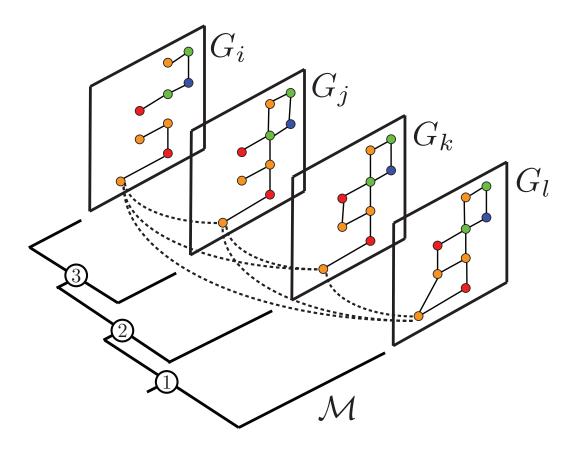
node2vec: Discussion

General-purpose feature learning in networks:

- An explicit locality preserving objective for feature learning.
- Biased random walks capture diversity of network patterns.
- Scalable and robust algorithm with excellent empirical performance.
- Future extensions would involve designing random walk strategies entailed to network with specific structure such as heterogeneous networks and signed networks.

OhmNet: Extension to Hierarchical Networks

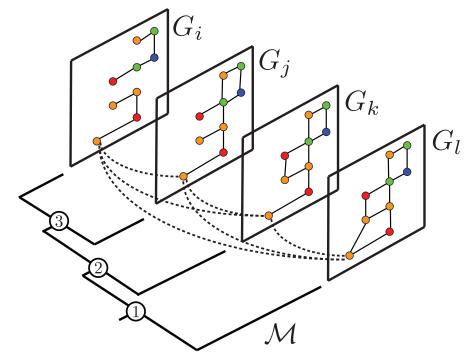
Multilayer Networks



Let's generalize node2vec to multilayer networks!

Multi-Layer Networks

- Each network is a layer $G_i = (V_i, E_i)$
- Similarities between layers are given in hierarchy \mathcal{M} , map π encodes parent-child relationships



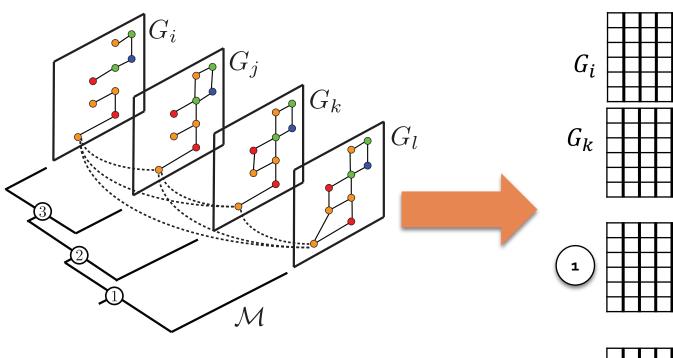
The Approach

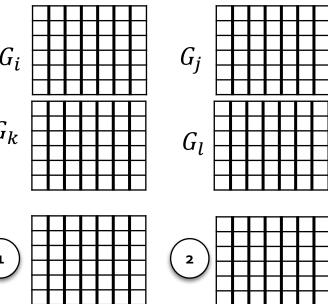
- Computational framework that learns features of every node and at every scale based on:
 - Edges within each layer
 - Inter-layer relationships between nodes active on different layers

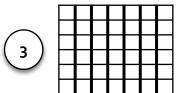
OhmNet

Input

Output: embeddings of nodes in layers as well as internal levels of the hierarchy



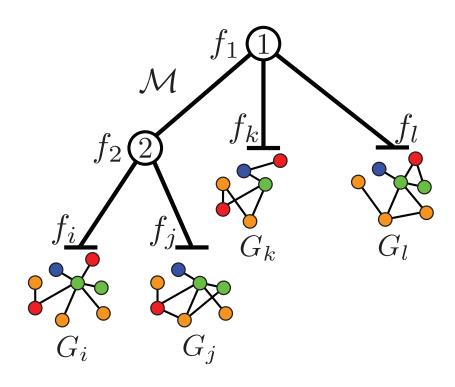




OhmNet

OhmNet: Given layers
 G_i and hierarchy M,
 learn node features
 captured by functions f_i

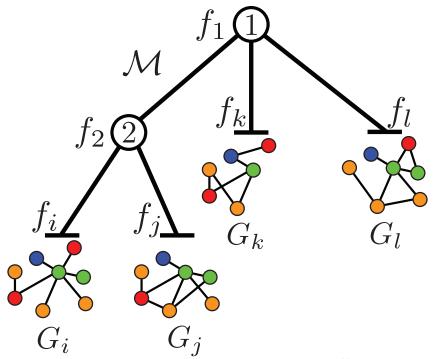
 Functions f_i embed every node in a ddimensional feature space



A multi-layer network with four layers and a two-level hierarchy *M*

Features in Multi-Layer Network

- ullet Given: Layers $\{G_i\}$, hierarchy ${\mathcal M}$
 - Layers $\{G_i\}_{i=1..T}$ are in leaves of $\mathcal M$
- Goal: Learn functions: $f_i: V_i \to \mathbb{R}^d$



Features in Multi-Layer Network

- Approach has two components:
 - Per-layer objectives: Nodes with similar network neighborhoods in each layer are embedded close together
 - Hierarchical dependency objectives: Nodes in nearby layers in hierarchy are encouraged to share similar features

Per-Layer Objective: node2vec

- Intuition: For each layer, find a mapping of nodes to d-dimensions that preserves node similarity
- Approach: Similarity of nodes u and v is defined based on similarity of their network neighborhoods
- Given node u in layer i we define nearby nodes $N_i(u)$ based on random walks starting at node u

Per-Layer Objective: node2vec

• Given node u in layer i, learn u's representation such that it predicts nearby nodes $N_i(u)$:

$$\omega_i(u) = \log \Pr(N_i(u)|f_i(u))$$

Given T layers, maximize:

$$\Omega_i = \sum_{u \in V_i} \omega_i(u), \quad \text{for } i = 1, 2, \dots, T$$

 Notice: Nodes in different networks representing the same entity have different features

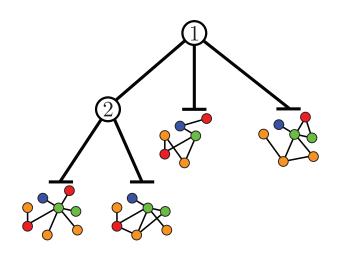
Interdependent Layers

- lacksquare So far, we did not consider hierarchy ${\mathcal M}$
- Node representations in different layers are learned independently of each other

How to model dependencies between layers when learning node features?

Hierarchical regularization

- We use regularization to share information across the hierarchy
- We want to enforce similarity between feature representations of networks that are located nearby in the hierarchy



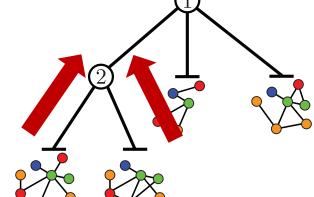
Interdependent Layers

• Given node u, learn u's representation in layer i to be close to u's representation in parent $\pi(i)$:

$$c_i(u) = \frac{1}{2} ||f_i(u) - f_{\pi(i)}(u)||_2^2$$

Multi-scale: Repeat at every level of $\mathcal M$

$$C_i = \sum_{u \in L_i} c_i(u)$$



Implications

- Nodes in different layers representing the same entity have the same features in hierarchy ancestors
- We learn feature representations at multiple scales:
 - features of nodes in the layers
 - features of nodes in non-leaves in the hierarchy
- This model is more efficient than the fully pairwise model, where dependencies between layers are modeled by pairwise comparisons of nodes across all pairs of layers

OhmNet: Final Model

Learning node features in multi-layer networks

Solve maximum likelihood problem:

$$\max_{f_1, f_2, \dots, f_{|M|}} \sum_{i \in \mathcal{T}} \Omega_i - \lambda \sum_{j \in \mathcal{M}} C_j$$

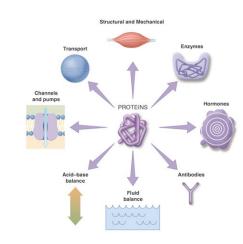
Per-layer network objectives

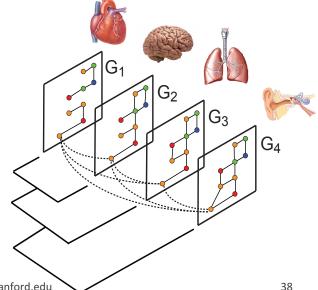
Hierarchical dependency objectives

Application: Protein function

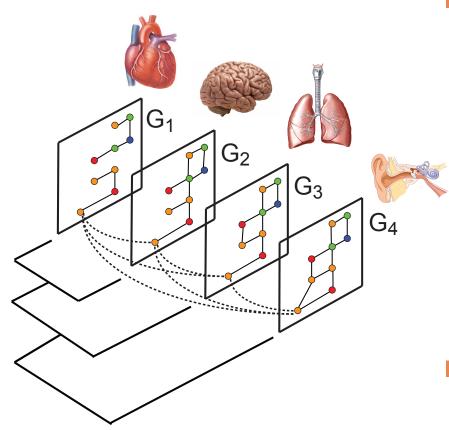
- Proteins are worker molecules
 - Understanding protein function has great biomedical and pharmaceutical implications
- Function of proteins depends on their tissue context

[Greene et al., Nat Genet '15]





Protein functions are tissue-specific



Tissue-specific protein interaction networks

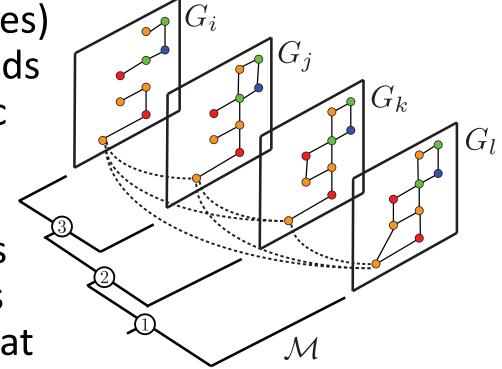
- The precise function of proteins depends on their tissue context (Greene et al., Nat Genet 2015)
- Diseases result from the failure of tissue-specific processes (Hu et al., Nat Rev Genet 2016)
- Current models assume that protein functions are constant across tissues

Multi-layer tissue network

 A multi-layer tissue network has many network layers (tissues)

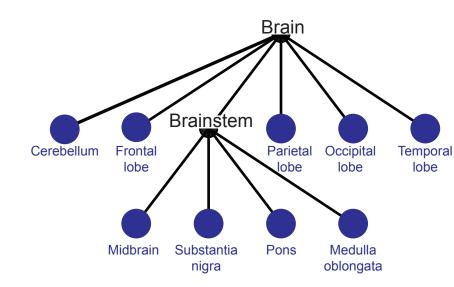
 Each layer corresponds to one tissue-specific protein interaction network

 Hierarchy M encodes biological similarities between the tissues at multiple scales



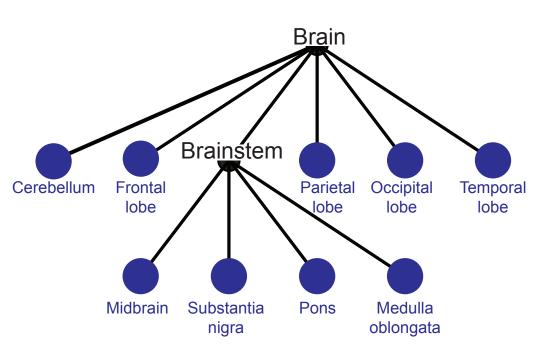
Experiments: Biological Nets

107 genome-wide tissue-specific protein interaction networks

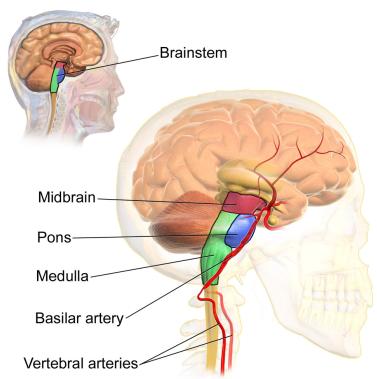


- 584 tissue-specific cellular functions
- Examples (tissue, cellular function):
 - (renal cortex, cortex development)
 - (artery, pulmonary artery morphogenesis)

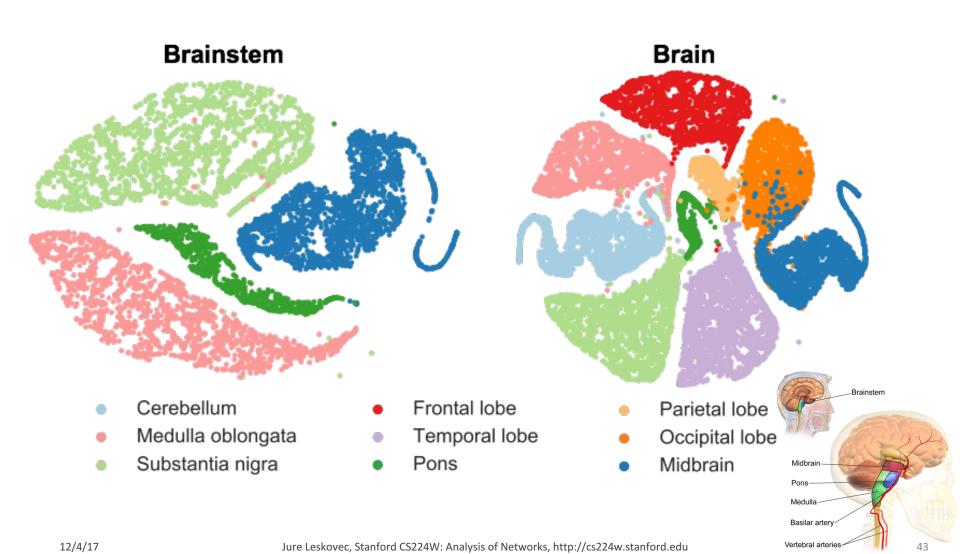
Brain Tissues



9 brain tissue PPI networks in two-level hierarchy



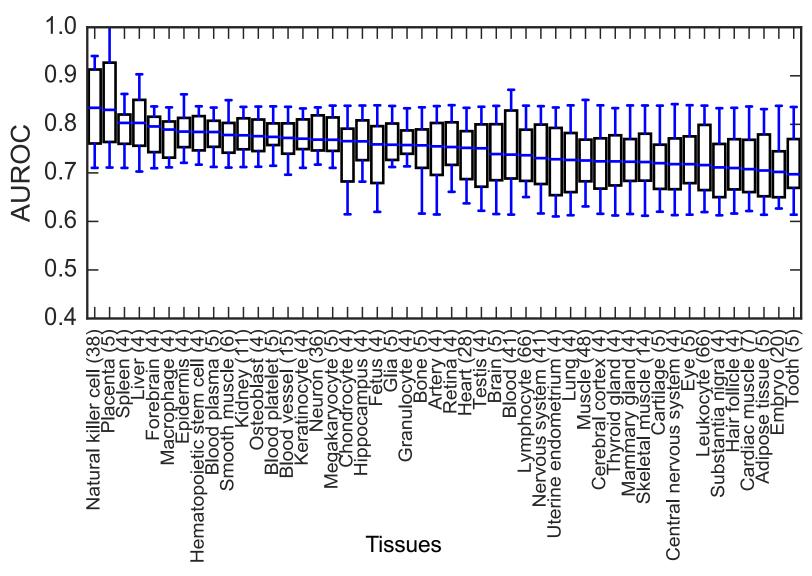
Meaningful Node Embeddings



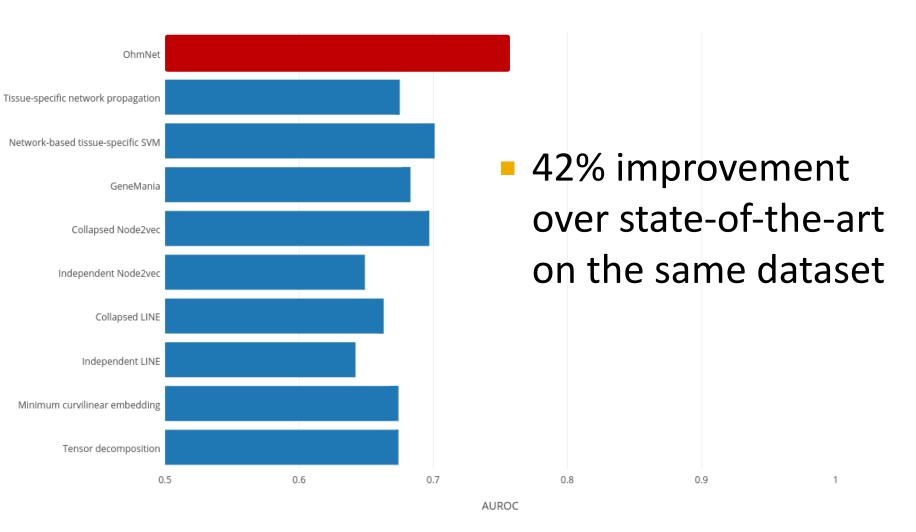
Experimental setup

- Cellular function prediction is a multi-label node classification task
- Every node (protein) is assigned one or more labels (cellular functions)
- Setup:
 - We apply OhmNet, which for every node in every layer learns a separate feature vector in an unsupervised way.
 - For every layer and every function we then train a separate onevs-all regularized linear classifier using the modified Huber loss
 - During the training phase, we observe only a certain fraction of proteins and all their cellular functions across the layers
 - The task is then to predict the tissue-specific functions for the remaining proteins

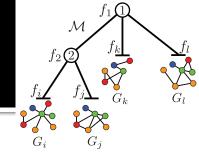
Protein Function Prediction



Protein Function Prediction



Transfer Learning



Transfer functions to unannotated tissues

 Task: Predict functions in target tissue without access to any annotation/label in that tissue

Target tissue	OhmNet	Tissue non- specific	Improvement
Placenta	0.758	0.684	11%
Spleen	0.779	0.712	10%
Liver	0.741	0.553	34%
Forebrain	0.755	0.632	20%
Blood plasma	0.703	0.540	40%
Smooth muscle	0.729	0.583	25 %
Average	0.746	0.617	21%

Reported are AUC values