Community Detection:
Overlapping Communities
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Overlapping Communities

Non-overlapping vs. overlapping communities
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[Palla et al., ‘05]

Overlaps of Social Circles

Ill

A node can belong to many social “circles”

Physicists

Department of
Biological Physics

Mathematicians

Biologists ‘Qoom" "zoony

Hobby

Scientific
Community
Family

11/30/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 4



What if communities overlap?

Stanford (Squag
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[Palla et al., ‘05]

Cligue Percolation Method (CPM)

Two nodes belong to the same community if they
can be connected through adjacent k-cliques:

k-clique:
Fully connected
graph on k nodes

Adjacent k-cliques: 3-clique Adjacent .
3-cliques  Non-adjacent

overlap in k-1 nodes 3-cliques
k-clique community

Set of nodes that can
be reached through a
sequence of adjacent
k-cliques Two overlapping 3-clique communities
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[Palla et al., ‘05]

Cligue Percolation Method (CPM)

Two nodes belong to the same community if
they can be connected through adjacent -
cliques:

S

Adjacent 4-cliques

A

Non-adjacent 4-cliques Communities for k=4

4-clique
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CPM: Steps

Clique Percolation Method:

Find maximal-cliques

Def: Clique is maximal if
no superset is a clique

Clique overlap super-graph:
Each clique is a super-node Cliques Communities

Connect two cliques if they ®
overlap in at least k-1 nodes

Communities:
Connected components of
the clique overlap matrix
How to set &?

Set k so that we get the “richest” (most widely
distributed cluster sizes) community structure
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CPM method: Example

Start with graph

Find maximal cliques
Create clique overlap
matrix A

Rows/Cols are max-
cliques, entry is number (1) Graph

of nodes in common k=4

Threshold the matrix at
Value k'1 Wi i]olol1]o

Ifa;; <k—1set0
Communities are the

connected components Wolojolofol

(3) Thresholded
of thg thresholded matrix at 3
matrix
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[Palla et al., ‘07]

Example: Phone-Call Network
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[Farkas et. al. 07]

Example: Website
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H

ow to Find Maximal Cliques?

No nice way, hard combinatorial problem
Maximal clique: Clique that can’t be extended

{a, b, c} is a clique but not maximal clique
{a, b, c,d} is maximal clique

Algorithm: Sketch

11/30/17

Start with a seed node
Expand the clique around the seed

Once the clique cannot be further
expanded we found the maximal clique

Note:
This method will generate the same clique multiple times

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 13



How to Find Maximal Cliques?

Start with a seed vertex a
Goal: Find the max clique Q that a belongs to

Observation:

If some x belongs to Q then it is a neighbor of a
Why? If a, x € Q but edge (a, x) does not exist, Q is not a clique!

Recursive algorithm: c@
Q ... current clique
R ... candidate vertices to expand the clique to
Example: Start with a and expand around it

O

R=

Steps of the recursive algorithm ["(u)...neighbor set of u

11/30/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 14



How to Find Maximal Cliques?

Start with a seed vertex a
Goal: Find the max clique Q that a belongs to

Observation:

If some x belongs to Q then it is a neighbor of a
Why? If a, x € Q but edge (a, x) does not exist, Q is not a clique!

Recursive algorithm: c@
Q ... current clique
R ... candidate vertices to expand the clique to
Example: Start with a and expand around it

Q= {a} {a,b} bktrack
cr(d)={}

R= {b,c,d} {b,c,d} ay I (c)={}
NI'(b)={c.d}
Steps of the recursive algorithm ['(u)...neighbor set of u
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How to Find Maximal Cliques?

11/30/17

Q ... current clique

R ... candidate vertices

Expand (R, Q)
while R # {}

Q
R

R

P

P

vertex 1n R

Q v {p}

R N 1'(p)

if Rp# {}: Expand(R@Qp)
else: output Q,

R - {p}

Jure

Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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How to Find Maximal Cliques?

Start: Expand(V, {})

Q ... current clique
R ... candidate vertices

Expand (R, Q)

11/30/17

while R # {)
p:
0, = Q U

vertex in R
{p}
R, = Rn I'(p)

if Rp = {}: Expand(Rp,Qp)
else: output Q,

R =R - {p}

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

R={a,...f}, Q={}
p = {b}
Q, = {b}
R, = {a,c,d}
Expand(R,, Q):
R ={a,c,d}, Q={b}
p ={a}
Q, = {b,a}
R, = {d}
Expand(R,, Q):
R = {d}, Q={b,a}
p ={d}
Q, = {b,a,d}
R, = {} : output {b,a,d}
p = {c}
Q, = {b,c}
R, = {d}
Expand(R,, Q):
R = {d}, Q={b,c}
p={d}
Q, = {b,c,d}
R, = {} : output {b,c1,7d}



How to Find Maximal Cliques?

How to prevent maximal cliques
from being generated multiple
times?

Only output cliques that are
lexicographically minimum :
{a,b,c} < {b,a,c}

Even better: Only expand to
the nodes higher in the
lexicographical order

11/30/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 18



How to Model Networks with
Communities?



Network and Communities

How should we think about large scale
organization of clusters in networks?

Finding: Community Structure
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Network and Communities

How should we think about large scale
organization of clusters in networks?

Finding: Core-periphery structure

Nested Core-Periphery

11/30/17



Network and Communities

How do we reconcile these two views?
(and still do community detection)

"4‘ LESa 22 =
2 e\
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Pt
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Community structure Core-periphery
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Community Score

How community-like is a set of nodes?
A good cluster S has S
Many edges internally
Few edges pointing outside
What’s a good metric: S’
Conductance
ss)HGDEEES, je S|
2.4,
seS

Small conductance corresponds to good clusters
Note: We are assummg S| < |V|/2 d. degree of node s

11/30/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanfo d edu




[WWW '08]

Network Community Profile Plot

(Note |S| < |V|/2)
Define:

Network community profile (NCP) plot

Plot the score of best community of size k

(k) = min | A(S)

A
k=5 k=7 k=10
e . %7\.}
log B(K) ° ) :

Community size, log k
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How to (Really) Compute NCP?

dblp-lars
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~
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—
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o . .
2 * Run the favorite clustering method(s)
D) .01
*&3 * Each dot represents a cluster
= * For each size k find “best” cluster (min ®(k))
@)
Spectral «
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Cluster size, log k
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[WWW '08]

NCP Plot: Meshes

Meshes, grids, dense random graphs:

YO L 1 s 10° T T TR
10° & [ ] N i
’, \ —
=, Random graph, 1/d=0 3 ot B
§ : " 'v’—,\’"’\;t."'m% : @\ : :
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k (number of nodes in the cluster) kK (number of nodes in the cluster)

California road network

d-dimensional meshes
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[WWW '08]

NCP plot: Network Science

Collaborations between scientists in networks
[Newman, 2005]

1 = | | IIIIII| [ | lIIIII| =
X = -
© B -
m B —
2 01 _
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: B —
S B —
S -
-g . E A T T 1 E
) - B C D T:

0.001 Lol L |111|1|C+E
1 10 100

Community size, log k
Dips in the conductance graph correspond to the
"good" clusters we can visually detect
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Natural Hypothesis

[Internet Mathematics ‘og]

Natural hypothesis about NCP:

NCP of real networks slopes

downward

Slope of the NCP corresponds
to the “dimensionality” of the

network

What about

large networks?

e Social nets

L L L L Y LA

¢ (conductance)

|II|1

R,
"y, Gube, 1/d=-33
W“’ "'.“"‘4;»,,

IIIIIIIXII'I

Clique, -1/d=0

1 IIIIHI\—

v,
"v.,j
“n,

Grid, -1/d~-.50
“Chain, -1/d=~-1.0

llll

| IHHIIl

0

10° 10’

Nodes

Edges

102 10° 10* 10° 10°

n (number of nodes in the cluster)

Description

LIVEJOURNAL | 4,843,953 | 42,845,684 | Blog friendships [5
EPINIONS 75,877 405,739 | Trust network [28]
CA-DBLP 317,080 1,049,866 | Co-authorship [5]
e Information (citation) networks

CIT-HEP-TH
AMAZONPROD

27,400 352,021
524,371 1,491,793

Arxiv hep-th [14
Amazon products [§]

e Web graphs

WEB-GOOGLE
WEeEB-wTl10G

855,802 | 4,
1,458,316 | 6,

Google web graph

TREC WT10G

e Bipartite affil

1ation (authors-to-papers) networks

ATp-DBLP

615,678 944,456

ATM-IMDB 2,076,978

5,847,603

DBLP [21]

Actors-to-movies

e Internet networks
ASSKITTER 1,719,037 | 12,814,089 | Autonom. sys.
3INUTELLA 62,561 147,878 | P2P network [29]
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[Internet Mathematics ‘og]

Large Networks: Very Different

Typical example: General Relativity collaborations
(n=4,158, m=13,422)

1 T TTTT T TTTT [ T TTTTT [T TTTTH

0.01

001 i R lltﬁﬁp Lol
1 10 100 1000 10000
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@ (conductance)

@ (conductance)

[Internet Mathematics ‘og]

More NCP Plots of Networks
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10° 10" 10* 10° 10* 10° 10°
k (number of nodes in the cluster)
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NCP: LiveJournal (n=5m, m=42m)

®(k), (score)
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Explanation: The Upward Part

As clusters grow the number of edges
inside grows slower that the number crossing

\ —_/  ,O=1/7=0.14

\ ®=2/10=0.2
- - e e - o CD8/20 0.4

, B 7491

- ar a»
7., fA\\( \ - - /‘/‘:" l \\ \
////m v ,J, i \\\
; D Each node has twice
as many children
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Explanation: Downward Part

Empirically we note that best clusters
(corresponding to green nodes “whiskers”) are
barely connected to the network \

NCP plot

—> Core-periphery structure

11/30/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



What If We Remove Good Clusters?

100|||||||||||||||||

H
Whiskers — s
w107 & =
- = =
g - -
&)
2 10% = =
- — =
2 - =
8 - .
s 107 = =
: = Original network -
I ; N
Nothing happens! Whiskers removed ———

— Nestedness of the
core-periphery structure

10°  10° 10 10> 10°
ber of nodes in the cluster)
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Suggested Network Structure

Denser and

denser core
of the

> Ny
network s

Core contains
Whlskers 60% nodes and
80% edges

X )

am¢  Whiskers are
responsible for

, \good communities

()

Nested Core-Periphery "‘

O (Jellyfish, octopus) C
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Part 2: Explanat

LA o/

AT

R

[
S A

How do we reconcile these two views?
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Ground-truth Communities

Basic question: nodes u, v share kK communities
What’s the edge probability?

Look at networks with ground-truth communities

0.8 . . . . . 0.25

> > 0.2 r

5 5

@ @

S 8 015}

S S

(<)) <)

2 S o4l

L Ay :

i S 005

. 1 1 1 1 1 0 1 1 1 1 1
1 2 3 4 5 6 7 1 2 3 4 5 6 7
k, Number of shared communities k, Number of shared communities
LiveJourna Amazon

social network roduct network
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Communities as Tiles!

Edge density in the overlaps is higher!

“The more different foci (communities) that two individuals share,

the move likely it is that they will be tied” -S. Feld, 1981

Communities as “tiles”

11/30/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 38



Communities as Tiles/Circles

The densest
part of the

graph

Communities as overlapping tiles

11/30/17 ttp://



Communities in Networks

What does this mean?

11/30/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



From Networks to Communities

o

’ L4 B ‘\
- W .

Present methods

How do we detect communities
if they overlap as tiles?

11/30/1



Community-Affiliation Graph Model (AGM

Nodes,V @ @ © © ’

Community Affiliation Network

Communities, C D4

Memberships, M

Generative model: How is a network
generated from community affiliations?
Model parameters:

Nodes V, Communities C, Memberships M
Each community ¢ has a single probability p.

11/30/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 42



AGM: Generative Process

Nodes,V @ @ © © ’

Community Affiliation Network

Given parameters (V, C, M, {p_})
Nodes in community ¢ connect to each other by
flipping a coin with probability p.
Nodes that belong to multiple communities have
multiple coin flips: Dense community overlaps

If they "miss" the first time, they get another chance through the next community"

Communities, C D4 Ps

Memberships, M

'p(u, ’U) =1- | | (1 — pc) Note: If two nodes u and v have no communities in
f common, then p(u,v)=0. We resolve this by having a
c€ My MM, “background” community that every node is a member of.

11/30/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 43



AGM: Dense Overlaps




AGM: Flexibility

AGM can express a

variety of community . B
structures: A B
Non-overlapping, /I\@ /I\]
Overlapping, Nested

B A B




Detecting Communities

Detecting communities with AGM:

Ml &= N2

Given a Graph, find the Model

1) Affiliation graph M
2) Number of communities C
3) Parameters p,

11/30/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



] [wsdm “13]
“Relaxing” AGM

“Relax” the AGM: Memberships have strengths

F, 4: The membership strength of node u
to community A (F, 4 = 0: no membership)
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BigCLAM Model .

Prob. of nodes linking is proportional to the
strengths of shared memberships:

P(u,v) =1—exp(—F, - FI)
Now, given a network, we estimate F

(F)= > log(l—exp(—F.F))) Z EF,FF

(uw,v)EE (w,v)EFE
Non-negative matrix factorization:

Update F,,. for node u while fixing the
memberships of all other nodes

Updating takes linear time in the degree of u

11/30/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



BigCLAM Model .

Apply block coordinate gradient ascent

— exXP udL
veN (u) ! v@N (u)

Step size: backtracking line search

Project F,, back to a non-negative vector
Pure gradient ascent is slow! However:

E Fl —_— E F Fu - E F
vEN (u) vEN (u)
By caching F,, the gradlent step takes linear time in the

degree of u
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Experimental Setup

11/30

/17

Pa . Ps B
AN/

Communities!

How well do inferred communities
correspond to ground-truth?

F1 score, Q-index, Mutual Information

We can rank algorithms based on their ability
to detect ground-truth

ure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



Experiments: Ground-truth

+ \

LCMA LCMA LCMA LCMA LCMA LCMA

Live Journal Friendster Orkut Youtube DBLP Amazon

BigClam improves: vehods

L — Link Clustering

C — Cligue Percolation

79% over Link clustering M — Mixed-Membership

Stochastic Block Model
48% over CPM A —AGM
Measures
15% Over MMSB [J Number of Communities
[ Normalized Mutual Information
(while being orders of magnitude faster) mri-scor
B Q-index
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Experiments: PPl Nets

Methods

L — Link Clustering
C = Clique Percolation

W

| = Infomap

M - Mixed-Membership
Stochastic Block Model
A - AGM

1 Measures

B Molecular Function

Composite Performance

@ Biological Process

0 8 Cellular Component

LCIMA LCIMA LCIMA LCIMA
PPI (Y2H) PPI (AP/MS) PPI (LC) PPI (All)

Protein-Protein interaction networks:
Gene Ontology based quality of detected
communities
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Communities:
Issues and Questions




Communities: Issues and Questions

Many different formalizations of clustering
objective functions

Objectives are NP-hard to optimize exactly

Methods can find clusters that are
systematically “biased”

How well do algorithms optimize objectives?
What clusters do different methods find?
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[WWW ‘og]

Many Different Objective Functions

Modularity: m-E(m)
Edges cut: ¢

:nodesinS
Conductance: ¢/(Zm+c) 2: edgesinS

Expansion: ¢/n c: edges pointing
Density: /-m/n? outside 5
CutRatio: ¢/n(N-n)

Normalized Cut: ¢/(2m+c) + c¢/2(M-m)+c

Flake-ODF: frac. of nodes with more than 7: edges
pointing outside S
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Many Classes of Algorithms

Many algorithms that implicitly or explicitly
optimize objectives and extract communities:

’

popular heuristics
multi-resolution heuristic [Karypis-Kumar ‘98]

11/30/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 56



NCP: Live Journal

100 T T i e e s = S o ) R
e oo | |
o 10 5 =
O = =
C = =
© B Spectral 7
O 2
8 107 F W =
= 7 m
e = +#  Metis —]
o = J =
O - -
- D
e 107 E ' =
-4 _1 11| LI 11| 1 11| 1 11| 1 |1| | 11—
10

10Y 10" 40 40° 40* 10> 10° 10’
n (number of nodes in the cluster)
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Properties of Clusters (1)

500 node communities from Spectral:
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Properties of Clusters (2)

Diameter of the cluster
1@@ L ¢ o T " " —y " - T " " |

Conductance of bounding cut

RMS avg pathlength in cluster

conductance of bounding cut

Disconnected Metis | N T S ST S

10 100 1000 10000 100000 le+06

External / Internal conductance

k (number of nodes in the cluster) o o - | | H}, f |
Metis gives sets with better ¢ 2 . ]
conductance P 1
: 2
o 1 1 Q
Spectral gives tighter and 5
more well-rounded sets Ve

10 100 1000 10000 100000 1e+06
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Multi-criterion Objectives

RN
o

10°

Normalized Cut

L‘L)\ E I LILLLLLL 1 LU 1 IIIIIIII“IIIMIIIIIIE
© B .
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) - -
= N ]
o i i
- _1 ‘

© 107 g . =
S : \ S
) n -
£ 02 L d il
- 10 = \\ =
S B v R \ .
& i v,y T
S -3 | | ; | | | |
o 10 OI L1 1111l 1 LY 1 1111l 2I L1 1111l 3I L1111l 4.I L1 111l

10 10 10 10 10
K (number of nodes in the cluster)
Conductance Internal Density =
Expansion * Cut Ratio .

11/30/17

Maximum ODF

Observations:

Conductance,
Expansion, Norm-
cut, Cut-ratio are
similar

Flake-ODF prefers
larger clusters
Density is bad

Cut-ratio has high
variance

Avg ODF
Flake ODF

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 60

v
¢



Single-criterion Objectives

10°
T IIIIIIll T IIIIIII| T IIIIIIll T IIIIIII| T T T TTTTT

., s
10t e =

° v \
10° |- LY o —
1072 /"& _
-4 +\w’
10 i +#+*+M+QW |
10_6 0 5|+ | |||||||1 | | |||||||2 | | |||||||3 | | |||||||4 | L L1111l 5
10 10 10 10 10 10

K (number of nodes in the cluster)

Modularity * | Modularity Ratio W | Volume

All measures are
monotonic

prefers large

clusters

lgnores small

clusters
'Edgescut o
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