
CS224W: Analysis of Networks
Jure Leskovec, Stanford University

http://cs224w.stanford.edu



2

Network Adjacency matrix

Nodes

N
od

es

11/30/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu



¡ Non-overlapping	vs.	overlapping		communities
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¡ A	node	can	belong	to	many	social	“circles”
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[Palla et al., ‘05]



5

High school Company

Stanford (Squash)
Stanford (Basketball)
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¡ Two	nodes	belong	to	the	same	community	if	they	
can	be	connected	through	adjacent	k-cliques:
§ k-clique:

§ Fully	connected	
graph	on	k nodes

§ Adjacent	k-cliques:
§ overlap	in	k-1 nodes

¡ k-clique	community
§ Set	of	nodes	that	can	
be	reached	through	a	
sequence	of	adjacent	
k-cliques
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3-clique Adjacent
3-cliques

[Palla et al., ‘05]

Non-adjacent
3-cliques

Two overlapping 3-clique communities



¡ Two	nodes	belong	to	the	same	community	if	
they	can	be	connected	through	adjacent	k-
cliques:
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4-clique

Adjacent 4-cliques

Communities for k=4

[Palla et al., ‘05]

Non-adjacent 4-cliques



¡ Clique	Percolation	Method:
§ Find	maximal-cliques	

§ Def:	Clique	is	maximal	if	
no	superset	is	a	clique

§ Clique	overlap	super-graph:
§ Each	clique	is	a	super-node
§ Connect	two	cliques	if	they	
overlap	in	at	least	k-1 nodes

§ Communities:
§ Connected	components	of	
the	clique	overlap	matrix

¡ How	to	set	k?
§ Set	k so	that	we	get	the	“richest”	(most	widely	
distributed	cluster	sizes)	community	structure

11/30/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 9

A

C
DB

A

C
DB

Cliques Communities

Set: k=3



11/30/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 10

(1) Graph (2) Clique overlap 
matrix

(3) Thresholded
matrix at 3

(4) Communities
(connected components)

¡ Start	with	graph
¡ Find	maximal	cliques
¡ Create	clique	overlap	
matrix	𝐴
§ Rows/Cols	are	max-
cliques,	entry	is	number	
of	nodes	in	common

¡ Threshold	the	matrix	at	
value	k-1
§ If 𝑎#$ < 𝑘 − 1 set	0

¡ Communities	are	the	
connected	components	
of	the	thresholded
matrix

Cliques

C
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Communities in a 
“tiny” part of a phone 
call network of 4 
million users 
[Palla et al., ‘07]

[Palla et al., ‘07]
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[Farkas et. al. 07]



¡ No	nice	way,	hard	combinatorial	problem
¡ Maximal	clique:	Clique	that	can’t	be	extended
§ {𝑎, 𝑏, 𝑐} is	a	clique	but	not	maximal	clique
§ {𝑎, 𝑏, 𝑐, 𝑑} is	maximal	clique

¡ Algorithm:	Sketch
§ Start	with	a	seed	node
§ Expand	the	clique	around	the	seed
§ Once	the	clique	cannot	be	further	
expanded	we	found	the	maximal	clique

§ Note:
§ This	method	will	generate	the	same	clique	multiple	times
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¡ Start	with	a	seed	vertex	𝒂
¡ Goal: Find	the	max	clique	𝑸 that	𝒂 belongs	to
§ Observation:

§ If	some	𝒙 belongs	to	𝑸 then	it	is	a	neighbor	of	𝒂
§ Why? If	𝒂, 𝒙 ∈ 𝑸 but	edge	(𝒂, 𝒙) does	not	exist,	𝑸 is	not	a	clique!

¡ Recursive	algorithm:
§ 𝑸 …	current	clique
§ 𝑹 …	candidate	vertices	to	expand	the	clique	to

¡ Example: Start	with	𝒂 and	expand	around	it
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Q= {a} {a,b} {a,b,c} bktrack {a,b,d}
R= {b,c,d} {b,c,d} {c,d}ÇG(c)={} {c}ÇG(d)={}

ÇG(b)={c,d}
Steps of the recursive algorithm G(u)…neighbor set of u



¡ Start	with	a	seed	vertex	𝒂
¡ Goal: Find	the	max	clique	𝑸 that	𝒂 belongs	to
§ Observation:

§ If	some	𝒙 belongs	to	𝑸 then	it	is	a	neighbor	of	𝒂
§ Why? If	𝒂, 𝒙 ∈ 𝑸 but	edge	(𝒂, 𝒙) does	not	exist,	𝑸 is	not	a	clique!

¡ Recursive	algorithm:
§ 𝑸 …	current	clique
§ 𝑹 …	candidate	vertices	to	expand	the	clique	to

¡ Example: Start	with	𝒂 and	expand	around	it
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Q= {a} {a,b} {a,b,c} bktrack {a,b,d}
R= {b,c,d} {b,c,d} {d}ÇG(c)={} {c}ÇG(d)={}

ÇG(b)={c,d}
Steps of the recursive algorithm G(u)…neighbor set of u



§ 𝑸 …	current	clique
§ 𝑹 …	candidate	vertices

¡ Expand(R,Q)
§ while R ≠ {}

§ p = vertex in R

§ Qp = Q È  {p} 
§ Rp = R Ç G(p)
§ if Rp ≠ {}: Expand(Rp,Qp)
else: output Qp

§ R = R – {p}
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§ 𝑸 …	current	clique
§ 𝑹 …	candidate	vertices

¡ Expand(R,Q)
§ while R ≠ {}

§ p = vertex in R

§ Qp = Q È  {p} 
§ Rp = R Ç G(p)
§ if Rp ≠ {}: Expand(Rp,Qp)
else: output Qp

§ R = R – {p}
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Start: Expand(V, {})
R={a,…f}, Q={}
p = {b}
Qp = {b}
Rp = {a,c,d}
Expand(Rp, Q):

R = {a,c,d}, Q={b}
p = {a}
Qp = {b,a}
Rp = {d}
Expand(Rp, Q):

R = {d}, Q={b,a}
p = {d}
Qp = {b,a,d}
Rp = {} : output {b,a,d}

p = {c}
Qp = {b,c}
Rp = {d}
Expand(Rp, Q):

R = {d}, Q={b,c}
p = {d}
Qp = {b,c,d}
Rp = {} : output {b,c,d}



¡ How	to	prevent	maximal	cliques	
from	being	generated	multiple	
times?
§ Only	output	cliques	that	are	
lexicographically	minimum
§ {𝒂, 𝒃, 𝒄} 	< 	 {𝒃, 𝒂, 𝒄}

§ Even	better: Only	expand	to	
the	nodes	higher	in	the	
lexicographical	order
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¡ How	should	we	think	about	large	scale	
organization	of	clusters	in	networks?
§ Finding: Community	Structure
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¡ How	should	we	think	about	large	scale	
organization	of	clusters	in	networks?
§ Finding: Core-periphery	structure
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Nested	Core-Periphery



¡ How	do	we	reconcile	these	two	views?
(and	still	do	community	detection)
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vs.

Community structure Core-periphery



¡ How	community-like	is	a	set	of	nodes?
¡ A	good	cluster	S has
§ Many	edges	internally
§ Few	edges	pointing	outside

¡ What’s	a	good	metric:	
Conductance

Small conductance corresponds	to	good	clusters
Note:We	are	assuming	|𝑆| 	< 	 |𝑉|/2,	ds	degree	of	node	s
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¡ Define:
Network	community	profile	(NCP)	plot
Plot	the	score	of	best community	of	size	k
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Community size, log k

log Φ(k)

k=5 k=7

[WWW ‘08]

k=10

(Note |S| < |V|/2)
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• Run the favorite clustering method(s)
• Each dot represents a cluster
• For each size 𝑘 find “best” cluster (min Φ(k))

Cluster size, log k
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¡ Meshes,	grids,	dense	random	graphs:
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d-dimensional meshes California road network

11/30/17

[WWW ‘08]



¡ Collaborations	between	scientists	in	networks	
[Newman,	2005]
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Community size, log k
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[WWW ‘08]

Dips in the conductance graph correspond to the 
"good" clusters we can visually detect



Natural	hypothesis	about	NCP:
¡ NCP	of	real	networks	slopes	
downward

¡ Slope of	the	NCP	corresponds	
to	the	“dimensionality“	of	the	
network
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What about 
large networks?

[Internet Mathematics ‘09]



Typical	example:	General	Relativity	collaborations
(n=4,158, m=13,422)
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[Internet Mathematics ‘09]
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[Internet Mathematics ‘09]

-- Rewired graph
-- Real graph
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Better and 
better clusters

Clusters get worse 
and worse

Best cluster has 
~100 nodes
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¡ As	clusters	grow	the	number	of	edges
inside	grows	slower that	the	number	crossing

32

Φ=2/10 = 0.2

Each node has twice 
as many children

Φ=1/7=0.14

Φ=8/20 = 0.4

Φ=64/92 = 0.69
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¡ Empirically	we	note	that	best	clusters	
(corresponding	to green	nodes	“whiskers”) are	
barely	connected	to	the	network

33

NCP plot

ÞCore-periphery structure
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Nothing happens!
 Þ Nestedness of the 

core-periphery structure
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Whiskers



Nested Core-Periphery 
(jellyfish, octopus)

Whiskers are 
responsible for 

good communities

Denser and 
denser core 

of the 
network

Core contains 
60% nodes and 

80% edges
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vs.

How	do	we	reconcile	these	two	views?
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¡ Basic	question:	nodes	u, v share	k communities
¡ What’s	the	edge	probability?
§ Look	at	networks	with	ground-truth	communities

37

LiveJournal
social network

Amazon
product network
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¡ Edge	density	in	the	overlaps	is	higher!

38

Communities as “tiles”

“The more different foci (communities) that two individuals share, 
the more likely it is that they will be tied” - S. Feld, 1981
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Communities as overlapping tiles

The densest 
part of the 

graph



40

What	does	this	mean?
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Required
How do we detect communities 

if they overlap as tiles?

Present methods
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¡ Generative	model:	How	is	a	network	
generated	from	community	affiliations?

¡ Model	parameters:
§ Nodes	V,	Communities	C,	Memberships	M
§ Each	community	c has	a	single	probability	pc

42

Communities, C

Nodes, V
Community Affiliation Network

Model
pA pB

Memberships, M
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¡ Given	parameters	(V,	C,	M,	{pc})
§ Nodes	in	community	c connect	to	each	other	by	
flipping	a	coin	with	probability	pc

§ Nodes	that	belong	to	multiple	communities	have	
multiple	coin	flips:	Dense	community	overlaps
§ If	they	"miss"	the	first	time,	they	get	another	chance	through	the	next	community"

43

Communities, C

Nodes, V

Community Affiliation Network

Model
pA pB

Memberships, M

N
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Note: If two nodes u and v have no communities in 
common, then p(u,v)=0. We resolve this by having a 
“background” community that every node is a member of.
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Model

Network
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¡ AGM	can	express	a	
variety	of	community	
structures:
Non-overlapping,	
Overlapping,	Nested

45

[icdm ‘12]
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¡ Detecting	communities	with	AGM:

46

C

A

B

D E

H

F

G

Given	a	Graph,	find	the	Model
1) Affiliation	graph	M
2) Number	of	communities	C
3) Parameters	pc
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¡ “Relax”	the	AGM:	Memberships	have	strengths

§ 𝑭𝒖𝑨: The	membership	strength	of	node	𝒖
to	community	𝑨 (𝑭𝒖𝑨 = 𝟎:	no	membership)	

47

𝑭𝒖𝑨 𝑭𝒘𝑩

[wsdm ‘13]
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¡ Prob.	of	nodes	linking	is	proportional	to	the	
strengths	of	shared	memberships:

𝑷 𝒖, 𝒗 = 𝟏 − 𝐞𝐱𝐩	(−𝑭𝒖 ⋅ 𝑭𝒗𝑻)
¡ Now,	given	a	network,	we	estimate	𝑭

48

¡ Non-negative	matrix	factorization:
§ Update	𝑭𝒖𝑪 for	node	𝒖 while	fixing	the	
memberships	of	all	other	nodes	

§ Updating	takes	linear	time	in	the	degree	of	𝒖

[wsdm ‘13]
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¡ Apply	block	coordinate	gradient	ascent	

§ Step	size:	backtracking	line	search
§ Project	𝑭𝒖 back	to	a	non-negative	vector

¡ Pure	gradient	ascent	is	slow! However:

¡ By	caching	𝑭𝒗 the	gradient	step	takes	linear	time in	the	
degree	of	𝒖

49

[wsdm ‘13]
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¡ How	well	do	inferred	communities	
correspond	to	ground-truth?
§ F1	score,	Ω-index,	Mutual	Information

¡ We	can	rank	algorithms	based	on	their	ability	
to	detect	ground-truth

50
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¡ BigClam improves:
§ 79%		over	Link	clustering
§ 48%	over	CPM
§ 15%	over	MMSB
(while	being	orders	of	magnitude	faster)
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¡ Protein-Protein	interaction	networks:
Gene	Ontology	based	quality	of	detected	
communities
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¡ Some	issues	with	community	detection:
§ Many	different	formalizations	of	clustering	
objective	functions	

§ Objectives	are	NP-hard	to	optimize	exactly
§ Methods	can	find	clusters	that	are	
systematically	“biased”

¡ Questions:
§ How	well	do	algorithms	optimize	objectives?
§ What	clusters	do	different	methods	find?
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¡ Single-criterion:
§ Modularity:	m-E(m)
§ Edges	cut:	c

¡ Multi-criterion:
§ Conductance:	c/(2m+c)
§ Expansion:	c/n
§ Density:	1-m/n2

§ CutRatio:	c/n(N-n)
§ Normalized	Cut:	c/(2m+c) + c/2(M-m)+c
§ Flake-ODF:	frac. of nodes with more than ½ edges 

pointing outside S
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S

n: nodes in S
m: edges in S
c: edges pointing   

outside S

[WWW ‘09]



Many	algorithms	that	implicitly	or	explicitly	
optimize	objectives	and	extract	communities:
¡ Heuristics:
§ Girvan-Newman, Modularity	optimization:
popular	heuristics

§ Metis: multi-resolution	heuristic	[Karypis-Kumar	‘98]

¡ Theoretical	approximation	algorithms:
§ Spectral	partitioning
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[WWW ‘09]



LiveJournal

Spectral

Metis
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[WWW ‘09]



500	node	communities	from Spectral:	

500	node	communities	from	Metis:	
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[WWW ‘09]



¡ Metis	gives	sets	with	better	
conductance

¡ Spectral	gives	tighter	and	
more	well-rounded	sets

59

Conductance of  bounding cut

Spectral

Disconnected Metis

Connected Metis
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[WWW ‘09]

Diameter of the cluster

External / Internal conductance

Low
er is good
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¡ All	qualitatively	
similar

¡ Observations:
§ Conductance,	
Expansion,	Norm-
cut,	Cut-ratio	are	
similar

§ Flake-ODF prefers	
larger	clusters

§ Density is	bad
§ Cut-ratio has	high	
variance
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[WWW ‘09]
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Observations:
¡ All	measures	are	
monotonic

¡ Modularity	
§ prefers	large	
clusters

§ Ignores	small	
clusters
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