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Gnp ?Model:



¡ Preferential	attachment:	
[de	Solla Price	‘65,	Albert-Barabasi ’99,	Mitzenmacher ‘03]

§ Nodes	arrive	in	order	1,2,…,n
§ At	step	j,	let	di be	the	degree	of	node	i < j
§ A	new	node	j arrives	and	creates	m out-links
§ Prob.	of	j linking	to	a	previous	node	i is	
proportional	to	degree	di of	node	i
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We	will	analyze	the	following	simple	model:
¡ Nodes	arrive	in	order	1,2,3, … , 𝑛
¡ When	node	𝒋 is	created	it	makes	a	
single	out-link to	an	earlier	node	𝒊 chosen:
§ 1)With	prob.	𝒑,	𝒋 links	to	𝒊 chosen	uniformly	at	
random (from	among	all	earlier	nodes)

§ 2)With	prob.	𝟏 − 𝒑,	node	𝒋 chooses	𝒊 uniformly	at	
random	&	links	to	a	random	node	l that i points	to
§ This	is	same	as	saying:	With	prob.	𝟏 − 𝒑,	node	𝒋 links	to	
node	𝒍 with	prob.	proportional	to	𝒅𝒍 (the	in-degree	of	𝒍)

§ Our	graph	is	directed: Every	node	has	out-degree	1
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[Mitzenmacher, ‘03]

Node j



¡ Claim: The	described	model	generates	
networks	where	the	fraction	of	nodes	with	
in-degree	k scales	as:
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¡ Consider	deterministic	and	continuous	
approximation to	the	degree	of	node	𝒊 as	a	
function	of	time	𝒕
§ 𝒕 is	the	number	of	nodes	that	have	arrived	so	far
§ In-Degree 𝒅𝒊(𝒕) of	node	𝒊 (𝑖 = 1,2, … , 𝑛)	is	a	
continuous	quantity and	it	grows	
deterministically as	a	function	of	time	𝒕

¡ Plan: Analyze	𝒅𝒊(𝒕) – continuous	in-degree
of	node	𝒊 at	time	𝒕		(𝒕 > 𝒊)
§ Note:	Node	𝒊 arrives	to	the	graph	at	time	𝒊
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¡ Initial	condition:	
§ 𝒅𝒊(𝒕) = 𝟎,	when 𝒕 = 𝒊 (node	i just	arrived)

¡ Expected	change of	𝒅𝒊(𝒕) over	time:
§ Node	𝒊 gains	an	in-link	at	step	𝒕 + 𝟏 only	if	a	link	
from	a	newly	created	node	𝒕 + 𝟏 points	to	it

§ What’s	the	probability	of	this	event?
§ With	prob.	𝒑 node	𝒕 + 𝟏 links	randomly:	

§ Links	to	our	node	𝒊 with	prob.	𝟏/𝒕
§ With	prob.	𝟏 − 𝒑 node	𝒕 + 𝟏 links	preferentially:

§ Links	to	our	node	𝒊 with	prob.	𝒅𝒊(𝒕)/𝒕

§ Prob.	node	𝒕 + 𝟏 links	to	𝒊 is:	𝒑 𝟏
𝒕
+ 𝟏 − 𝒑 𝒅𝒊(𝒕)

𝒕
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Node i

Note: each node creates exactly 1 edge. So after t nodes/steps there are t edges in total.



¡ At	𝒕 = 𝟒 node	𝒊 = 𝟒 comes.	It	has	out-degree	of	
1	to	deterministically	share	with	other	nodes:

¡

¡ 𝒅𝒊 𝒕 − 𝒅𝒊 𝒕 − 𝟏 = 9:;(<)
9<

= 𝐩 𝟏
𝒕
+ 𝟏 − 𝒑 𝒅𝒊(𝒕)

𝒕
¡ How	does	𝒅𝒊(𝒕) evolve	as	𝒕 → ∞?
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Node i di(t) di(t+1)
0 0 =0 + 𝑝 B

C
+ 1 − 𝑝 D

C

1 2 =2 + 𝑝 B
C
+ 1 − 𝑝 E

C

2 0 =0 + 𝑝 B
C
+ 1 − 𝑝 B

C

3 1 =1 + 𝑝 B
C
+ 1 − 𝑝 B

C

4 / 0

0
1

2 3

4



¡ Expected	change	of	𝒅𝒊 𝒕 :

§ 𝒅𝒊(𝒕 + 𝟏) − 𝒅𝒊(𝒕) = 𝒑 𝟏
𝒕
+ 𝟏 − 𝒑 𝒅𝒊(𝒕)

𝒕

§
9:;(<)
9<

= 𝑝 B
<
+ 1 − 𝑝 :;(<)

<
= FGH:;(<)

<

§
B

FGH:;(<)
d𝑑K(𝑡) =

B
<
d𝑡

§ ∫ B
FGH:;(<)

d𝑑K(𝑡)
�
� = ∫ B< d𝑡

�
�

§
B
H
ln 𝑝 + 𝑞𝑑K	 𝑡 = ln 𝑡 + 𝑐

§ 𝑝 + 𝑞𝑑K 𝑡 = 𝑒HT 	𝑡H		⇒	𝒅𝒊 𝒕 = 𝟏
𝒒
(𝑨𝒕)𝒒 − 𝒑
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𝑞 = (1 − 𝑝)

integrate

Exponentiate
and let 𝐴 = 𝑒𝑐

Divide by 
𝑝 + 𝑞	𝑑K(𝑡)

A=?



What	is	the	value	of	constant	A?
¡ We	know: 	𝑑K 𝑖 = 0

¡ So:	𝑑K 𝑖 = B
H
(𝐴𝑖)H − 𝑝 = 0

¡ ⇒𝑨 = 𝒑
𝒊𝒒

¡ And	so	⇒	𝒅𝒊 𝒕 = 𝒑
𝒒

𝒕
𝒊

𝒒
− 𝟏
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	𝒅𝒊 𝒕 =
𝟏
𝒒
𝑨𝒕𝒒 − 𝒑

Observation: Old nodes
(small 𝑖 values) have
higher in-degrees 𝑑K(𝑡)



¡ What	is	𝑭(𝒌),	the	fraction	of	nodes	that	has	
degree	less	than 𝒌 at	time	𝒕?
§ How	many	nodes	have	degree	<	𝒌?

§ 𝑑K 𝑡 = 𝒑
𝒒

𝒕
𝒊

𝒒
− 𝟏 < 𝒌

§ Solve	for	𝒊 and	obtain:	 𝒊 > 𝒕 𝒒
𝒑
𝒌 + 𝟏

\𝟏𝒒

¡ There	are	𝒕 nodes	total	at	time	𝒕 so	the	
fraction	𝑭(𝒌) is:
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¡ What	is	the	fraction	of	nodes	with	
degree	exactly	𝒌?
§ Take	derivative	of	𝑭(𝒌):

§ 𝑭(𝒌) is	CDF,	so	𝑭’(𝒌) is	the	PDF!
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¡ Preferential	attachment	gives	
power-law	degrees!

¡ Intuitively	reasonable	process
¡ Can	tune	model	parameter	p to	get	the	
observed	exponent
§ On	the	web,	P[node has degree d] ~ d-2.1

§ 2.1 = 1+1/(1-p) à p ~ 0.1
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¡ Preferential	attachment	is	not	so	good	at	
predicting	network	structure
§ Age-degree	correlation

§ Solution: Node	fitness	(virtual	degree)

§ Links	among	high	degree	nodes:
§ On	the	web	nodes	sometimes	avoid	linking	to	each	other

¡ Further	questions:
§ What	is	a	reasonable	model	for	how	people	
sample	network	nodes	and	link	to	them?
§ Short	random	walks
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¡ Copying	mechanism (directed	network)
§ Select	a	node	and	an	edge	of	this	node
§ Attach	to	the	endpoint	of	this	edge

¡ Walking	on	a	network (directed	network)
§ The	new	node	connects	to	a	node,	then	to	every	first,	
second,	…	neighbor	of	this	node

¡ Attaching	to	edges
§ Select	an	edge	and	attach	to	both	endpoints	of	this	edge

¡ Node	duplication
§ Duplicate	a	node	with	all	its	edges
§ Randomly	prune	edges	of	new	node
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¡ Two	changes	from	the	Gnp
§ The	network	grows
§ Preferential	attachment

¡ Do	we	need	both? Yes!
§ Add	growth	to	Gnp (assume	𝒑 = 𝟏/𝒏):

§ 𝑿𝒋 = degree	of	node	𝒋 at	the	end	
§ 𝑿𝒋(𝒖) = 	𝟏 if	𝒖 links	to	𝒋,	else	0
§ 𝑿𝒋 = 𝑿𝒋(𝒋 + 𝟏) + 𝑿𝒋(𝒋 + 𝟐) +⋯+ 𝑿𝒋(𝒏)
§ 𝑬[𝑿𝒋(𝒖)] 	= 	𝑷[𝒖	𝒍𝒊𝒏𝒌𝒔	𝒕𝒐	𝒋] = 	𝟏/(𝒖 − 𝟏)

§ 𝑬 𝑿𝒋 = ∑ 𝟏
𝒖\𝟏

𝒏
𝒋G𝟏 	= 𝟏

𝒋
	+ 𝟏

𝒋G𝟏
+ ⋯+ 𝟏

𝒏\𝟏
	= 	𝑯𝒏\𝟏	–	𝑯𝒋

§ 𝑬 𝑿𝒋 ≈ 	𝒍𝒐𝒈	(𝒏 − 𝟏)	– 	𝒍𝒐𝒈	(𝒋) 	= 	𝒍𝒐𝒈	((𝒏 − 𝟏)/𝒋)
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Size of the biggest hub is of order O(N). Most nodes can 
be connected within two steps, thus the average path 
length will be independent of the network size.

The average path length increases slower than 
logarithmically. In Gnp all nodes have comparable degree, 
thus most paths will have comparable length. In a scale-
free network vast majority of the paths go through the few 
high degree hubs, reducing the distances between nodes. 

Some models produce 𝛼 = 3. This was first derived by 
Bollobas et al. for the network diameter in the context of  a 
dynamical model, but it holds for the average path length 
as well.

The second moment of the distribution is finite, thus in 
many ways the network behaves as a random network. 
Hence the average path length follows the result that we 
derived for the random network model earlier.Degree

exponent
Avg. path

length

Ultra
small
world

Small
world
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𝛼 = 1
Second moment 𝑘E diverges 𝑘E 	finite

Average 𝑘 diverges Average 𝑘 finite

Ultra small world behavior Small world

Behaves like a 
random network

The scale-free behavior is 
relevant

Regime full of anomalies…

web web
internet

actor

collaborationmetabolic

citation

𝛼 = 2 𝛼 = 3
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¡ Preferential	attachment	is	a	model	
of	a	growing	network

¡ Can	we	find	a	more	realistic	model?	
¡ What	governs	network		growth	&	evolution?
§ P1)	Node	arrival	process:	
§ When	nodes	enter	the	network

§ P2) Edge	initiation	process:	
§ Each	node	decides	when	to	initiate	an	edge

§ P3)	Edge	destination	process:	
§ The	node	determines	destination	of	the	edge

[Leskovec,	Backstrom,	Kumar,	Tomkins,	2008]
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¡ 4	online	social	networks	with	
exact	edge	arrival	sequence
§ For	every	edge	(u,v) we	know	exact	
time of	the	creation	tuv

¡ Directly	observe	mechanisms	leading	
to	global	network	properties
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(F)
(D)
(A)
(L)

and so on for 
millions…

[Leskovec et al., KDD ’08]
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(F) (D)

(A) (L)

Flickr: 
Exponential

Delicious: 
Linear

Answers: 
Sub-linear

LinkedIn: 
Quadratic



¡ How	long	do	nodes	live?
§ Node	life-time	is	the	time	between	the	1st
and	the	last	edge	of	a	node

¡ When	do	nodes	“wake	up”	to	create	links?
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time1st edge
of node i

Last edge
of node i

Lifetime of a node

time1st edge
of node i

Last edge
of node i

Times when node 
i creates edges



¡ Lifetime	a:	
Time	between	
node’s	first	
and	last	edge

LinkedIn

Node lifetime is exponentially distributed: 
𝑝r 𝑎 = 𝜆𝑒\uv
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¡ How	do	nodes	“wake	up”	to	create	edges?
§ Edge	gap	𝜹𝒅 𝒊 :	time	between	𝒅th and	𝒅 + 𝟏st

edge	of	node 𝒊:
§ Let	𝒕𝒅 𝒊 be	the	creation	time	of	𝒅-th edge	of	node	𝒊
§ 𝜹𝒅 𝒊 = 𝒕𝒅G𝟏 𝒊 − 𝒕𝒅 𝒊

§ 𝜹𝒅 is	a	distribution	(histogram)	of	𝜹𝒅 𝒊 over	all	nodes	𝒊
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time1st edge
of node i

Last edge
of node i

𝜹𝟏 𝒊 𝜹𝟐 𝒊 𝜹𝟑 𝒊

Node i𝜹𝟏 𝒊
Node j𝜹𝟏 𝒋
Node k𝜹𝟏 𝒌



𝑝y 𝛿B ∝ 𝛿B\|𝑒\}~�

Edge	gap	𝜹𝒅:	inter-
arrival	time	
between	𝒅th and	
𝒅 + 𝟏st edge
is	distributed	by	
a	power-law	
with	exponential	
cut-off

LinkedIn

For every d we 
make a separate 

histogram

11/1/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Network,	http://cs224w.stanford.edu 26

Edge gap, 𝛿B
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¡ How do	𝜶 and	𝜷 change	as	a	function	of	𝒅?
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To each plot of 𝜹𝒅 fit: 

𝜶 is constant!

𝜷 linearly
increases!

𝜹(𝟑) 𝜹(𝟒) 𝜹(𝟓)

𝑝y 𝛿: ∝ 𝛿:
\|�𝑒\}�~�



11/1/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Network,	http://cs224w.stanford.edu 28

¡ 𝜶 const.,	𝜷 linear	in	𝒅.	What	does	this	mean?	
¡ Gaps	get	smaller	with	𝒅!

Degree
𝒅 = 𝟏

𝒅 = 𝟑 𝒅 = 𝟐

Log		𝜹𝒅

Lo
g 

 𝒑
𝒈
(𝜹

𝒅
)

ad -µ d

𝑝y 𝛿: ∝ 𝛿:
\|�𝑒\}�~�



¡ Source	node	i wakes	up	and	creates	an	edge
¡ How	does	i select	a	target	node	j?
§ What	is	the	degree	of	the	target	j?

§ Does	preferential	attachment	really	hold?

§ How	many	hops	away	is	the	target	j?
§ Are	edges	attaching	locally?
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¡ Are	edges	more	likely	to	connect	to	higher	
degree	nodes?	YES!
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tkkpe µ)(
Gnp

PA

Flickr

Network τ

Gnp 0

PA 1

Flickr 1

Delicious 1

Answers 0.9

LinkedIn 0.6



u
w

v

¡ Just	before	the	edge	(u,w) is	placed	how	
many	hops	are	between	u and	w?
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Network % Δ

Flickr 66%

Delicious 28%

Answers 23%

LinkedIn 50%

Fraction of triad 
closing edges

Real edges are local!
Most of them close 

triangles!

Gnp
PA

Flickr

[Leskovec et al., KDD ’08]



¡ Focus	only	on	triad-closing	edges
¡ New	triad-closing	edge	(u,w) appears	next	
¡ 2	step	walk	model:
§ u	is	about	to	create	an	edge
1. u choses	neighbor	v
2. v choses	neighbor	w

and	u connects		to w
¡ One	can	use	different	strategies	for	choosing	v
and	w:	Random-Random	works	well.	Why?
¡ More	common	friends	(more	paths)	helps
¡ High-degree	nodes	are	more	likely	to	be	hit

11/1/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Network,	http://cs224w.stanford.edu 32

u
w

v

v’



¡ Improvement	in	log-likelihood	over	baseline:
§ Baseline: Pick	a	random	node	2	hops	away
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Strategy to select v (1st node)

Se
le

ct
  w

(2
nd

no
de

)

Strategies to pick	a	neighbor:
§ random: uniformly	at	random
§ deg:	proportional	to	its	degree
§ com:	prop.	to	the	number	of	common	friends
§ last:	prop.	to	time	since	last	activity
§ comlast:	prop.	to	com*last

u
w

v

Extra!



¡ The	model	of	network	evolution

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Network,	http://cs224w.stanford.edu

Process Model

P1) Node arrival • Node arrival function is given

P2) Edge initiation
• Node lifetime is exponential
• Edge gaps get smaller as the 

degree increases
P3) Edge 
destination

Pick edge destination using 
random-random

11/1/17 34

[Leskovec et al., KDD ’08]



¡ Theorem: Exponential	node	lifetimes	and	
power-law	with	exponential	cutoff	edge	gaps	
lead	to	power-law	degree	distributions

¡ Comments:
§ The	proof	is	based	on	a	combination	of	
exponentials

§ Interesting	as	temporal	behavior	predicts	a	
structural	network	property
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[Leskovec et al., KDD ’08]



¡ Given	the	model	one	can	take	an	existing	
network	and	continue	its	evolution

¡ Compare	true	and	predicted (based	on	the	
theorem)	degree	exponent:	
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degree exponent





¡ How	do	networks	evolve	at	the	macro	level?
§ What	are	global	phenomena	of	network	growth?

¡ Questions:
§ What	is	the	relation	between	the	number	of	nodes	
n(t) and	number	of	edges	e(t) over	time	t?

§ How	does	diameter	change	as	the	network	grows?
§ How	does	degree	distribution	evolve	as	the	
network	grows?
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¡ 𝑵(𝒕) …	nodes	at	time	𝒕
¡ 𝑬(𝒕) …	edges	at	time 𝒕
¡ Suppose	that

𝑵 𝒕 + 𝟏 = 	𝟐 ⋅ 	𝑵(𝒕)
¡ Q: what	is:

𝑬 𝒕 + 𝟏 =	? Is	it 𝟐 ⋅ 𝑬(𝒕)?
¡ A:	More	than	doubled!
§ But	obeying	the	Densification	Power	Law
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¡ Networks	are	denser over	time	
¡ Densification	Power	Law:

a …	densification	exponent	(1	≤	a ≤	2)

¡ What	is	the	relation	between	
the	number	of	nodes	and	the	
edges	over	time?

¡ First	guess:	constant	average	
degree	over	time

Internet

Citations

a=1.2

a=1.6

N(t)

E(
t)

N(t)

E(
t)
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¡ Densification	Power	Law	
§ the	number	of	edges	grows	faster	than	the	
number	of	nodes	– average	degree	is	increasing

a …	densification	exponent:	1	≤ a ≤ 2:
§ a=1: linear	growth – constant	out-degree	
(traditionally	assumed)

§ a=2: quadratic	growth – fully	connected	graph
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or
equivalently



¡ Prior	models	and	intuition	say	
that	the	network	diameter	slowly	
grows (like	log	N)

time

di
am

et
er

di
am

et
er

size of the graph

Internet

Citations
¡ Diameter	shrinks	over	time

§ As	the	network	grows	the	
distances	between	the	nodes	
slowly	decrease
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How do we compute diameter in practice?
-- Long paths: Take 90th-percentile or average path length (not the maximum)
-- Disconnected components: Take only largest component or average only over connected pairs of nodes
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di
am

et
er

size of the graph

Erdos-Renyi
random graph

Densification 
exponent a =1.3

Densifying random	graph	has	increasing	diameter	
Þ There is more to shrinking diameter than 

just densification!

Is	shrinking	
diameter	just	a	
consequence	of	
densification?
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Is	it	the	degree	sequence?
Compare	diameter	of	a:
§ Real	network	(red)
§ Random	network	with	
the	same	degree	
distribution	(blue)
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Citations

Densification	+	degree	sequence	
gives	shrinking	diameter



¡ How	does	degree	distribution	evolve	to	allow	
for	densification?

¡ Option	1) Degree	exponent	𝜸𝒕 is	constant:
§ Fact	1: If	𝜸𝒕 = 𝜸 ∈ [𝟏, 𝟐],	then: 𝒂	 = 	𝟐/𝜸
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Email network

45

A consequence of what 
we learned in the Power 
law lecture: 
■ Power-laws with 
exponents <2 have infinite 
expectations.
■ So, by maintaining 
constant degree exponent 𝛼
the average degree grows.



¡ How	does	degree	distribution	evolve	to	allow	
for	densification?

¡ Option	2) 𝜸𝒕 evolves	with	graph	size	𝒏:

§ Fact	2:	If	𝜸𝒕 =
𝟒𝒏𝒕𝒙�𝟏\𝟏
𝟐𝒏𝒕𝒙�𝟏\𝟏

,	then:	𝒂 = 𝒙
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Citation network
Remember, the 
expected degree in a 
power law is: 

𝑬 𝑿 =
𝜸𝒕 − 𝟏
𝜸𝒕 − 𝟐

𝒙𝒎
So 𝜸𝒕 has to decay as
a function of graph size 
𝒏𝒕 for the avg. degree 
to go up.

Notice: 𝜸< → 2
as 𝑛< → ∞



¡ Want	to	model	graphs	that	densify	and	have	
shrinking	diameters

¡ Intuition:
§ How	do	we	meet	friends	at	a	party?
§ How	do	we	identify	references	when	writing	
papers?
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¡ The	Forest	Fire	model	has	2	parameters:	
§ p …	forward	burning	probability
§ r …	backward	burning	probability

¡ The	model:	Directed	Graph
§ Each	turn	a	new	node	v arrives
§ Uniformly	at	random	chooses	an		“ambassador”	w
§ Flip	2	geometric	coins	(based	on	p and	r)	to	
determine	the	number	of	in- and	out-links of	w to	
follow

§ “Fire”	spreads	recursively	until	it	dies
§ New	node	v links	to	all	burned	nodes
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Geometric distribution:



¡ Forest	Fire	generates	graphs	that	densify
and	have	shrinking	diameter
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densification diameter

1.32

N(t)
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¡ Forest	Fire	also	generates	graphs	with	
power-law	degree	distribution
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in-degree out-degree

log count vs. log in-degree log count vs. log out-degree
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¡ Fix	backward	
probability	r and	
vary	forward	
burning	prob.	p

¡ Notice	a	sharp	
transition	
between	sparse	
and	clique-like	
graphs

¡ The	“sweet	spot”	
is	very	narrow

Sparse 
graph

Clique-like
graph

Increasing
diameter

Decreasing 
diameter

Constant
diameter
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