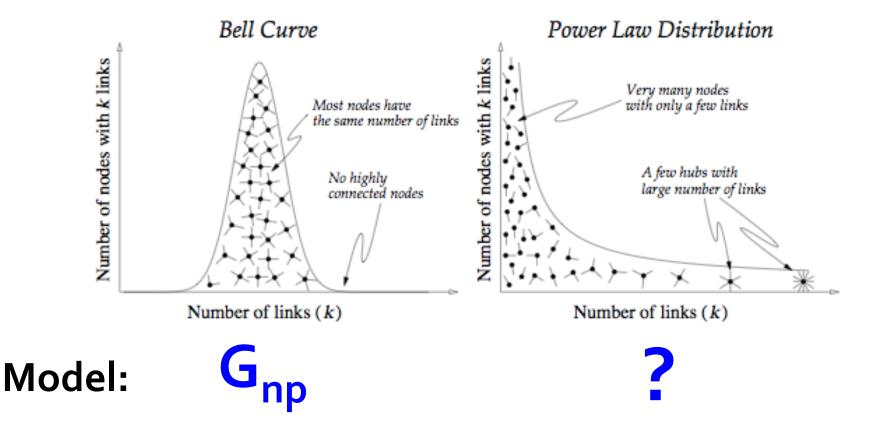
Preferential Attachment and Network Evolution

CS224W: Analysis of Networks
Jure Leskovec, Stanford University
http://cs224w.stanford.edu

Exponential vs. Power-Law Tails



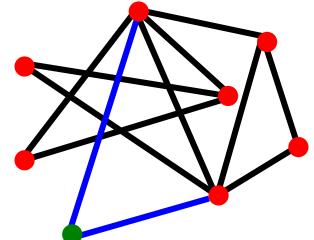
Model: Preferential attachment

Preferential attachment:

[de Solla Price '65, Albert-Barabasi '99, Mitzenmacher '03]

- Nodes arrive in order 1,2,...,n
- At step j, let d_i be the degree of node i < j
- A new node j arrives and creates m out-links
- Prob. of j linking to a previous node i is proportional to degree d_i of node i

$$P(j \to i) = \frac{d_i}{\sum_k d_k}$$



The Exact Model

We will analyze the following simple model:

- Nodes arrive in order 1,2,3,...,n
- When node j is created it makes a single out-link to an earlier node i chosen:
 - 1) With prob. p, j links to i chosen uniformly at random (from among all earlier nodes)
 - **2)** With prob. 1 p, node j chooses i uniformly at random & links to a random node l that i points to
 - This is same as saying: With prob. 1 p, node j links to node l with prob. proportional to d_l (the in-degree of l)
 - Our graph is directed: Every node has out-degree 1

The Model Gives Power-Laws

Claim: The described model generates networks where the fraction of nodes with in-degree k scales as:

$$P(d_i = k) \propto k^{-(1 + \frac{1}{q})}$$

where q=1-p

So we get power-law degree distribution with exponent:

$$\alpha = 1 + \frac{1}{1 - p}$$

Continuous Approximation

- Consider deterministic and continuous approximation to the degree of node i as a function of time t
 - t is the number of nodes that have arrived so far
 - In-Degree d_i(t) of node i (i = 1,2,...,n) is a continuous quantity and it grows deterministically as a function of time t
- Plan: Analyze $d_i(t)$ continuous in-degree of node i at time t (t > i)
 - Note: Node i arrives to the graph at time i

Continuous Degree: What We Know

Initial condition:

- $ullet d_i(t) = 0$, when t = i (node i just arrived)
- **Expected** change of $d_i(t)$ over time:
 - Node i gains an in-link at step t + 1 only if a link from a newly created node t + 1 points to it
 - What's the probability of this event?
 - With prob. p node t + 1 links randomly:
 - Links to our node i with prob. 1/t
 - With prob. 1 p node t + 1 links preferentially:
 - lacksquare Links to our node i with prob. $d_i(t)/t$
 - Prob. node t+1 links to i is: $p\frac{1}{t}+(1-p)\frac{d_i(t)}{t}$

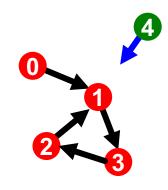
Note: each node creates exactly 1 edge. So after *t* nodes/steps there are *t* edges in total.

Node i

Continuous Degree

• At t = 4 node i = 4 comes. It has out-degree of 1 to deterministically share with other nodes:

Node i	$d_i(t)$	d _i (t+1)
0	0	$=0+p\frac{1}{4}+(1-p)\frac{0}{4}$
1	2	$=2+p\frac{1}{4}+(1-p)\frac{2}{4}$
2	0	$=0+p\frac{1}{4}+(1-p)\frac{1}{4}$
3	1	$=1+p\frac{1}{4}+(1-p)\frac{1}{4}$
4	/	0



$$d_i(t) - d_i(t-1) = \frac{dd_i(t)}{dt} = p \frac{1}{t} + (1-p) \frac{d_i(t)}{t}$$

■ How does $d_i(t)$ evolve as $t \to \infty$?

What is the rate of growth of d_i ?

• Expected change of $d_i(t)$:

$$\underline{d_i(t+1) - d_i(t)} = p \frac{1}{t} + (1-p) \frac{d_i(t)}{t}$$

$$\frac{\mathrm{d}d_{i}(t)}{\mathrm{d}t} = p \frac{1}{t} + (1 - p) \frac{d_{i}(t)}{t} = \frac{p + qd_{i}(t)}{t}$$

$$\frac{1}{p + qd_i(t)} \, \mathrm{d}d_i(t) = \frac{1}{t} \, \mathrm{d}t$$

$$\frac{1}{q}\ln(p+qd_i(t)) = \ln t + c$$

$$p + qd_i(t) = e^{qc} t^q \Rightarrow d_i(t) = \frac{1}{q}((At)^q - p)$$
 A=?

$$q = (1 - p)$$

Divide by
$$p + q d_i(t)$$

integrate

Exponentiate and let $A = e^c$

What is the constant A?

What is the value of constant A?

$$d_i(t) = \frac{1}{q}(At^q - p)$$

- We know: $d_i(i) = 0$
- So: $d_i(i) = \frac{1}{q}((Ai)^q p) = 0$
- $\Rightarrow A = \frac{p}{iq}$
- And so $\Rightarrow d_i(t) = \frac{p}{q} \left(\left(\frac{t}{i} \right)^q 1 \right)$

<u>Observation:</u> Old nodes (small i values) have higher in-degrees $d_i(t)$

Degree Distribution

- What is F(k), the fraction of nodes that has degree less than k at time t?
 - How many nodes have degree < k?</p>

$$d_i(t) = \frac{p}{q} \left(\left(\frac{t}{i} \right)^q - 1 \right) < k$$

- Solve for i and obtain: $i > t \left(\frac{q}{p}k + 1\right)^{-\frac{1}{q}}$
- There are t nodes total at time t so the fraction F(k) is:

$$F(k) = 1 - \left\lceil \frac{q}{p} k + 1 \right\rceil^{-\frac{1}{q}}$$

Degree Distribution

- What is the fraction of nodes with degree exactly k?
 - Take derivative of F(k):
 - F(k) is CDF, so F'(k) is the PDF!

$$F(k) = 1 - \left[\frac{q}{p}k + 1\right]^{-\frac{1}{q}}$$

$$F'(k) = \frac{1}{q} \left[\frac{q}{p} k + 1 \right]^{\frac{1}{q}} \Rightarrow \alpha = 1 + \frac{1}{1 - p}$$
q.e.d.

Preferential attachment: Good news

- Preferential attachment gives power-law degrees!
- Intuitively reasonable process
- Can tune model parameter p to get the observed exponent
 - On the web, $P[node\ has\ degree\ d] \sim d^{-2.1}$
 - $2.1 = 1 + 1/(1-p) \rightarrow p \sim 0.1$

Preferential Attachment: Bad News

- Preferential attachment is not so good at predicting network structure
 - Age-degree correlation
 - Solution: Node fitness (virtual degree)
 - Links among high degree nodes:
 - On the web nodes sometimes avoid linking to each other
- Further questions:
 - What is a reasonable model for how people sample network nodes and link to them?
 - Short random walks

Many models lead to Power-Laws

- Copying mechanism (directed network)
 - Select a node and an edge of this node
 - Attach to the endpoint of this edge
- Walking on a network (directed network)
 - The new node connects to a node, then to every first, second, ... neighbor of this node
- Attaching to edges
 - Select an edge and attach to both endpoints of this edge
- Node duplication
 - Duplicate a node with all its edges
 - Randomly prune edges of new node

Preferential attachment: Reflec

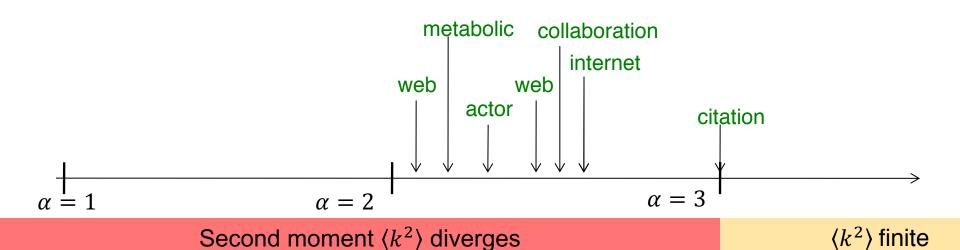
- The network grows
- Preferential attachment
- Do we need both? Yes!
 - Add growth to G_{np} (assume p=1/n):
 - $X_j = \text{degree of node } j$ at the end
 - $X_j(u) = 1$ if u links to j, else θ
 - $X_j = X_j(j+1) + X_j(j+2) + \cdots + X_j(n)$
 - $E[X_j(u)] = P[u \ links \ to \ j] = 1/(u-1)$
 - $E[X_j] = \sum_{j+1}^n \frac{1}{u-1} = \frac{1}{i} + \frac{1}{i+1} + \dots + \frac{1}{n-1} = H_{n-1} H_j$
 - $E[X_j] \approx log(n-1) log(j) = log((n-1)/j)$ NOT $\left(\frac{n}{j}\right)^{\alpha}$

 $H_n...n$ -th harmonic number: = $\sum_{k=1}^{n} \frac{1}{k}$.

Distances in Preferential Attachm Extra!

Size of the biggest hub is of order *O(N)*. Most nodes can be connected within two steps, thus the average path length will be independent of the network size. The average path length increases slower than Ultra logarithmically. In G_{np} all nodes have comparable degree, small thus most paths will have comparable length. In a scaleworld $2 < \alpha < 3$ free network vast majority of the paths go through the few high degree hubs, reducing the distances between nodes. Some models produce $\alpha = 3$. This was first derived by \log_n Bollobas et al. for the network diameter in the context of a dynamical model, but it holds for the average path length as well. I he second moment of the distribution is finite, thus in $\alpha > 3$ many ways the network behaves as a random network. Hence the average path length follows the result that we derived for the random network model earlier. Avg. path Degree length exponent

Summary: Scale-Free Network Extra!



Average $\langle k \rangle$ diverges

Average $\langle k \rangle$ finite

Ultra small world behavior

Small world

Regime full of anomalies...

The scale-free behavior is relevant

Behaves like a random network

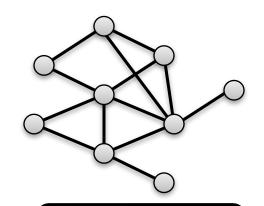
Evolution of Social Networks

Network Evolution: Observation

- Preferential attachment is a model of a growing network
- Can we find a more realistic model?
- What governs network growth & evolution?
 - P1) Node arrival process:
 - When nodes enter the network
 - P2) Edge initiation process:
 - Each node decides when to initiate an edge
 - P3) Edge destination process:
 - The node determines destination of the edge [Leskovec, Backstrom, Kumar, Tomkins, 2008]

Let's Look at the Data

- 4 online social networks with exact edge arrival sequence
 - For every edge (u,v) we know exact time of the creation t_{uv}

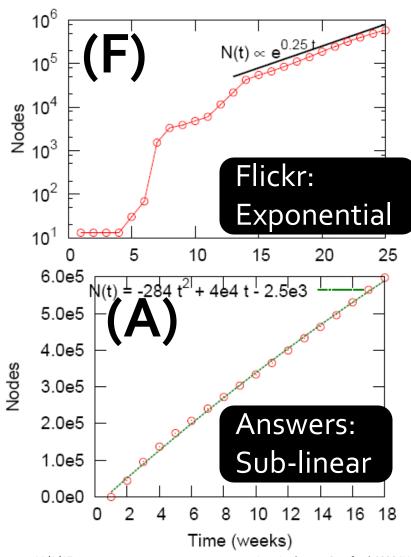


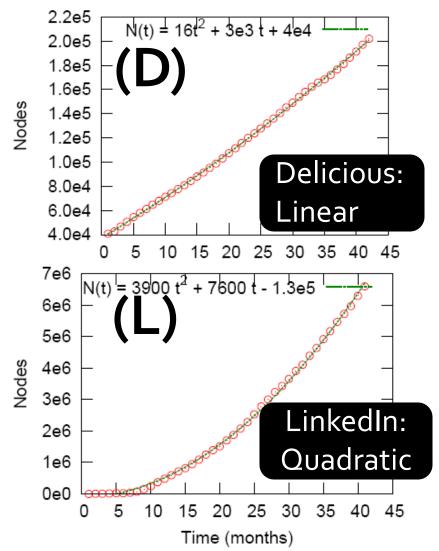
and so on for ___millions...

 Directly observe mechanisms leading to global network properties

Network	T	N	E
(F) FLICKR $(03/2003-09/2005)$	621	584,207	3,554,130
(D) Delicious $(05/2006-02/2007)$	292	203,234	430,707
(A) Answers $(03/2007-06/2007)$	121	$598,\!314$	1,834,217
(L) LinkedIn $(05/2003-10/2006)$	1294	$7,\!550,\!955$	30,682,028

P1) When are New Nodes Arriving?

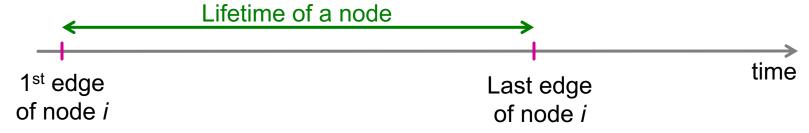




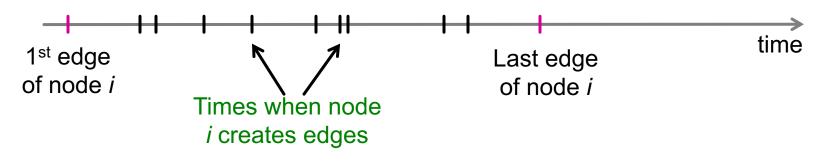
P2) When Do Nodes Create Edges?

How long do nodes live?

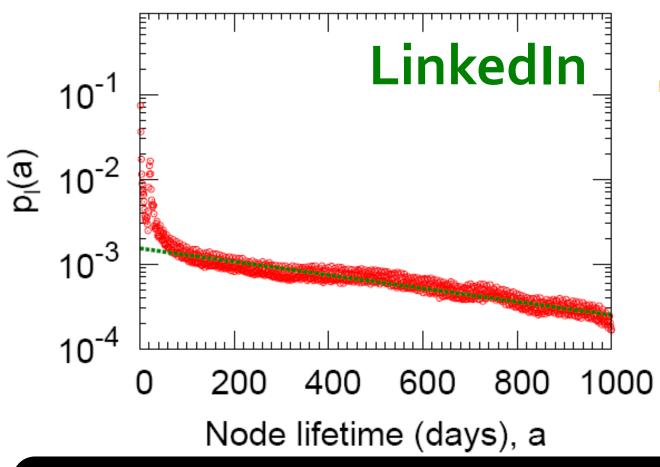
Node life-time is the time between the 1st and the last edge of a node



When do nodes "wake up" to create links?



P2) What is Node Lifetime?



• Lifetime *a*:

Time between node's first and last edge

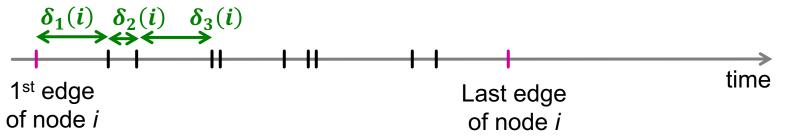
Node lifetime is **exponentially distributed**:

$$p_l(a) = \lambda e^{-\lambda a}$$

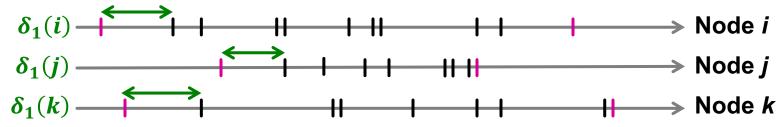
P2) When do Nodes Create Edges?

- How do nodes "wake up" to create edges?
 - Edge gap $\delta_d(i)$: time between d^{th} and $d+1^{st}$ edge of node i:
 - Let $t_d(i)$ be the creation time of d-th edge of node i

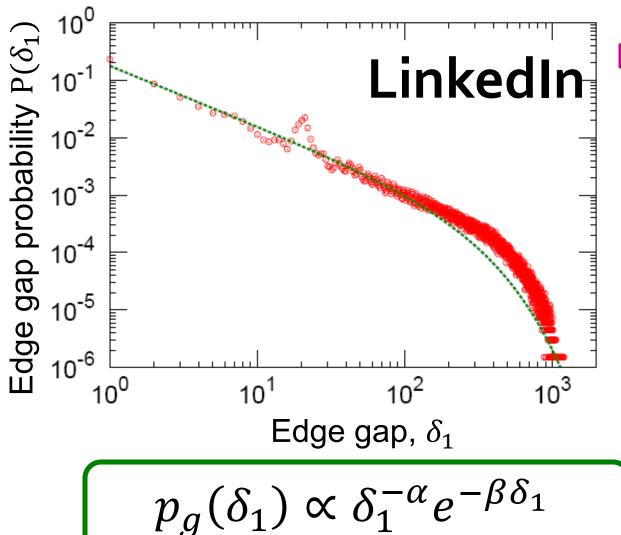
$$\bullet \ \delta_d(i) = t_{d+1}(i) - t_d(i)$$



• δ_d is a distribution (histogram) of $\delta_d(i)$ over all nodes i



P2) When do Nodes Create Edges?

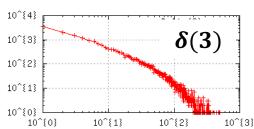


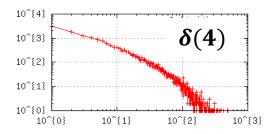
Edge gap δ_d : interarrival time between d^{th} and $d+1^{st}$ edge is distributed by a power-law with exponential cut-off

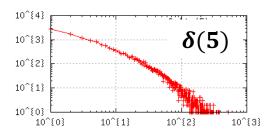
For every **d** we make a separate histogram

P2) How do α and β evolve with d?

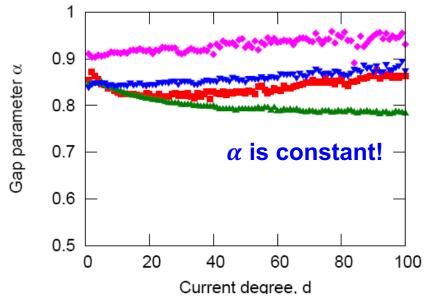
• How do α and β change as a function of d?

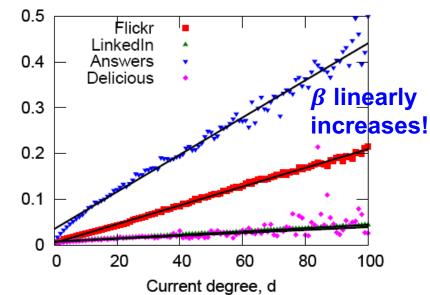






To each plot of δ_d fit: $p_g(\delta_d) \propto \delta_d^{-\alpha_d} e^{-\beta_d \delta_d}$

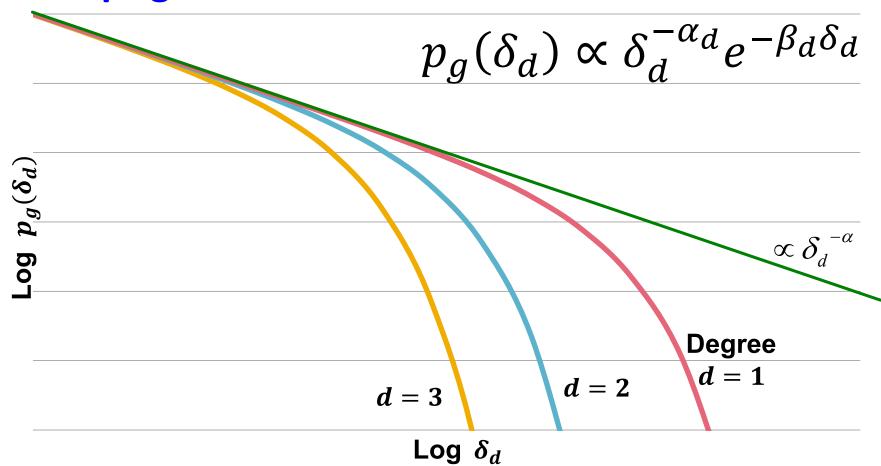




3ap parameter β

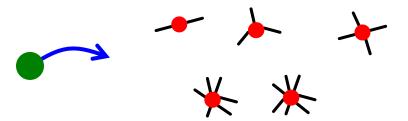
P2) Evolution of Edge Gaps

- α const., β linear in d. What does this mean?
- Gaps get smaller with d!



P3) How to Select Destination?

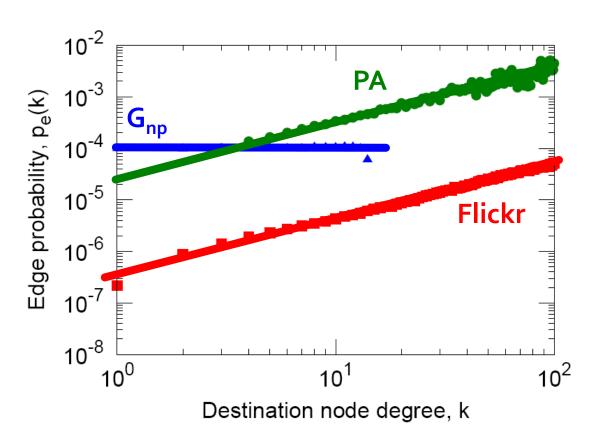
- Source node i wakes up and creates an edge
- How does i select a target node j?
 - What is the degree of the target j?
 - Does preferential attachment really hold?



- How many hops away is the target j?
 - Are edges attaching locally?

Edge Attachment Degree Bias

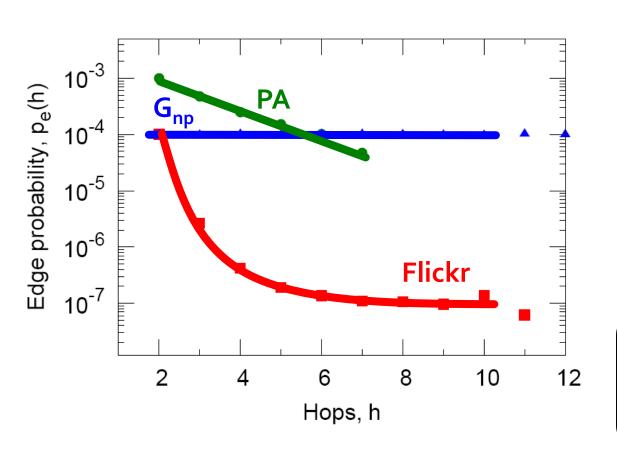
Are edges more likely to connect to higher degree nodes? YES!



$p_e(k) \propto k^i$				
Network	τ			
G_{np}	0			
PA	1			
Flickr	1			
Delicious	1			
Answers	0.9			
LinkedIn	0.6			

How "far" is the Target Node?

Just before the edge (u,w) is placed how many hops are between u and w?



closing edges				
Network	%Δ			
Flickr	66%			
Delicious	28%			
Answers	23%			
LinkedIn	50%			

Fraction of t

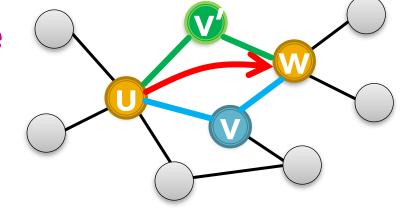
Real edges are local!

Most of them close

triangles!

How to Close the Triangles?

- Focus only on triad-closing edges
- New triad-closing edge (u,w) appears next
- 2 step walk model:
 - u is about to create an edge
 - 1. u choses neighbor v
 - v choses neighbor w
 and u connects to w



- One can use different strategies for choosing v and w: Random-Random works well. Why?
 - More common friends (more paths) helps
 - High-degree nodes are more likely to be hit

Triad Closing Strategies

Improvement in log-likelihood over baseline:

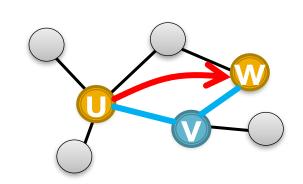
Baseline: Pick a random node 2 hops away

Strategy to select *v* (1st node)

FLICKR	random	$deg^{0.2}$	com	last $^{-0.4}$	$comlast^{-0.4}$
random	(13.6)	13.9	14.3	16.1	15.7
$deg^{0.1}$ las $t^{0.2}$	13.5	14.2	13.7	16.0	15.6
$last^{0.2}$	14.7	15.6	15.0	(17.2)	16.9
com	11.2	11.6	11.9	13.9	13.4
$comlast^{0.1}$	11.0	11.4	11.7	13.6	13.2

Strategies to pick a neighbor:

- random: uniformly at random
- deg: proportional to its degree
- **com**: prop. to the number of common friends
- last: prop. to time since last activity
- comlast: prop. to com*last



Select w (2nd node)

Summary of the Model

The model of network evolution

Process	Model
P1) Node arrival	 Node arrival function is given
P2) Edge initiation	 Node lifetime is exponential Edge gaps get smaller as the degree increases
P3) Edge destination	Pick edge destination using random-random

Analysis of the Model

 Theorem: Exponential node lifetimes and power-law with exponential cutoff edge gaps lead to power-law degree distributions

Comments:

- The proof is based on a combination of exponentials
- Interesting as temporal behavior predicts a structural network property

Evolving the Networks

- Given the model one can take an existing network and continue its evolution
- Compare true and predicted (based on the theorem) degree exponent:

	Flickr	Delicious	Answers	LINKEDIN
λ	0.0092	0.0052	0.019	0.0018
α	0.84	0.92	0.85	0.78
β	0.0020	0.00032	0.0038	0.00036
true	1.73	2.38	1.90	2.11
predicted	1.74	2.30	1.75	2.08

degree exponent

Macroscopic Evolution of Networks

Macroscopic Evolution

- How do networks evolve at the macro level?
 - What are global phenomena of network growth?

• Questions:

- What is the relation between the number of nodes n(t) and number of edges e(t) over time t?
- How does diameter change as the network grows?
- How does degree distribution evolve as the network grows?

Network Evolution

- -N(t) ... nodes at time t
- $\mathbf{E}(t)$... edges at time t
- Suppose that

$$N(t+1) = 2 \cdot N(t)$$

Q: what is:

$$E(t+1) = ? \quad \text{Is it } 2 \cdot E(t)?$$

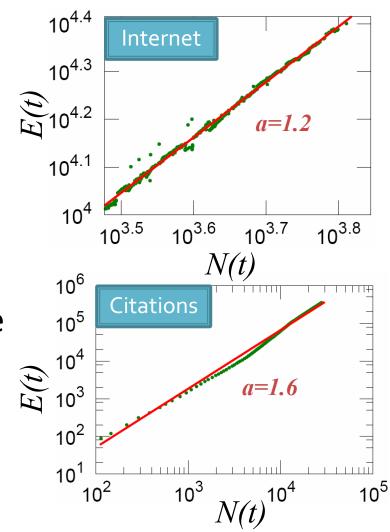
- A: More than doubled!
 - But obeying the Densification Power Law

Q1) Network Evolution

- What is the relation between the number of nodes and the edges over time?
- First guess: constant average degree over time
- Networks are denser over time
- Densification Power Law:

$$E(t) \propto N(t)^a$$

 \boldsymbol{a} ... densification exponent $(1 \le \mathbf{a} \le 2)$



Densification Power Law

Densification Power Law

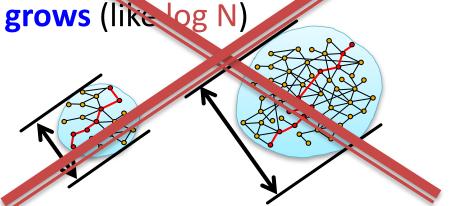
 the number of edges grows faster than the number of nodes – average degree is increasing

$$E(t) \propto N(t)^a$$
 or $\frac{\log(E(t))}{\log(N(t))} = const$

- **a** ... densification exponent: $1 \le a \le 2$:
- a=1: linear growth constant out-degree (traditionally assumed)
- a=2: quadratic growth fully connected graph

Q1) Network Evolution

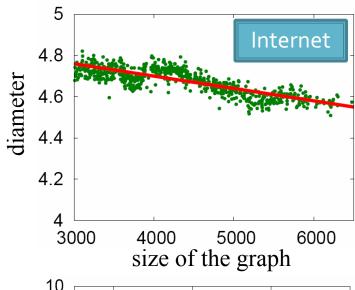
Reior models and intuition sa that the network diameter slowly

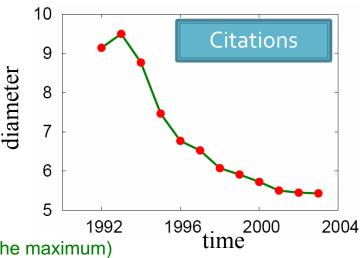


- Diameter shrinks over time
 - As the network grows the distances between the nodes slowly decrease

How do we compute diameter in practice?

- -- Long paths: Take 90th-percentile or average path length (not the maximum)

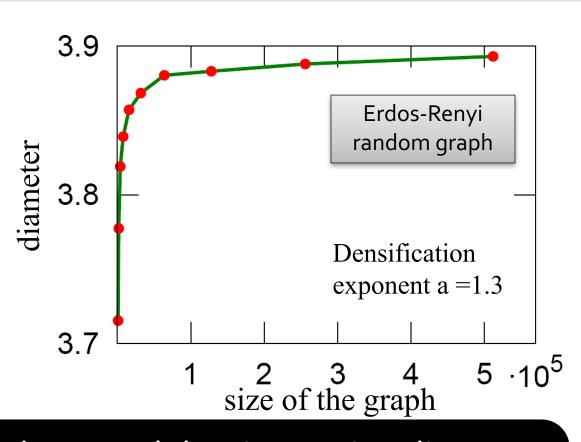




-- Disconnected components: Take only largest component or average only over connected pairs of nodes
11/1/17 Jure Leskovec, Stanford CS224W: Analysis of Network, http://cs224w.stanford.edu 42

Diameter of a Densifying G_{np}

Is shrinking diameter just a consequence of densification?



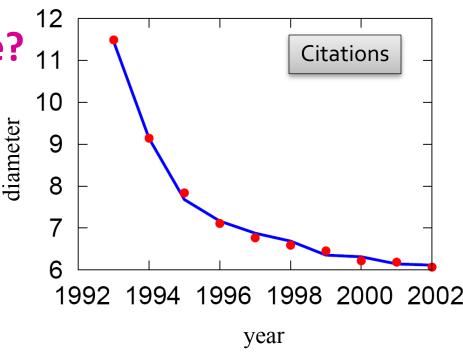
Densifying random graph has increasing diameter ⇒ There is more to shrinking diameter than just densification!

Diameter of a Rewired Network

Is it the degree sequence?

Compare diameter of a:

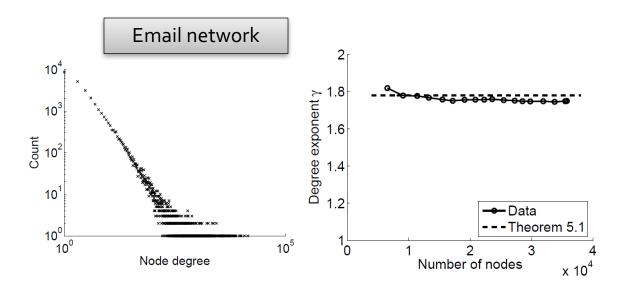
- Real network (red)
- Random network with the same degree distribution (blue)



Densification + degree sequence gives shrinking diameter

Connecting Degrees & Densification

- How does degree distribution evolve to allow for densification?
- Option 1) Degree exponent γ_t is constant:
 - Fact 1: If $\gamma_t = \gamma \in [1, 2]$, then: $\alpha = 2/\gamma$



A consequence of what we learned in the Power law lecture:

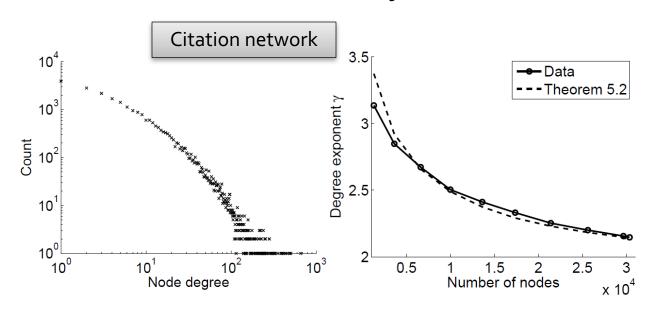
- Power-laws with exponents <2 have infinite expectations.
- So, by maintaining constant degree exponent α the average degree grows.

Connecting Degrees & Densification

- How does degree distribution evolve to allow for densification?
- Option 2) γ_t evolves with graph size n:

■ Fact 2: If
$$\gamma_t = \frac{4n_t^{x-1}-1}{2n_t^{x-1}-1}$$
, then: $a = x$

Notice:
$$\gamma_t \to 2$$
 as $n_t \to \infty$



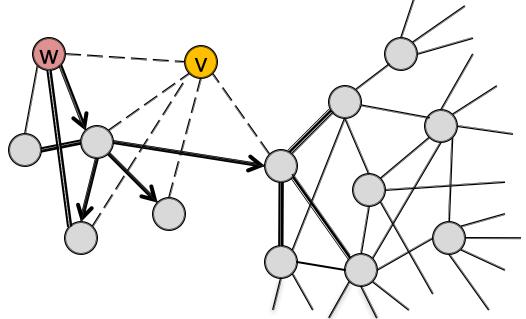
Remember, the expected degree in a power law is:

$$E[X] = \frac{\gamma_t - 1}{\gamma_t - 2} x_m$$

So γ_t has to decay as a function of graph size n_t for the avg. degree to go up.

- Want to model graphs that densify and have shrinking diameters
- Intuition:
 - How do we meet friends at a party?

How do we identify references when writing papers?

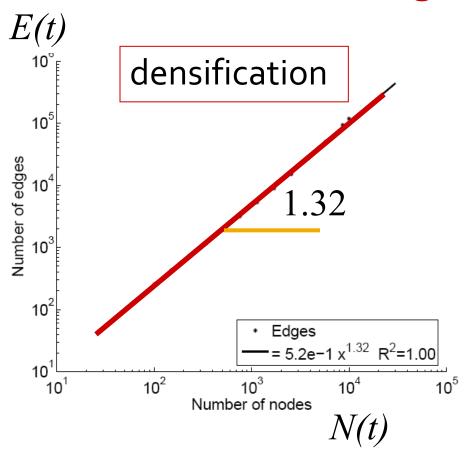


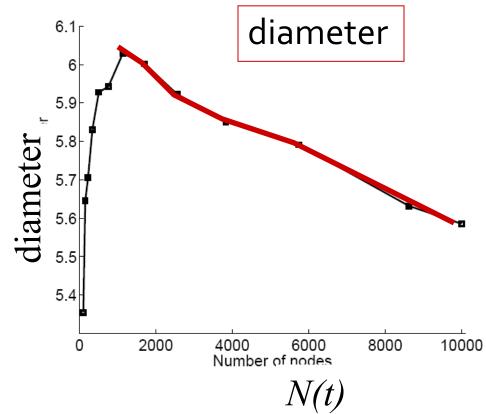
- The Forest Fire model has 2 parameters:
 - p ... forward burning probability
 - r ... backward burning probability
- The model: Directed Graph
 - Each turn a new node v arrives
 - Uniformly at random chooses an "ambassador" w
 - Flip 2 geometric coins (based on p and r) to determine the number of in- and out-links of w to follow
 - "Fire" spreads recursively until it dies
 - New node v links to all burned nodes

Geometric distribution:

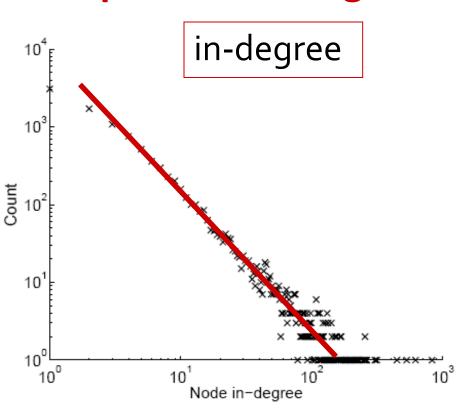
$$\Pr(X = k) = (1 - p)^{k-1} p$$

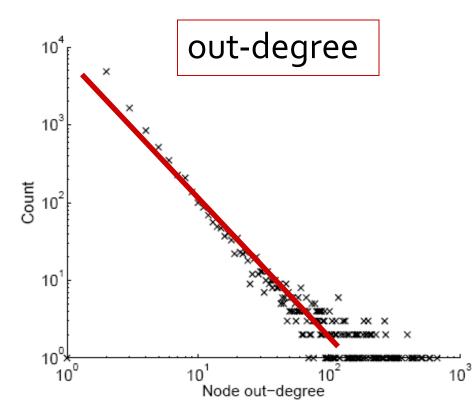
 Forest Fire generates graphs that densify and have shrinking diameter





 Forest Fire also generates graphs with power-law degree distribution





log count vs. log in-degree

log count vs. log out-degree

Forest Fire: Phase Transition

- Fix backward probability r and vary forward burning prob. p
- Notice a sharp transition between sparse and clique-like graphs
- The "sweet spot" is very narrow

