Preferential Attachment and Network Evolution

CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224W.stanford.edu

Exponential vs. Power-Law Tails

?

Model: Preferential attachment

- Preferential attachment:
[de Solla Price '65, Albert-Barabasi '99, Mitzenmacher '03]
- Nodes arrive in order 1,2,...,n
- At step \boldsymbol{j}, let $\boldsymbol{d}_{\boldsymbol{i}}$ be the degree of node $\boldsymbol{i}<\boldsymbol{j}$
- A new node \boldsymbol{j} arrives and creates \boldsymbol{m} out-links
- Prob. of \boldsymbol{j} linking to a previous node \boldsymbol{i} is proportional to degree $\boldsymbol{d}_{\boldsymbol{i}}$ of node \boldsymbol{i}

$$
P(j \rightarrow i)=\frac{d_{i}}{\sum_{k} d_{k}}
$$

The Exact Model

We will analyze the following simple model:

- Nodes arrive in order $1,2,3, \ldots, n$
- When node \boldsymbol{j} is created it makes a single out-link to an earlier node \boldsymbol{i} chosen:
- 1) With prob. p, j links to i chosen uniformly at random (from among all earlier nodes)
- 2) With prob. 1 - \boldsymbol{p}, node \boldsymbol{j} chooses \boldsymbol{i} uniformly at random \& links to a random node l that i points to
- This is same as saying: With prob. $\mathbf{1 - p}$, node \boldsymbol{j} links to node \boldsymbol{l} with prob. proportional to $\boldsymbol{d}_{\boldsymbol{l}}$ (the in-degree of \boldsymbol{l})
- Our graph is directed: Every node has out-degree 1

The Model Gives Power-Laws

- Claim: The described model generates networks where the fraction of nodes with in-degree \boldsymbol{k} scales as:

$$
P\left(d_{i}=k\right) \propto k^{-\left(1+\frac{1}{q}\right)}
$$

where $q=1-p$

So we get power-law degree distribution with exponent:

$$
\alpha=1+\frac{1}{1-p}
$$

Continuous Approximation

- Consider deterministic and continuous approximation to the degree of node \boldsymbol{i} as a function of time \boldsymbol{t}
- \boldsymbol{t} is the number of nodes that have arrived so far
- In-Degree $d_{i}(t)$ of node $\boldsymbol{i}(i=1,2, \ldots, n)$ is a continuous quantity and it grows deterministically as a function of time \boldsymbol{t}
- Plan: Analyze $d_{i}(t)$ - continuous in-degree of node \boldsymbol{i} at time $\boldsymbol{t}(\boldsymbol{t}>\boldsymbol{i})$
- Note: Node i arrives to the graph at time \boldsymbol{i}

Continuous Degree: What We Know

- Initial condition:
$\boldsymbol{d}_{\boldsymbol{i}}(\boldsymbol{t})=\mathbf{0}$, when $\boldsymbol{t}=\boldsymbol{i} \quad$ (node i just arrived)
- Expected change of $d_{i}(t)$ over time:
- Node \boldsymbol{i} gains an in-link at step $\boldsymbol{t}+\mathbf{1}$ only if a link from a newly created node $t+1$ points to it
- What's the probability of this event?
- With prob. \boldsymbol{p} node $\boldsymbol{t}+\mathbf{1}$ links randomly:
- Links to our node \boldsymbol{i} with prob. $\mathbf{1} / \boldsymbol{t}$
- With prob. $\mathbf{1}-\boldsymbol{p}$ node $\boldsymbol{t}+\mathbf{1}$ links preferentially:
- Links to our node \boldsymbol{i} with prob. $\boldsymbol{d}_{\boldsymbol{i}}(\boldsymbol{t}) / \boldsymbol{t}$
- Prob. node $t+1$ links to i is: $p \frac{1}{t}+(1-p) \frac{d_{i}(t)}{t}$ Note: each node creates exactly 1 edge. So after t nodes/steps there are t edges in total.

Continuous Degree

- At $t=4$ node $i=4$ comes. It has out-degree of 1 to deterministically share with other nodes:

Node \boldsymbol{i}	$\boldsymbol{d}_{\boldsymbol{i}}(\boldsymbol{t})$	$\boldsymbol{d}_{\boldsymbol{i}}(\mathbf{t}+\mathbf{1})$
0	0	$=0+p \frac{1}{4}+(1-p) \frac{0}{4}$
1	2	$=2+p \frac{1}{4}+(1-p) \frac{2}{4}$
2	0	$=0+p \frac{1}{4}+(1-p) \frac{1}{4}$
3	1	$=1+p \frac{1}{4}+(1-p) \frac{1}{4}$
$\mathbf{4}$	1	0

- $d_{i}(t)-d_{i}(t-1)=\frac{\mathrm{d} d_{i}(t)}{\mathrm{d} t}=\mathrm{p} \frac{1}{t}+(1-p) \frac{d_{i}(t)}{t}$
- How does $d_{i}(t)$ evolve as $t \rightarrow \infty$?

What is the rate of growth of d_{i} ?

Expected change of $d_{i}(t)$:

$$
\begin{array}{ll}
=\underbrace{\boldsymbol{d}_{i}(\boldsymbol{t}+\mathbf{1})-\boldsymbol{d}_{i}(\boldsymbol{t})}=\boldsymbol{p} \frac{1}{t}+(\mathbf{1}-\boldsymbol{p}) \frac{d_{i}(t)}{t} & \\
=\frac{\mathrm{d} d_{i}(t)}{\mathrm{d} t}=p \frac{1}{t}+(1-p) \frac{d_{i}(t)}{t}=\frac{p+q d_{i}(t)}{t} & q=(1-p) \\
=\frac{1}{p+q d_{i}(t)} \mathrm{d} d_{i}(t)=\frac{1}{t} \mathrm{~d} t & \begin{array}{l}
\text { Divide by } \\
p+q d_{i}(t)
\end{array} \\
=\int \frac{1}{p+q d_{i}(t)} \mathrm{d} d_{i}(t)=\int \frac{1}{t} \mathrm{~d} t & \begin{array}{l}
\text { integrate }
\end{array} \\
=\frac{1}{q} \ln \left(p+q d_{i}(t)\right)=\ln t+c & \begin{array}{l}
\text { Exponentiate } \\
\text { and let } A=e^{c}
\end{array} \\
=p+q d_{i}(t)=e^{q c} t^{q} \Rightarrow \boldsymbol{d}_{\boldsymbol{i}}(\boldsymbol{t})=\frac{\mathbf{1}}{\boldsymbol{q}}\left((\boldsymbol{A} \boldsymbol{t})^{q}-\boldsymbol{p}\right) & \mathrm{A}=?
\end{array}
$$

What is the constant A?

What is the value of constant A?

$$
d_{i}(t)=\frac{1}{q}\left(A t^{q}-p\right)
$$

- We know: $d_{i}(i)=0$
- So: $d_{i}(i)=\frac{1}{q}\left((A i)^{q}-p\right)=0$
$-\Rightarrow A=\frac{p}{i q}$
- And so $\Rightarrow d_{i}(t)=\frac{p}{q}\left(\left(\frac{t}{i}\right)^{q}-1\right)$

Observation: Old nodes (small i values) have higher in-degrees $d_{i}(t)$

Degree Distribution

- What is $F(k)$, the fraction of nodes that has degree less than k at time t ?
- How many nodes have degree < \boldsymbol{k} ?
- $d_{i}(t)=\frac{p}{q}\left(\left(\frac{t}{i}\right)^{q}-\mathbf{1}\right)<\boldsymbol{k}$
- Solve for i and obtain: $i>t\left(\frac{q}{p} k+1\right)^{-\frac{1}{q}}$
- There are \boldsymbol{t} nodes total at time \boldsymbol{t} so the fraction $F(k)$ is:

$$
F(k)=1-\left[\frac{q}{p} k+1\right]^{-\frac{1}{q}}
$$

Degree Distribution

- What is the fraction of nodes with degree exactly k ?
- Take derivative of $\boldsymbol{F}(\boldsymbol{k})$:
- $\boldsymbol{F}(\boldsymbol{k})$ is CDF, so $\boldsymbol{F}^{\prime}(\boldsymbol{k})$ is the PDF!

$$
F(k)=1-\left[\frac{q}{p} k+1\right]^{-\frac{1}{q}}
$$

$$
F^{\prime}(k)=\frac{1}{q}[\frac{q}{p} k+1 \overbrace{}^{-1-\frac{1}{q}} \Rightarrow \alpha=1+\frac{1}{1-p}
$$

Preferential attachment: Good news

- Preferential attachment gives power-law degrees!
- Intuitively reasonable process
- Can tune model parameter \boldsymbol{p} to get the observed exponent
- On the web, P[node has degree d] $\sim d^{-2.1}$
- $2.1=1+1 /(1-p) \rightarrow p \sim 0.1$

Preferential Attachment: Bad News

- Preferential attachment is not so good at predicting network structure
- Age-degree correlation
- Solution: Node fitness (virtual degree)
- Links among high degree nodes:
- On the web nodes sometimes avoid linking to each other
- Further questions:
- What is a reasonable model for how people sample network nodes and link to them?
- Short random walks

Many models lead to Power-Laws

- Copying mechanism (directed network)
- Select a node and an edge of this node
- Attach to the endpoint of this edge
- Walking on a network (directed network)
- The new node connects to a node, then to every first, second, ... neighbor of this node
- Attaching to edges
- Select an edge and attach to both endpoints of this edge
- Node duplication
- Duplicate a node with all its edges
- Randomly prune edges of new node

Preferential attachment: Refle Extra!

- Two changes from the $\boldsymbol{G}_{n p}$
- The network grows
- Preferential attachment
- Do we need both? Yes!
- Add growth to $G_{n p}$ (assume $\boldsymbol{p}=\mathbf{1} / n$):
- $\boldsymbol{X}_{\boldsymbol{j}}=$ degree of node \boldsymbol{j} at the end
- $\boldsymbol{X}_{\boldsymbol{j}}(\boldsymbol{u})=\mathbf{1}$ if \boldsymbol{u} links to \boldsymbol{j}, else $\mathbf{0}$
- $X_{j}=X_{j}(j+1)+X_{j}(j+2)+\cdots+X_{j}(n)$
- $E\left[X_{j}(u)\right]=P[$ ulinks to $j]=1 /(u-1)$
$H_{n} \ldots$ n-th harmonic number:
$=\sum_{k=1}^{n} \frac{1}{k}$.
- $E\left[X_{j}\right]=\sum_{j+1}^{n} \frac{1}{u-1}=\frac{1}{j}+\frac{1}{j+1}+\cdots+\frac{1}{n-1}=H_{n-1}-H_{j}$
$E\left[X_{j}\right] \approx \log (n-1)-\log (\boldsymbol{j})=\log ((n-1) / \boldsymbol{j}) \quad$ NOT $\left(\frac{n}{j}\right)^{\alpha}$

Distances in Preferential Attachmextra!

const $\quad \alpha=2$
Size of the biggest hub is of order $O(N)$. Most nodes can be connected within two steps, thus the average path length will be independent of the network size. $\begin{array}{cc}\text { Avg. path } & \begin{array}{c}\text { Degree } \\ \text { length } \\ \text { exponent }\end{array}\end{array}$

The average path length increases slower than logarithmically. In $G_{n p}$ all nodes have comparable degree, thus most paths will have comparable length. In a scalefree network vast majority of the paths go through the few high degree hubs, reducing the distances between nodes.

Some models produce $\alpha=3$. This was first derived by
$\frac{\log n}{\log \log n} \quad \alpha=3$ Bollobas et al. for the network diameter in the context of a dynamical model, but it holds for the average path length as well.

The second moment of the distribution is finite, thus in
Small world $\log n \quad \alpha>3$
Ultra small world $\bar{h}=\{$ $\frac{\log \log n}{\log (\alpha-1)} \quad 2<\alpha<3$ many ways the network behaves as a random network. Hence the average path length follows the result that we derived for the random network model earlier.

Summary Scale-Free Natwo Extra

Second moment $\left\langle k^{2}\right\rangle$ diverges
$\left\langle k^{2}\right\rangle$ finite
Average $\langle k\rangle$ diverges
Average $\langle k\rangle$ finite

Ultra small world behavior
Small world

The scale-free behavior is relevant

Behaves like a random network

Evolution of Social Networks

Network Evolution: Observation

- Preferential attachment is a model of a growing network
- Can we find a more realistic model?
- What governs network growth \& evolution?
- P1) Node arrival process:
- When nodes enter the network
- P2) Edge initiation process:
- Each node decides when to initiate an edge
- P3) Edge destination process:
- The node determines destination of the edge [Leskovec, Backstrom, Kumar, Tomkins, 2008]

Let's Look at the Data

- 4 online social networks with exact edge arrival sequence
- For every edge (u, v) we know exact time of the creation $t_{u v}$
- Directly observe mechanisms leading

and so on for millions... to global network properties
$\left.\begin{array}{l|ccc} & \text { Network } & T & N\end{array}\right] E$

P1) When are New Nodes Arriving?

P2) When Do Nodes Create Edges?

- How long do nodes live?
- Node life-time is the time between the $1^{\text {st }}$ and the last edge of a node

- When do nodes "wake up" to create links?

P2) What is Node Lifetime?

 - Lifetime a : Time between node's first and last edge
 $\begin{array}{llllll}0 & 200 & 400 & 600 & 800 & 1000\end{array}$
 Node lifetime (days), a

Node lifetime is exponentially distributed:

$$
p_{l}(a)=\lambda e^{-\lambda a}
$$

P2) When do Nodes Create Edges?

- How do nodes "wake up" to create edges?
- Edge gap $\delta_{d}(i)$: time between $\boldsymbol{d}^{\text {th }}$ and $\boldsymbol{d}+\mathbf{1}^{\text {st }}$ edge of node \boldsymbol{i} :
- Let $\boldsymbol{t}_{\boldsymbol{d}}(\boldsymbol{i})$ be the creation time of \boldsymbol{d}-th edge of node \boldsymbol{i}
- $\delta_{d}(i)=t_{d+1}(i)-t_{d}(i)$

$1^{\text {st }}$ edge
of node i
$\begin{array}{ll}\text { Last edge } & \text { time } \\ \text { of node } i & \end{array}$
- $\boldsymbol{\delta}_{\boldsymbol{d}}$ is a distribution (histogram) of $\boldsymbol{\delta}_{\boldsymbol{d}}(\boldsymbol{i})$ over all nodes \boldsymbol{i}

P2) When do Nodes Create Edges?

$p_{g}\left(\delta_{1}\right) \propto \delta_{1}^{-\alpha} e^{-\beta \delta_{1}}$

Edge gap δ_{d} : interarrival time between $\boldsymbol{d}^{\text {th }}$ and $d+1^{\text {st }}$ edge is distributed by a power-law with exponential cut-off

For every d we make a separate histogram

P2) How do α and β evolve with d ?

- How do α and β change as a function of d ?

To each plot of δ_{d} fit: $p_{g}\left(\delta_{d}\right) \propto \delta_{d}^{-\alpha_{d}} e^{-\beta_{d} \delta_{d}}$

P2) Evolution of Edge Gaps

- α const., β linear in d. What does this mean? - Gaps get smaller with d !

$$
p_{g}\left(\delta_{d}\right) \propto \delta_{d}^{-\alpha_{d}} e^{-\beta_{d} \delta_{d}}
$$

8 0 0 0 0 0

$$
\left.d=3|d=2 \quad| \begin{gathered}
\log \delta_{d}
\end{gathered} \right\rvert\, \begin{gathered}
\text { Degree } \\
d=1
\end{gathered}
$$

P3) How to Select Destination?

- Source node i wakes up and creates an edge
- How does i select a target node j ?
- What is the degree of the target j ?
- Does preferential attachment really hold?

- How many hops away is the target j ?
- Are edges attaching locally?

Edge Attachment Degree Bias

- Are edges more likely to connect to higher degree nodes? YES!

$p_{e}(k) \propto k^{\tau}$

Network	τ
\mathbf{G}_{np}	$\mathbf{0}$
PA	$\mathbf{1}$
Flickr	$\mathbf{1}$

Delicious 1
Answers 0.9 LinkedIn 0.6

How "far" is the Target Node?

- Just before the edge (u, w) is placed how many hops are between u and w ?

Fraction of triad closing edges	
Network	$\% \Delta$
Flickr	66%
Delicious	28%
Answers	23%
Linkedln	50%

Real edges are local! Most of them close triangles!

How to Close the Triangles?

- Focus only on triad-closing edges
- New triad-closing edge (u, w) appears next
- 2 step walk model:
- u is about to create an edge

1. \mathbf{u} choses neighbor \boldsymbol{v}
2. \boldsymbol{v} choses neighbor \boldsymbol{w} and \mathbf{u} connects to \boldsymbol{w}

- One can use different strategies for choosing v and w: Random-Random works well. Why?
- More common friends (more paths) helps
- High-degree nodes are more likely to be hit

Triad Closing Strategies

Extra!

- Improvement in log-likelihood over baseline:
- Baseline: Pick a random node 2 hops away

Strategy to select \boldsymbol{v} ($1^{\text {st }}$ node)

Strategies to pick a neighbor:

- random: uniformly at random
- deg: proportional to its degree
- com: prop. to the number of common friends
- last: prop. to time since last activity
- comlast: prop. to com*last

Summary of the Model

- The model of network evolution

Process

Model

P1) Node arrival

- Node arrival function is given
- Node lifetime is exponential

P2) Edge initiation

P3) Edge destination

- Edge gaps get smaller as the degree increases
Pick edge destination using random-random

Analysis of the Model

- Theorem: Exponential node lifetimes and power-law with exponential cutoff edge gaps lead to power-law degree distributions
- Comments:
- The proof is based on a combination of exponentials
- Interesting as temporal behavior predicts a structural network property

Evolving the Networks

- Given the model one can take an existing network and continue its evolution
- Compare true and predicted (based on the theorem) degree exponent:

	FLICKR	DELICIOUS	ANSWERS	LINKEDIN
λ	0.0092	0.0052	0.019	0.0018
α	0.84	0.92	0.85	0.78
β	0.0020	0.00032	0.0038	0.00036
true	1.73	2.38	1.90	2.11
predicted	1.74	2.30	1.75	2.08
degree exponent				

Macroscopic Evolution of Networks

Macroscopic Evolution

- How do networks evolve at the macro level?
- What are global phenomena of network growth?
- Questions:
- What is the relation between the number of nodes $n(t)$ and number of edges $e(t)$ over time t ?
- How does diameter change as the network grows?
- How does degree distribution evolve as the network grows?

Network Evolution

- $\boldsymbol{N}(\boldsymbol{t})$... nodes at time \boldsymbol{t}
- $\boldsymbol{E}(\boldsymbol{t})$... edges at time \boldsymbol{t}
- Suppose that

$$
N(t+1)=2 \cdot N(t)
$$

- Q: what is:

$$
E(t+1)=? \quad \text { Is it } 2 \cdot E(t) ?
$$

- A: More than doubled!
- But obeying the Densification Power Law

Q1) Network Evolution

- What is the relation between the number of nodes and the edges over time?
- First gueser constant average degree oner time

Densification Power Law

- Densification Power Law
- the number of edges grows faster than the number of nodes - average degree is increasing

$$
E(t) \propto \mathbb{N}(t)^{a} \underset{\text { equivalently }}{\text { or }} \frac{\log (E(t))}{\log (N(t))}=\text { const }
$$

a ... densification exponent: $1 \leq \mathbf{a} \leq 2$:

- a=1: linear growth - constant out-degree (traditionally assumed)
- $\mathbf{a = 2}$: quadratic growth - fully connected graph

Q1) Network Evolution

- Rior models and intuition shy that tise network diamefer slowly grows (like $\log \mathrm{N}$)

- Diameter shrinks over time
- As the network grows the distances between the nodes slowly decrease
How do we compute diameter in practice?
-- Long paths: Take $90^{\text {th }}-$ percentile or average path length (not the maximum)

-- Disconnected components: Take only largest component or average only over connected pairs of nodes 11/1/17

Diameter of a Densifying $G_{n p}$

Densifying random graph has increasing diameter \Rightarrow There is more to shrinking diameter than just densification!

Diameter of a Rewired Network

year

Densification + degree sequence gives shrinking diameter

Connecting Degrees \& Densification

- How does degree distribution evolve to allow for densification?
- Option 1) Degree exponent γ_{t} is constant:
- Fact 1: If $\gamma_{t}=\gamma \in[1,2]$, then: $a=2 / \gamma$

A consequence of what we learned in the Power law lecture:

- Power-laws with
exponents <2 have infinite expectations.
- So, by maintaining constant degree exponent α the average degree grows.

Connecting Degrees \& Densification

- How does degree distribution evolve to allow for densification?
- Option 2) $\boldsymbol{\gamma}_{t}$ evolves with graph size \boldsymbol{n} :
- Fact 2: If $\gamma_{t}=\frac{4 n_{t}^{x-1}-1}{2 n_{t}^{x-1}-1}$, then: $a=x$

> Notice: $\boldsymbol{\gamma}_{t} \rightarrow 2$ as $n_{t} \rightarrow \infty$

Remember, the expected degree in a power law is:

$$
E[X]=\frac{\gamma_{t}-1}{\gamma_{t}-2} x_{m}
$$

So γ_{t} has to decay as a function of graph size $\boldsymbol{n}_{\boldsymbol{t}}$ for the avg. degree to go up.

Forest Fire Model

- Want to model graphs that densify and have shrinking diameters
- Intuition:
- How do we meet friends at a party?
- How do we identify references when writing papers?

Forest Fire Model

- The Forest Fire model has 2 parameters:
- p ... forward burning probability
- r ... backward burning probability
- The model: Directed Graph
- Each turn a new node v arrives
- Uniformly at random chooses an "ambassador" w
- Flip 2 geometric coins (based on p and r) to determine the number of in- and out-links of w to follow
- "Fire" spreads recursively until it dies
- New node v links to all burned nodes Geometric distribution:

$$
\operatorname{Pr}(X=k)=(1-p)^{k-1} p
$$

Forest Fire Model

- Forest Fire generates graphs that densify and have shrinking diameter

Forest Fire Model

- Forest Fire also generates graphs with power-law degree distribution

log count vs. log in-degree

log count vs. log out-degree

11/1/17

Forest Fire: Phase Transition

- Fix backward probability r and vary forward burning prob. p
- Notice a sharp transition between sparse and clique-like graphs

- The "sweet spot" is very narrow

