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Observations

Small	diameter,	
Edge	clustering

Patterns	of	signed
edge	creation

Viral	Marketing,	Blogosphere,	
Memetracking

Scale-Free

Densification	power	law,
Shrinking	diameters

Strength	of	weak	ties,	
Core-periphery

Models

Erdös-Renyi model,
Small-world	model

Structural	balance,	
Theory	of	status

Independent	cascade	model,	
Game	theoretic	model

Preferential	attachment,	
Copying	model

Microscopic	model	of	
evolving	networks

Kronecker Graphs

Algorithms

Decentralized	search

Models	for	predicting	
edge	signs

Influence	maximization,	
Outbreak	detection,	LIM

PageRank,	Hubs	and	
authorities

Link	prediction,
Supervised	random	walks

Community	detection:	
Girvan-Newman,	Modularity
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What	do	we	observe	that	
needs	explaining?
¡ Small-world	model:
§ Diameter
§ Clustering	coefficient

¡ Preferential	Attachment:
§ Node	degree	distribution

§ What	fraction	of	nodes	has	degree	𝒌 (as	a	function	of	𝒌)?
§ Prediction	from	simple	random	graph	models:	
p(𝒌) = exponential	function	of	𝒌

§ Observation:	Often	a	power-law: 𝒑 𝒌 ∝ 𝒌(𝜶
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Expected based on Gnp Found in data

𝑷 𝒌 ∝ 𝒌(𝜶



¡ Take	a	network,	plot	a	histogram	of	𝑷(𝒌) vs.	𝒌
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Flickr social	
network

n= 584,207, 
m=3,555,115

[Leskovec et al. KDD ‘08]

Plot: fraction of nodes 
with degree 𝑘:

𝑝(𝑘) =
| 𝑢|𝑑0 = 𝑘 |

𝑁
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¡ Plot	the	same	data	on	log-log scale:
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Flickr social	
network

n= 584,207, 
m=3,555,115

[Leskovec et al. KDD ‘08]

How to distinguish:
𝑃(𝑘) ∝ exp	(−𝑘) vs.		
𝑃(𝑘) ∝ 𝑘(8 ?

Take logarithms: 
if 𝑦 = 𝑓(𝑥) = 𝑒(= then 
log 𝑦 = −𝑥

If 𝑦 = 𝑥(8 then 
log 𝑦 = −𝛼	log	(𝑥)

So on log-log axis 
power-law looks like 
a straight line of 
slope −𝛼 !

Slope  = −𝛼 = 1.75
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¡ Internet	Autonomous	Systems
[Faloutsos,	Faloutsos and	Faloutsos,	1999]
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Internet domain topology



¡ The	World	Wide	Web	[Broder et	al.,	2000]
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¡ Other	Networks	[Barabasi-Albert,	1999]
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Power-gridWeb graphActor collaborations



¡ Above	a	certain	𝒙 value,	the	power	law	is	
always	higher	than	the	exponential!
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¡ Power-law	vs.	Exponential	
on	log-log	and	semi-log	(log-lin)	scales
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[Clauset-Shalizi-Newman 2007]
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¡ Power-law	degree	exponent	is	
typically	2	<	a <	3
§ Web	graph:

§ ain	=	2.1,	aout	=	2.4	[Broder et	al.	00]
§ Autonomous	systems:

§ a =	2.4	[Faloutsos3,	99]
§ Actor-collaborations:

§ a =	2.3	[Barabasi-Albert	00]
§ Citations	to	papers:

§ a » 3	[Redner 98]
§ Online	social	networks:

§ a » 2	[Leskovec	et	al.	07]
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¡ Definition:
Networks	with	a	power-law	tail	in	
their	degree	distribution	are	called	
“scale-free	networks”

¡ Where	does	the	name	come	from?
§ Scale invariance:	 There is	no	characteristic	scale

§ Scale	invariance is	that	laws	do	not	change	if	scales	of	length,	
energy,	or	other	variables,	are	multiplied	by	a	common	factor

§ Scale-free	function:	𝒇 𝒂𝒙 = 𝒂𝝀𝒇(𝒙)
§ Power-law	function:	𝒇 𝒂𝒙 = 𝒂𝝀𝒙𝝀 = 𝒂𝝀𝒇(𝒙)
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Log() or Exp() are not  scale free!
𝑓 𝑎𝑥 = log 𝑎𝑥 = log 𝑎 + log 𝑥 = log 𝑎 + 𝑓 𝑥
𝑓 𝑎𝑥 = exp 𝑎𝑥 = exp 𝑥 O = 𝑓 𝑥 O
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Many other quantities follow heavy-tailed distributions

[Clauset-Shalizi-Newman 2007]
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[Chris Anderson, Wired, 2004]
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CMU grad-students at 
the G20 meeting in 

Pittsburgh in Sept 2009





¡ Degrees	are	heavily	skewed:	
Distribution	𝑃(𝑋 > 𝑥) is	heavy	tailed	if:

𝐥𝐢𝐦
𝒙→U

𝑷 𝑿 > 𝒙
𝒆(𝝀𝒙

= ∞
¡ Note:

§ Normal	PDF:	𝑝 𝑥 = F
YZ[� 𝑒(

]^_ `

`a`

§ Exponential	PDF:		𝑝 𝑥 = 𝜆𝑒(c=

§ then	𝑃 𝑋 > 𝑥 = 1 − 𝑃(𝑋 ≤ 𝑥) = 𝑒(c=

are	not	heavy	tailed!
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¡ Various	names,	kinds	and	forms:
§ Long	tail,	Heavy	tail,	Zipf’s law,	Pareto’s	law

¡ Heavy	tailed	distributions:
§ P(x)	is	proportional	to:
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[Clauset-Shalizi-Newman 2007]

𝑃 𝑥 ∝



¡ What	is	the	normalizing	constant?
p(x) = Z x-a Z = ?

§ 𝒑(𝒙) is	a	distribution:	∫𝒑 𝒙 𝒅𝒙�
� = 𝟏

Continuous	approximation

§ 1 = ∫ 𝑝 𝑥 𝑑𝑥U
=h

= 𝑍 ∫ 𝑥(8𝑑𝑥U
=h

§ = − j
8(F

𝑥(8kF =h
U = − j

8(F
∞F(8 − 𝑥lF(8

§ ⇒𝑍 = 𝛼 − 1 𝑥l8(F
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[Clauset-Shalizi-Newman 2007]

𝒑 𝒙 =
𝜶 − 𝟏
𝒙𝒎

𝒙
𝒙𝒎

(𝜶

p(x) diverges as x®0 
so xm is the minimum 

value of the power-law 
distribution x Î [xm, ∞]

xm

Need: a > 1 !

Integral:

o 𝒂𝒙 𝒏 =
𝒂𝒙 𝒏k𝟏	
𝒂(𝒏 + 𝟏)

�

�



¡ What’s	the	expected	value	of	a	power-law	
random	variable	X?

¡ 𝐸 𝑋 = ∫ 𝑥	𝑝 𝑥 𝑑𝑥U
=h

= 𝑍 ∫ 𝑥(8kF𝑑𝑥U
=h

¡ = j
Y(8

𝑥Y(8 =h
U = 8(F =hr^s

((8(Y)
[∞Y(8 − 𝑥lY(8]

⇒𝑬 𝑿 =
𝜶 − 𝟏
𝜶 − 𝟐

𝒙𝒎
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[Clauset-Shalizi-Newman 2007]

Need: a > 2 !

Power-law density:

𝑝 𝑥 =
𝛼 − 1
𝑥l

𝑥
𝑥l

(8

𝑍 =
𝛼 − 1
𝑥lF(8



¡ Power-laws	have	infinite	moments!

§ If	𝛼	 ≤ 	2 :	𝐸[𝑋] 	= 	∞
§ If	𝛼	 ≤ 	3 :	𝑉𝑎𝑟[𝑋] 	= 	∞

§ Average	is	meaningless,	as	the	variance	is	too	high!
¡ Consequence:	Sample	average	of	n samples	
from	a	power-law	with	exponent	α
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𝐸 𝑋 =
𝛼 − 1
𝛼 − 2

𝑥l
In real networks
2 < a < 3 so:
E[X] = const
Var[X] = ∞





Estimating	a from	data:
¡ (1)	Fit	a	line	on	log-log	axis	using	least	squares:	
§ Solve	𝒂𝒓𝒈	𝐦𝐢𝐧

𝜶
𝐥𝐨𝐠 𝒚 − 𝜶 𝐥𝐨𝐠 𝒙 + 𝒃 𝟐
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BAD!



Estimating	a from	data:
¡ Plot	Complementary	CDF	(CCDF)	𝑷 𝑿 ≥ 𝒙 .	
Then	the	estimated	𝜶 = 𝟏 + 𝜶′
where	𝜶′ is	the	slope	of	𝑷(𝑿 ≥ 𝒙).	

¡ Fact: If	𝒑 𝒙 = 𝑷 𝑿 = 𝒙 ∝ 𝒙(𝜶
then	𝑷 𝑿 ≥ 𝒙 ∝ 𝒙((𝜶(𝟏)

§ 𝑃 𝑋 ≥ 𝑥 = ∑ 𝑝(𝑗)U
��= ≈ ∫ 𝑍	𝑦(8𝑑𝑦U

= =

§ = j
F(8

𝑦F(8 =
U = j

F(8
𝑥( 8(F
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OK!



Estimating	a from	data:
¡ Use	maximum	likelihood	approach:
§ The	log-likelihood	of	observed	data	di:

§ 𝐿 𝛼 = ln ∏ 𝑝 𝑑��
� = ∑ ln	𝑝(𝑑�)�

�

§ = ∑ ln	(𝛼 − 1) − ln 𝑥l − 𝛼 ln ��
=h

�
�

§ Want	to	find	𝜶 that	max	𝐿(𝜶):		Set	�� 8
�8

= 0

§
�� 8
�8

= 0		⇒			 �
8(F

− ∑ ln ��
=h

�
� = 0

§ ⇒𝜶� = 𝟏 + 𝒏 ∑ 𝒍𝒏 𝒅𝒊
𝒙𝒎

𝒏
𝒊

(𝟏
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Power-law density:

𝑝 𝑥 =
𝛼 − 1
𝑥l

𝑥
𝑥l

(8

OK!
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Linear	scale
Log	scale,	
α=1.75

CCDF,	Log	
scale,	α=1.75

CCDF,	Log	
scale,	α=1.75, 

exp. cutoff



¡ Can	not	arise	from	sums	of	independent	events!
§ Recall:	in	𝑮𝒏𝒑 each	pair	of	nodes	in	connected	
independently	with	prob.	𝒑
§ 𝑿… degree	of	node 𝒗
§ 𝑿𝒘 … event	that w links	to v
§ 𝑿 = ∑ 𝑿𝒘�

𝒘

§ 𝑬 𝑿 = ∑ 𝑬 𝑿𝒘 = 𝒏 − 𝟏 𝒑�
𝒘

§ Now,	what	is	𝑷 𝑿 = 𝒌 ? Central	limit	theorem!
§ 𝑿𝟏,… , 𝑿𝒏: random	vars with	mean µ, variance s2

§ 𝑺𝒏 = ∑ 𝑿𝒊�
𝒊 :		𝐸 𝑆� = 𝒏𝝁 ,	Var 𝑆� = 𝒏𝝈𝟐,	SD 𝑆� = 𝝈 𝒏�

§ 𝑷 𝑺𝒏 = 𝑬 𝑺𝒏 + 𝒙 ¥ 𝐒𝐃 𝑺𝒏 	~	 𝟏
𝟐𝝅
𝐞(

𝐱𝟐

𝟐
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Random network Scale-free (power-law) network
(Erdos-Renyi random graph)

Degree distribution is Binomial

Degree 
distribution is 
Power-law
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¡ How	does	network
connectivity	change	
as	nodes	get	removed?	
[Albert	et	al.	00;	Palmer	et	al.	01]

¡ Nodes	can	be	removed:
§ Random	failure:

§ Remove	nodes	uniformly	at	random

§ Targeted	attack:
§ Remove	nodes	in	order	of	decreasing	degree

¡ This	is	important	for	robustness	of	the	internet	
as	well	as	epidemiology
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¡ Networks	with	equal	number	of	nodes	and	edges:
§ ER	random	graph
§ Scale-free	network	

¡ Study	the	properties	of	the	network	as	an	
increasing	fraction	of	nodes	are	removed
§ Node	selection:	

§ Random (this	corresponds	to	random	failures)
§ Nodes	with	largest	degrees (corresponds	to	targeted	attacks)

¡ Measures:	
§ Fraction	of	nodes	in	the	largest	connected	component
§ Average	shortest	path	length between	nodes	in	the	
largest	component
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¡ Scale-free	graphs	are	resilient	to	random	
attacks,	but	sensitive	to	targeted	attacks:	

¡ For	random	networks	there	is	smaller	
difference	between	the	two

random failure targeted attack
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What	proportion	of	random	nodes	must	be	removed	
in	order	for	the	size	(S)	of	the	giant	component	to	
drop	to	0?

¡ Infinite	scale-free	networks	with	𝛾 < 3 never	break	
down	under	random	node	failures

Source: Cohen et al., Resilience of the Internet to Random Breakdowns
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𝛾… degree exponent
K… maximum degree

Fraction deleted nodes
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¡ Real	networks	are	resilient	to	random	failures
¡ Gnp has	better	resilience	to	targeted	attacks

§ E.g.,	we	need	to	remove	all	pages	of	degree	>5 to	disconnect	
the	Web.	But	this	is	a	very	small	fraction	of	all	web	pages!
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Fraction of removed nodes
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Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-László Barabási
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¡ The	first	few	%	of	
nodes	removed:
§ E:	Gnp

§ SF:	Scale-free

¡ Notice	how	targeted	
attacks	very	quickly	
disconnect	the	network
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¡ Preferential	attachment	
[Price	‘65,	Albert-Barabasi ’99,	Mitzenmacher ‘03]

§ Nodes	arrive	in	order	1,2,…,n
§ At	step	j,	let	di be	the	degree	of	node	i < j
§ A	new	node	j arrives	and	creates	m out-links
§ Prob.	of	j linking	to	a	previous	node	i is	
proportional	to	degree	di of	node	i
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¡ New	nodes	are	more	likely	to	link	to	
nodes	that	already	have	high	degree

¡ Herbert	Simon’s	result:
§ Power-laws	arise	from	“Rich	get	richer”	(cumulative	
advantage)

¡ Examples
§ Citations	[de	Solla Price	‘65]: New	citations	to	a	paper	are	
proportional	to	the	number	it	already	has
§ Herding: If	a	lot	of	people	cite	a	paper,	then	it	must	be	good,	and	
therefore	I	should	cite	it	too

§ Sociology:Matthew	effect,	http://en.wikipedia.org/wiki/Matthew_effect
§ “For	whoever	has	will	be	given	more,	and	they	will	have	an	abundance.	
Whoever	does	not	have,	even	what	they	have	will	be	taken	from	them.”

§ Eminent	scientists	often	get	more	credit	than	a	comparatively	unknown	
researcher,	even	if	their	work	is	similar
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We	will	analyze	the	following	model:
¡ Nodes	arrive	in	order	1,2,3, … , 𝑛
¡ When	node	𝒋 is	created	it	makes	a	
single	out-link to	an	earlier	node	𝒊 chosen:
§ 1)With	prob.	𝒑,	𝒋 links	to	𝒊 chosen	uniformly	at	
random (from	among	all	earlier	nodes)

§ 2)With	prob.	𝟏 − 𝒑,	node	𝒋 chooses	𝒊 uniformly	at	
random	&	links	to	a	random	node	l that i points	to
§ This	is	same	as	saying:	With	prob.	𝟏 − 𝒑,	node	𝒋 links	to	
node	𝒍 with	prob.	proportional	to	𝒅𝒍 (the	in-degree	of	𝒍)

§ Our	graph	is	directed: Every	node	has	out-degree	1
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[Mitzenmacher, ‘03]

Node j



¡ Claim: The	described	model	generates	
networks	where	the	fraction	of	nodes	with	
in-degree	k scales	as:
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So we get power-law
degree distribution
with exponent:



¡ Consider	deterministic	and	continuous	
approximation to	the	degree	of	node	𝒊 as	a	
function	of	time	𝒕
§ 𝒕 is	the	number	of	nodes	that	have	arrived	so	far
§ In-Degree 𝒅𝒊(𝒕) of	node	𝒊 (𝑖 = 1,2, … , 𝑛)	is	a	
continuous	quantity and	it	grows	
deterministically as	a	function	of	time	𝒕

¡ Plan: Analyze	𝒅𝒊(𝒕) – continuous	in-degree
of	node	𝒊 at	time	𝒕		(𝒕 > 𝒊)
§ Note:	Node	𝒊 arrives	to	the	graph	at	time	𝒊
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¡ Initial	condition:	
§ 𝒅𝒊(𝒕) = 𝟎,	when 𝒕 = 𝒊 (node	i just	arrived)

¡ Expected	change of	𝒅𝒊(𝒕) over	time:
§ Node	𝒊 gains	an	in-link	at	step	𝒕 + 𝟏 only	if	a	link	
from	a	newly	created	node	𝒕 + 𝟏 points	to	it

§ What’s	the	probability	of	this	event?
§ With	prob.	𝒑 node	𝒕 + 𝟏 links	randomly:	

§ Links	to	our	node	𝒊 with	prob.	𝟏/𝒕
§ With	prob.	𝟏 − 𝒑 node	𝒕 + 𝟏 links	preferentially:

§ Links	to	our	node	𝒊 with	prob.	𝒅𝒊(𝒕)/𝒕

§ Prob.	node	𝒕 + 𝟏 links	to	𝒊 is:	𝒑 𝟏
𝒕
+ 𝟏 − 𝒑 𝒅𝒊(𝒕)

𝒕
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Node i

Note: each node creates exactly 1 edge. So after t nodes/steps there are t edges in total.



¡ At	𝒕 = 𝟒 node	𝒊 = 𝟒 comes.	It	has	out-degree	of	
1	to	deterministically	share	with	other	nodes:

¡

¡ 𝒅𝒊 𝒕 − 𝒅𝒊 𝒕 − 𝟏 = ���(µ)
�µ

= 𝐩 𝟏
𝒕
+ 𝟏 − 𝒑 𝒅𝒊(𝒕)

𝒕
¡ How	does	𝒅𝒊(𝒕) evolve	as	𝒕 → ∞?
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Node i di(t) di(t+1)
0 0 =0 + 𝑝 F

·
+ 1 − 𝑝 ¸

·

1 2 =2 + 𝑝 F
·
+ 1 − 𝑝 Y

·

2 0 =0 + 𝑝 F
·
+ 1 − 𝑝 F

·

3 1 =1 + 𝑝 F
·
+ 1 − 𝑝 F

·

4 / 0

0
1

2 3

4



¡ Expected	change	of	𝒅𝒊 𝒕 :

§ 𝒅𝒊(𝒕 + 𝟏) − 𝒅𝒊(𝒕) = 𝒑 𝟏
𝒕
+ 𝟏 − 𝒑 𝒅𝒊(𝒕)

𝒕

§
���(µ)
�µ

= 𝑝 F
µ
+ 1 − 𝑝 ��(µ)

µ
= ¹kº��(µ)

µ

§
F

¹kº��(µ)
d𝑑�(𝑡) =

F
µ
d𝑡

§ ∫ F
¹kº��(µ)

d𝑑�(𝑡)
�
� = ∫ Fµ d𝑡

�
�

§
F
º
ln 𝑝 + 𝑞𝑑�	 𝑡 = ln 𝑡 + 𝑐

§ 𝑝 + 𝑞𝑑� 𝑡 = 𝑒º¿ 	𝑡º		⇒	𝒅𝒊 𝒕 = 𝟏
𝒒
(𝑨𝒕)𝒒 − 𝒑
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𝑞 = (1 − 𝑝)

integrate

Exponentiate
and let 𝐴 = 𝑒𝑐

Divide by 
𝑝 + 𝑞	𝑑�(𝑡)

A=?



What	is	the	value	of	constant	A?
¡ We	know: 	𝑑� 𝑖 = 0

¡ So:	𝑑� 𝑖 = F
º
(𝐴𝑖)º − 𝑝 = 0

¡ ⇒𝑨 = 𝒑
𝒊𝒒

¡ And	so	⇒	𝒅𝒊 𝒕 = 𝒑
𝒒

𝒕
𝒊

𝒒
− 𝟏
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	𝒅𝒊 𝒕 =
𝟏
𝒒
𝑨𝒕𝒒 − 𝒑

Observation: Old nodes
(small 𝑖 values) have
higher in-degrees 𝑑�(𝑡)


