Network Formation Processes:
Power-law degrees and
Preferential Attachment



Next Time: New Topics

Observations

Small diameter,
Edge clustering

Patterns of signed
edge creation

Viral Marketing, Blogosphere,
Memetracking

Scale-Free

Densification power law,
Shrinking diameters

Strength of weak ties,
Core-periphery

Models

Erdos-Renyi model,
Small-world model

Algorithms

Decentralized search

Structural balance,
Theory of status

Independent cascade model,
Game theoretic model

Preferential attachment,
Copying model

Models for predicting
edge signs

Influence maximization,
Outbreak detection, LIM

PageRank, Hubs and
authorities

Microscopic model of
evolving networks

Kronecker Graphs

Link prediction,
Supervised random walks

Community detection:
Girvan-Newman, Modularity
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Network Formation Processes

What do we observe that .. % = & :

needs explaining? o, N 0 Ty
Small-world model: ‘

Diameter ¥

Clustering coefficient
Preferential Attachment:

Node degree distribution
What fraction of nodes has degree k (as a function of k)?

Prediction from simple random graph models:
p(k) = exponential function of k

Observation: Often a power-law: p(k) «< k™%

10/30/17 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



Degree Distributions

P(k)

10/30/17

Expected based on G,

I I I I I I

Found in data
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[Leskovec et al. KDD '08]

Node Degrees in Networks

Take a network, plot a histogram of P(k) vs. k

_ 0.7 | I | | | | |
- |
JL 0.6 - Plot: fraction of nodes B
= 05 with degree k: —
I | p(k) = id, = 1
; 0.3 N
= 02 L _ Flickr social
S network
N N | | m=3,555,115

0 500 1000 1500 2000 2500 3000 3500 4000
Degree, k
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[Leskovec et al. KDD '08]

Node Degrees in Networks

Plot the same data on log-log scale:

0
< 10 | P(k) o< k7175 mmmmmmn 2 How to distinguish:
10t 1 P(k) xexp(—k) vs.
et B /’-’z’? i P(k) < k™% ?
T N
i 107 y"’*«@SIope = _q =175 i Take logarithms:
o3 M, - if y = f(x) = e then
= 107 . - log(y) = —x
= i f Flickr social | If y = x~% then
% 10 - network B ]og(y) = —a log(x)
3 _ L | n=584,207, | So on log-log axis
09_ 107 = m=3,555,115 — power-law looks like

" a straight line of

slope —a !

10" 10
Degree, k
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Node Degrees: Faloutsos3

Internet Autonomous Systems
[Faloutsos, Faloutsos and Faloutsos, 1999]

Domain2

] Host
uln u LAN ® Router
¢ Domain
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Node Degrees: Web

The World Wide Web [Broder et al., 2000]

In-degree (May 99, Oct 99) distr. Out-degree (May 99, Oct 990 distr.
le+18 T T T le+18 | | |
1e+89 | In-degree (May 992 O - 1e+89 |- I 2
1e+88 - In-degree (Oct 99) + 4 1e+88 |

" " iy
% 1e+@7 4 & 1e+87 -
m
& {e+B6 1 2 1e+ms |
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o 1668806 - o 1866888
.
& 16080 { & 1oooo -
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C -
188 _ 1606
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] : 1 l .
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) 16 168 Ppp—— 1 10 160 10680

in-degree out-degree
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Node Degrees: Barabasi&Albert

Other Networks [Barabasi-Albert, 1999]

10 0 0
I 107 #, 10 N\
-2 - . B £ ¢ ‘\‘\ C
10 o2 b \\ l \
[ 10 F ’\
10° : k "\
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Exponential vs. Power-Law

0.6

P(X)

0.2

20 40 60 80 100
X

Above a certain x value, the power law is
always higher than the exponential!

p(x)=c"
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[Clauset-Shalizi-Newman 2007]

Exponential vs. Power-Law

Power-law vs. Exponential
on log-log and semi-log (log-lin) scales

1 2 3 4 3} 6
pe)=ex?|
p(x) = cx_lE

? : x)=c "~
- semi-log (x)

X ... logarithmic axis X ... linear
y ... logarithmic axis y ... logarithmic
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Exponential vs. Power-Law

Bell Curve Power Law Distribution
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Power-Law Degree Exponents

Power-law degree exponent is  .-iwe cou romctemonyy oicer

le+in . :

typically2<a <3 e P e
Web graph: D i
o =2.1, o, = 2.4 [Broder et al. 00] : gl ]
Autonomous systems: E el i
o = 2.4 [Faloutsos3, 99] ) 1_ T -;m |
Actor-collaborations: o R
o = 2.3 [Barabasi-Albert 00] 107 (u) |
Citations to papers: 10
a =~ 3 [Redner 98] 10::’
Online social networks: 185, _ R,
o = 2 [Leskovec et al. 07] 107° o ciations)
100 100 10° 10° 10°
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Scale-Free Networks

‘,
Definition: - o

Networks with a power-law tail in
their degree distribution are called
“scale-free networks”

Where does the name come from?

Scale invariance: There is no characteristic scale

Scale invariance is that laws do not change if scales of length,
energy, or other variables, are multiplied by a common factor

Scale-free function: f(ax) = a’f(x)

Power-law function: f(ax) = a*x* = a’f(x)

Log() or Exp() are not scale free!
f(ax) = log(ax) =log(a) + log(x) =log(a) + f(x)
f(ax) = exp(ax) = exp(x)* = f(x)°
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[Clauset-Shalizi-Newman 2007]

Power-Laws are Everywhere
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Many other quantities follow heavy-tailed distributions
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[Chris Anderson, Wired, 2004]

Anatomy of the Long Talil

RHAPSODY AMAZON.COM [N  NETFLIX |

Online services carry far more inventory than traditional retailers. TOTAL INVENTORY: . TOTAL INVENTORY: . TOTAL INVENTORY:
Rhapsody, for example, offers 19 times as many songs as 735,000 songs ; 2.3 million books : 25,000 OVDs

Wal-Mart's stock of 39,000 tunes. The appetite for Rhapsody’s :
more obscure tunes (charted below in yellow) makes up the :
so-called Long Tail. Meanwhile, even as consumers flock to :
mainstream books, music, and films (right), there is real demand :
mmn u-u NoMe
Wess 30 00 uqu mmm

for niche fare found only online.

6,100
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Not Everyone Likes Power-Laws ©

CMU grad-students at
the G20 meeting in
Pittsburgh in Sept 2009
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Mathematics of Power-Laws



Heavy Tailed Distributions

Degrees are heavily skewed:
Distribution P(X > x) is heavy tailed if:

- P(X>x) ’ .
lim 7 = 00
xX— 00 e X
Note:

1 _G=w?
Normal PDF: p(x) = =t 2

Exponential PDF: p(x) = le™**
thenP(X >x)=1—-PX <x) = o~ Ax
are not heavy tailed!
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[Clauset-Shalizi-Newman 2007]

Heavy Tailed Distributions

Various names, kinds and forms:

Long tail, Heavy tail, Zipf’s law, Pareto’s law
Heavy tailed distributions:

P(x) is proportional to:

power law | P(x) x a

power law

— o — AT
: xr e
with cutoft
Stretched. B 1 AP
exponential ‘

_ 1 (In ;17—,u.)2
log-normal | = exp [

202
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[Clauset-Shalizi-Newman 2007]

Mathematics of Power-laws

What is the normalizing constant?
p(x) - Zx_a Z - ? 10 1l o citations ;
p(x) is a distribution: [ p(x)dx =1 "’ 0 @ 0 1

p(x) diverges as x—0

Continuous approximation SO X, is the minimum
00 00 value of the power-law
— — — distribution x e [x,,, ]
1 fxm p(x)dx = Z fxm x " %dx
Z Z
—a+17o0 1-a 1-a
- ——\|X = —— |00 — X
e LA L ]
— Need: a > 1!
=7 = (a—1)x&! eed: o

a—1/x\¢%
p(x) o X (xm) Integral:

m - (ax)n+1
j(ax) T a(n+1)
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[Clauset-Shalizi-Newman 2007]

Mathematics of Power-laws

What'’s the expected value of a power-law
random variable X?

E[X] = fxoo x p(x)dx = fooo x *tldx

_qyoa—1
_ % [xz—a];om _ (Cl_(la)iczm) [002=® — x2-a)
Need: o> 2!
a—1
= E[X] — o — 2 xm Power-law density:
p(x) = ax;l (%)ﬂ
a—1

x}n—“
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Mathematics of Power-Laws

Power-laws have infinite moments!

a—1 In real networks
E[X]= X 2<a<3so:
2 m
a — E[X] = const

fa < 2:E[X] = o Var[X] = «
If a 3:Var|X] = o
Average is meaningless, as the variance is too high!
Consequence° Sample daverage of n samples
from a power-law with exponent «a

10 - 10 10

10 i Sample mean | o 0_:1 7 10° elf- - Populatlon mean| —2 05, 10°il---Population variance| y=3 01
107}_°_Sample varlance 10 1 10°¢ )
10:, ° o o o ° 105, ° 000! 10:r 1
104 ro 10?4 o °, o°°° o0 1 104r 1
1030 o, 10t 0 ° 1 103r 1
107r o °o® ° o0 o 0° °°o°°°u°° 10;’ o % o° % © %o0 1 10 r 1
107]"° % o'oo™ o % °F 10" oo ° : 107 1 |
10 | 00 %00° 10'F 7285° oo so0nao000a0000a00030603305) 10 0° 90000,°" 6000°00500090%
10 : : " " 1009 g2 o : : i 103u' 3089899300939”80000 WMGW"MW
10" 10> 10° 10° 10° 10° 10" 10> 10° 10* 10° 10° 10" 10> 10° 10° 10° 10°
Size of sample, n Size of sample, n Size of sample, n
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Estimating Power-law
Exponent Alpha



Estimating Power-Law Exponent o

Estimating a from data:
(1) Fit a line on log-log axis using least squares:

Solve arg min(log(y) — alog(x) + b)?
a

In-degree C(total, remote-only? distr.
N , BAD!
1=+89 Total in-degree o _

19+BBJT FEemote-only in-degree + —

I

le+p? -
le+@6
186668

186888
18848

numkber of pages

1688
1a

1

1 16 1848 180888
in—-degree
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Estimating Power-Law Exponent o

Estimating o from data: M

Plot Complementary CDF (CCDF) P(X > x).
Then the estimateda =1+ a’
where a' is the slope of P(X = x).

Fact: If p(x) = P(X =x) x x %
then P(X > x) o x~ (@ 1)

PX=x)=3X2,p() ~ [, Zy *dy=

Z _ Z —(r—
1 a]oo — % (a—1)
X 1-a
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Estimating Power-Law Exponent o

Estimating o from data: M

Use maximum likelihood approach:

The log-likelihood of observed data d:
L(a) = In(I1; p(d;)) = Xi' Inp(d;)
=3 (ln(a —1) —In(x,,) — aln ( 4 ))

Want to find a that max L(«): Set d];if) =0
dL(a)
o =0 = o xim()=o
d; -1 Power-law density:
a — 1 + n [Zn ln (xm)] p(x) = ax:nl(%>—a
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Flickr: Fitting Degree Exponent

T T T 10 3 Moo KT Ll
¥ 06 Linear scale |7 F 10! e 1
X - a X S Log scale,
~ O'J = 10'2 __ ."'.,‘ :
L04 . » : “~, a=1.75 |
(=B (=B 3T : 1
503 - . = 100 F
£ 02 . 2 10tk
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0 L] | \ L
0 500 1000 1500 2000 2500 3000 3500 4000 10"
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0 0
= 10°¢ ' T 0T ] = 10°F
A '~y A
< 10! - < 10!
(a0 r (a0 r
o 107 F - o 107 F
O I O I
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Why are Power-Laws Surprising

Can not arise from sums of independent events!

Recall: in G, each pair of nodes in connected
independently with prob. p

X... degree of node v

X, ... eventthat w links to v

X =2wXy

E[X] =2wE[Xy] =(n—-1)p
Now, what is P(X = k)? Central limit theorem!

X4, ..., X,: random vars with mean u, variance ¢”
Sn — Zin': E[Sn] — nl'l ’ Var[Sn] — no-zr SD[Sn] — U\/ﬁ

XZ
P(S, = E[S,] + x-SD[S,]) ~ —e Z

21
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Random vs. Scale-free network

Random network Scale-free (power-law) network
(Erdos-Renyi random graph) P

Degree
distribution is
Power-law

Degree distribution is Binomial
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Consequence of
Power-Law Degrees




Consequence: Network Resilience

How does network
connectivity change

as nodes get removed?
[Albert et al. 00; Palmer et al. 01]

Nodes can be removed:
Random failure:

Remove nodes uniformly at random

Targeted attack:
Remove nodes in order of decreasing degree
This is important for robustness of the internet

as well as epidemiology
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Network Resilience

Networks with equal number of nodes and edges:
ER random graph

Scale-free network
Study the properties of the network as an
increasing fraction of nodes are removed
Node selection:
Random (this corresponds to random failures)

Nodes with largest degrees (corresponds to targeted attacks)
Measures:

Fraction of nodes in the largest connected component

Average shortest path length between nodes in the
largest component
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Network Resilience: Connectivity

Scale-free graphs are resilient to random
attacks, but sensitive to targeted attacks:

Scale-free

— I '::] T '::] -'?.‘ T T T T T I T T T

C | et i
S o8l 9 l (b) -
> o -
K 0.6 - .
0 8 I
q'c—- © [::' 4 | i
w_ O .
o 5 I
S “E’ 0.2 - _ 1
(0)) i B

8 | %m | DE|‘I—|I—|—|—| 00 p— S

D '::I ' ' L ) o s e
00 02 04 06 08 10 00 02 04 06 08 10

random failure targeted attack
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Network Resilience: Connectivity

What proportion of random nodes must be removed
in order for the size (S) of the giant component to
drop to 0?

1

= 5
5 O o,
S5 o8- | y... degree exponent

o - )

= 2 ke, V=25 K... maximum degree
—_ O 0.6 B ® O-C-géﬁﬁ -
£ O g “ ooy,
C -O = OD éﬁa
.9 "9 0'4 i * OQ D%& _
- O i % PR K =400
8 Q ® % %%a
FE 02 y=35" o

8 ., K=25% ",

Sevoepasch

0

0 02 04 06 08 1
Fraction deleted nodes

Infinite scale-free networks with ¥y < 3 never break
down under random node failures

Source: Cohen et al., Resilience of the Internet to Random Breakdowns
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Network Resilience: Path Length

— T T T 40 —T T T
20  Targeted Scale-free G, network
< |® attack network i Targe’ced
> attack
ks ¢ =
= o ¢ n" |
S 10 # - 20 . ]
- Random S o 20
S L failures i = |
= “'l---lil-ll'l-.. ) Random N
o failures .y
0 L | | [ 1 | . | ¢ 0 Il l 1 l 1 l 1 l 1
00 02 04 06 08 10 00 02 04 06 08 10
Fraction of removed nodes Fraction of removed nodes

Real networks are resilient to random failures
G,, has better resilience to targeted attacks

E.g., we need to remove all pages of degree >5 to disconnect
the Web. But this is a very small fraction of all web pages!
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Resilience in Real Networks

Internet WWW

+ % 1.0 e—— T T T 10pF——F——7—7T—"
cC i ]
O O o Random H

08 O 108 | .
% g' B, failures El) ] o (b) ]
— " o - O i
= g 0.6 5 DE'D _U.B o _
c - - - | -
§ 8 04 Prargeted "o 04F % _
O © (2 wattack "o 102 | -
E E - I:Il:l E -; DDDq:tth:p -

O
L O 00 L S N T R Nose 10 N T B e R
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L L 40 — T T T T T T 1
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= | (c) |30[% (d)
S .
L
% 10 120 % ]
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Fraction deleted nodes

Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-Laszl6 Barabasi
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Zoom-in

12 . , . :

The first few % of e o Faiue o]
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Preferential Attachment
Model



Model: Preferential attachment

Preferential attachment
[Price ‘65, Albert-Barabasi 99, Mitzenmacher ‘03]

P(j—i)=

10/30/17

Nodes arrive in order 1,2,...,n
At step j, let d; be the degree of node i <j
A new node j arrives and creates m out-links

Prob. of j linking to a previous node i is
proportional to degree d; of node i

Zd

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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Rich Get Richer

New nodes are more likely to link to
nodes that already have high degree

Herbert Simon’s result;:

Power-laws arise from “Rich get richer” (cumulative
advantage)

Examples

Citations [de Solla Price ‘65]: New citations to a paper are
proportional to the number it already has

Herding: If a lot of people cite a paper, then it must be good, and
therefore | should cite it too

Sociology: Matthew effect, http://en.wikipedia.org/wiki/Matthew effect

“For whoever has will be given more, and they will have an abundance.
Whoever does not have, even what they have will be taken from them.”

Eminent scientists often get more credit than a comparatively unknown
researcher, even if their work is similar
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[Mitzenmacher, ‘03]

The Exact Model

We will analyze the following model:
Nodes arrive in order 1,2,3, ..., n
When node j is created it makes a '/
single out-link to an earlier node t chosen:

1) With prob. p, j links to i chosen uniformly at
random (from among all earlier nodes)

2) With prob. 1 — p, node j chooses i uniformly at
random & links to a random node [ that i points to

This is same as saying: With prob. 1 — p, node j links to
node [ with prob. proportional to d, (the in-degree of I)

Our graph is directed: Every node has out-degree 1
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The Model Givens Power-Laws

Claim: The described model generates
networks where the fraction of nodes with
in-degree k scales as:

(1)
P(d =k)ock

where q=1-p

So we get power-law 1
degree distribution ¢y — 1 I

with exponent: 1 . p
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Continuous Approximation

Consider deterministic and continuous
approximation to the degree of node 1 as a
function of time ¢

t is the number of nodes that have arrived so far

In-Degree d;(t) of nodei (i = 1,2,...,n)isa
continuous quantity and it grows
deterministically as a function of time ¢

Plan: Analyze d;(t) — continuous in-degree
of nodeiattimet (t > i)

Note: Node I arrives to the graph at time
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Continuous Degree: What We Know

Node i

Initial condition: f
d;(t) = 0,whent =1 (nodeijustarrived)
Expected change of d;(t) over time:

Node i gains an in-link at step £ + 1 only if a link
from a newly created node t + 1 points to it

What'’s the probability of this event?

With prob. p node t + 1 links randomly:
Links to our node i with prob. 1/t

With prob. 1 — p node t + 1 links preferentially:
Links to our node i with prob. d;(t)/t

Prob. node t + 1 linksto i is: p L4 (1—p)—

(t)

Note: each node creates exactly 1 edge. So after t nodes/steps there are t edges in total.
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Continuous Degree

Att = 4 node i = 4 comes. It has out-degree of
1 to deterministically share with other nodes:

m P

=0+p- +(1—p)—

1 2 —2+P1+(1—’P)Z
2 . =0+p;+(1-p);
: 1 =1+p; + (1 -p);
4 / 0

dd; 1 d;
d;i(®) — di(t—1) ==L2 =p-+ (1 —p) =2

How does d;(t) evolve as t — oo?
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What is the rate of growth of d?

Expected change of d;(t):

t
di(t+1) —dy(t) = py;+ (1 —p) =3
Y
dd;(t 1 d;(t +qd;(t _ 1 _
df)—P;‘F(l_p) & _p qt() qg=(1-p)
Divide by
p+qd o ddi(t) = -dt p+qdi(t)
fp+qdl(t) dd;(t) = f dt integrate
Exponentiate
Eln(p + qd,; (t)) =Int+c and let 4 = e¢

p+qdi(t) =e t1 = d;(t) = 1((At)" —-p) A=?
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What is the constant A?

, di(0) = = (At7 — p)
What is the value of constant A? q

We know: d;(i) = 0

S0: d;(1) = ((4)7 —p) = 0

sq=7P
id
_r((t\!_
And so:di(t)—q((i) 1)

Observation: Old nodes
(small i values) have
higher in-degrees d;(t)
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