Network Formation Processes: Power-law degrees and Preferential Attachment

CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu

Next Time: New Topics

10/30/17

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Network Formation Processes

What do we observe that needs explaining?

- Small-world model:
 - Diameter
 - Clustering coefficient
- Preferential Attachment:
 - Node degree distribution
 - What fraction of nodes has degree k (as a function of k)?
 - Prediction from simple random graph models:
 p(k) = exponential function of k
 - Observation: Often a power-law: $p(k) \propto k^{-\alpha}$

Degree Distributions

 $P(k) \propto k^{-\alpha}$

Node Degrees in Networks

Take a network, plot a histogram of P(k) vs. k

Node Degrees in Networks

Plot the same data on *log-log* scale:

[Leskovec et al. KDD <u>'08]</u>

Node Degrees: Faloutsos³

Internet Autonomous Systems [Faloutsos, Faloutsos and Faloutsos, 1999]

Node Degrees: Web

The World Wide Web [Broder et al., 2000]

Node Degrees: Barabasi&Albert

Other Networks [Barabasi-Albert, 1999]

Exponential vs. Power-Law

always higher than the exponential!

[Clauset-Shalizi-Newman 2007]

Exponential vs. Power-Law

Power-law vs. Exponential on log-log and semi-log (log-lin) scales

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Exponential vs. Power-Law

Power-Law Degree Exponents

- Power-law degree exponent is typically 2 < α < 3
 - Web graph:
 - α_{in} = 2.1, α_{out} = 2.4 [Broder et al. 00]
 - Autonomous systems:
 - α = 2.4 [Faloutsos³, 99]
 - Actor-collaborations:
 - α = 2.3 [Barabasi-Albert 00]
 - Citations to papers:
 - α ≈ 3 [Redner 98]
 - Online social networks:
 - $\alpha \approx 2$ [Leskovec et al. 07]

Scale-Free Networks

Definition:

Networks with a power-law tail in their degree distribution are called "scale-free networks"

Where does the name come from?

- Scale invariance: There is no characteristic scale
 - Scale invariance is that laws do not change if scales of length, energy, or other variables, are multiplied by a common factor
- Scale-free function: $f(ax) = a^{\lambda}f(x)$

• Power-law function: $f(ax) = a^{\lambda}x^{\lambda} = a^{\lambda}f(x)$

Log() or Exp() are not scale free! $f(ax) = \log(ax) = \log(a) + \log(x) = \log(a) + f(x)$ $f(ax) = \exp(ax) = \exp(x)^a = f(x)^a$

[Clauset-Shalizi-Newman 2007]

Power-Laws are Everywhere

Many other quantities follow heavy-tailed distributions

[Chris Anderson, Wired, 2004]

Anatomy of the Long Tail

ANATOMY OF THE LONG TAIL

Online services carry far more inventory than traditional retailers. Rhapsody, for example, offers 19 times as many songs as Wal-Mart's stock of 39,000 tunes. The appetite for Rhapsody's more obscure tunes (charted below in yellow) makes up the so-called Long Tail. Meanwhile, even as consumers flock to mainstream books, music, and films (right), there is real demand for niche fare found only online.

THE NEW GROWTH MARKET: OBSCURE PRODUCTS YOU CAN'T GET ANYWHERE BUT ONLINE

6.100

Jure Leskovec. Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Not Everyone Likes Power-Laws 😳

AGAINST

SAFER

DAT

REPEAL

POWER

LAWS

ut

Jure Leskovec, Sta

CMU grad-students at the G20 meeting in Pittsburgh in Sept 2009

Mathematics of Power-Laws

Heavy Tailed Distributions

Degrees are heavily skewed:

Distribution P(X > x) is heavy tailed if: $\lim_{x \to \infty} \frac{P(X > x)}{e^{-\lambda x}} = \infty$

Note:

• Normal PDF:
$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• Exponential PDF: $p(x) = \lambda e^{-\lambda x}$

• then $P(X > x) = 1 - P(X \le x) = e^{-\lambda x}$ are not heavy tailed!

Heavy Tailed Distributions

Various names, kinds and forms:

Long tail, Heavy tail, Zipf's law, Pareto's law
 Heavy tailed distributions:

P(x) is proportional to:

power lawP(x)power lawxwith cutoffstretchedexponentiallog-normal $\frac{1}{x}$

$$P(x) \propto x^{-\alpha}$$
$$x^{-\alpha} e^{-\lambda x}$$
$$x^{\beta-1} e^{-\lambda x^{\beta}}$$

al $\left| \frac{1}{x} \exp\left[-\frac{\left(\ln x - \mu\right)^2}{2\sigma^2} \right] \right|$

[Clauset-Shalizi-Newman 2007]

Mathematics of Power-laws

What is the normalizing constant? Z = ? $p(x) = Z x^{-\alpha}$

• p(x) is a distribution: $\int p(x) dx = 1$

p(x) diverges as $x \rightarrow 0$ so x_m is the minimum value of the power-law [*X_m*, ∞]

 $(ax)^n =$

Continuous approximation

$$1 = \int_{x_m}^{\infty} p(x) dx = Z \int_{x_m}^{\infty} x^{-\alpha} dx$$

$$= -\frac{Z}{\alpha - 1} [x^{-\alpha + 1}]_{x_m}^{\infty} = -\frac{Z}{\alpha - 1} [\infty^{1 - \alpha} - x_m^{1 - \alpha}]$$

$$\Rightarrow Z = (\alpha - 1) x_m^{\alpha - 1}$$
Need: $\alpha > 1!$

$$p(x) = \frac{\alpha - 1}{x_m} \left(\frac{x}{x_m}\right)^{-\alpha}$$
Integral:

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

 $\langle X_m \rangle$

Mathematics of Power-laws

What's the expected value of a power-law random variable X?

•
$$E[X] = \int_{x_m}^{\infty} x p(x) dx = Z \int_{x_m}^{\infty} x^{-\alpha+1} dx$$

$$= \frac{Z}{2-\alpha} [x^{2-\alpha}]_{x_m}^{\infty} = \frac{(\alpha-1)x_m^{\alpha-1}}{-(\alpha-2)} [\infty^{2-\alpha} - x_m^{2-\alpha}]$$

Need: **α > 2 !**

$$\Rightarrow E[X] = \frac{\alpha - 1}{\alpha - 2} x_m$$

Power-law density: $p(x) = \frac{\alpha - 1}{x_m} \left(\frac{x}{x_m}\right)^{-\alpha}$ $Z = \frac{\alpha - 1}{x_m^{1-\alpha}}$

Mathematics of Power-Laws

Power-laws have infinite moments!

$$E[X] = \frac{\alpha - 1}{\alpha - 2} x_m$$

If
$$\alpha \leq 2: E[X] = \infty$$

If
$$\alpha \leq 3 : Var[X] = \infty$$

In real networks $2 < \alpha < 3$ so: E[X] = const $Var[X] = \infty$

Average is meaningless, as the variance is too high!

 Consequence: Sample average of *n* samples from a power-law with exponent *α*

10/30/17

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Estimating Power-law Exponent Alpha

Estimating Power-Law Exponent α

Estimating α from data:

- (1) Fit a line on log-log axis using least squares:
 - Solve $\arg \min_{\alpha} (\log(y) \alpha \log(x) + b)^2$

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

BAD!

Estimating Power-Law Exponent α

Estimating α from data:

- Plot Complementary CDF (CCDF) $P(X \ge x)$. Then the estimated $\alpha = 1 + \alpha'$ where α' is the slope of $P(X \ge x)$.
- <u>Fact:</u> If $p(x) = P(X = x) \propto x^{-\alpha}$ then $P(X \ge x) \propto x^{-(\alpha-1)}$ • $P(X \ge x) = \sum_{j=x}^{\infty} p(j) \approx \int_{x}^{\infty} Z y^{-\alpha} dy =$ • $= \frac{Z}{1-\alpha} [y^{1-\alpha}]_{x}^{\infty} = \frac{Z}{1-\alpha} x^{-(\alpha-1)}$

OK!

Estimating Power-Law Exponent $\boldsymbol{\alpha}$

Estimating α from data:

- Use maximum likelihood approach:
 - The log-likelihood of observed data d_i:

•
$$L(\alpha) = \ln(\prod_{i=1}^{n} p(d_i)) = \sum_{i=1}^{n} \ln p(d_i)$$

$$=\sum_{i}^{n} \left(\ln(\alpha - 1) - \ln(x_m) - \alpha \ln\left(\frac{d_i}{x_m}\right) \right)$$

• Want to find α that max $L(\alpha)$: Set $\frac{dL(\alpha)}{d\alpha} = 0$

$$\frac{\mathrm{dL}(\alpha)}{\mathrm{d}\alpha} = 0 \implies \frac{n}{\alpha - 1} - \sum_{i=1}^{n} \ln\left(\frac{d_i}{x_m}\right) = 0$$

•
$$\Rightarrow \widehat{\alpha} = 1 + n \left[\sum_{i}^{n} ln \left(\frac{d_{i}}{x_{m}} \right) \right]^{-1}$$

OK!

Flickr: Fitting Degree Exponent

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Why are Power-Laws Surprising

Can not arise from sums of independent events!

- Recall: in G_{np} each pair of nodes in connected independently with prob. p
 - $X \dots$ degree of node v
 - X_w ... event that w links to v

•
$$X = \sum_{w} X_{w}$$

•
$$E[X] = \sum_{w} E[X_w] = (n-1)p$$

• Now, what is P(X = k)? Central limit theorem!

•
$$X_1$$
, ..., X_n : random vars with mean μ , variance σ^2

•
$$S_n = \sum_i X_i$$
: $E[S_n] = n\mu$, $Var[S_n] = n\sigma^2$, $SD[S_n] = \sigma\sqrt{n}$

•
$$P(S_n = E[S_n] + x \cdot SD[S_n]) \sim \frac{1}{2\pi} e^{-\frac{x^2}{2}}$$

7

Random vs. Scale-free network

Random network

(Erdos-Renyi random graph)

Scale-free (power-law) network

Degree distribution is Power-law

Consequence of Power-Law Degrees

Consequence: Network Resilience

- How does network connectivity change as nodes get removed?
 [Albert et al. 00; Palmer et al. 01]
- Nodes can be removed:
 - Random failure:

- Remove nodes uniformly at random
- Targeted attack:

Remove nodes in order of decreasing degree

This is important for robustness of the internet as well as epidemiology

Network Resilience

- Networks with equal number of nodes and edges:
 - ER random graph
 - Scale-free network
- Study the properties of the network as an increasing fraction of nodes are removed
 - Node selection:
 - Random (this corresponds to random failures)
 - Nodes with largest degrees (corresponds to targeted attacks)

Measures:

- Fraction of nodes in the largest connected component
- Average shortest path length between nodes in the largest component

Network Resilience: Connectivity

Scale-free graphs are resilient to random attacks, but sensitive to targeted attacks:

Network Resilience: Connectivity

What proportion of random nodes must be removed in order for the size (S) of the giant component to drop to 0?

 γ ... degree exponent K... maximum degree

Infinite scale-free networks with $\gamma < 3$ never break down under random node failures

Source: Cohen et al., Resilience of the Internet to Random Breakdowns

10/30/17

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Network Resilience: Path Length

- Real networks are resilient to <u>random failures</u>
 G_{np} has better resilience to <u>targeted attacks</u>
 - E.g., we need to remove all pages of degree >5 to disconnect the Web. But this is a very small fraction of all web pages!

Resilience in Real Networks

Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-László Barabási

Zoom-in

- The first few % of nodes removed:
 - E: G_{np}
 - SF: Scale-free
- Notice how targeted attacks very quickly disconnect the network

Preferential Attachment Model

Model: Preferential attachment

Preferential attachment

[Price '65, Albert-Barabasi '99, Mitzenmacher '03]

- Nodes arrive in order 1,2,...,n
- At step j, let d_i be the degree of node i < j</p>
- A new node j arrives and creates m out-links
- Prob. of *j* linking to a previous node *i* is proportional to degree *d_i* of node *i*

k

$$P(j \to i) = \frac{d_i}{\sum d_k}$$

Rich Get Richer

- New nodes are more likely to link to nodes that already have high degree
- Herbert Simon's result:
 - Power-laws arise from "Rich get richer" (cumulative advantage)

Examples

- Citations [de Solla Price '65]: New citations to a paper are proportional to the number it already has
 - Herding: If a lot of people cite a paper, then it must be good, and therefore I should cite it too
- Sociology: Matthew effect, <u>http://en.wikipedia.org/wiki/Matthew_effect</u>
 - "For whoever has will be given more, and they will have an abundance. Whoever does not have, even what they have will be taken from them."
 - Eminent scientists often get more credit than a comparatively unknown researcher, even if their work is similar

Node i

The Exact Model

We will analyze the following model:

- Nodes arrive in order 1,2,3, ..., n
- When node *j* is created it makes a single out-link to an earlier node *i* chosen:
 - 1) With prob. *p*, *j* links to *i* chosen uniformly at random (from among all earlier nodes)
 - 2) With prob. 1 p, node j chooses i uniformly at random & links to a random node l that i points to
 - This is same as saying: With prob. 1 p, node j links to node l with prob. proportional to d_l (the in-degree of l)
 - Our graph is directed: Every node has out-degree 1

The Model Givens Power-Laws

Claim: The described model generates networks where the fraction of nodes with in-degree k scales as:

$$P(d_i = k) \propto k^{-(1 + \frac{1}{q})}$$

where q=1-p

So we get power-law degree distribution with exponent:

Continuous Approximation

- Consider deterministic and continuous approximation to the degree of node *i* as a function of time *t*
 - t is the number of nodes that have arrived so far
 - In-Degree d_i(t) of node i (i = 1,2,...,n) is a continuous quantity and it grows deterministically as a function of time t
- Plan: Analyze d_i(t) continuous in-degree of node i at time t (t > i)
 - Note: Node *i* arrives to the graph at time *i*

Continuous Degree: What We Know

Initial condition:

• $d_i(t) = 0$, when t = i (node *i* just arrived)

• Expected change of $d_i(t)$ over time:

- Node *i* gains an in-link at step *t* + 1 only if a link from a newly created node *t* + 1 points to it
- What's the probability of this event?
 - With prob. p node t + 1 links randomly:
 - Links to our node i with prob. 1/t
 - With prob. 1 p node t + 1 links preferentially:
 - Links to our node i with prob. $d_i(t)/t$

• Prob. node t + 1 links to i is: $p \frac{1}{t} + (1 - p) \frac{d_i(t)}{t}$

Note: each node creates exactly 1 edge. So after *t* nodes/steps there are *t* edges in total.

Node i

Continuous Degree

 At t = 4 node i = 4 comes. It has out-degree of 1 to deterministically share with other nodes:

	Node i	<i>d_i(t)</i>	<i>d_i(t</i> +1)	4
	0	0	$= 0 + p\frac{1}{4} + (1 - p)\frac{0}{4}$	0
	1	2	$=2 + p\frac{1}{4} + (1 - p)\frac{2}{4}$	
	2	0	$= 0 + p\frac{1}{4} + (1 - p)\frac{1}{4}$	2 3
	3	1	$=1 + p\frac{1}{4} + (1 - p)\frac{1}{4}$	
	4	/	0	
$d_i(t) - d_i(t-1) = \frac{\mathrm{d}d_i(t)}{\mathrm{d}t} = \mathbf{p}\frac{1}{t} + (1-p)\frac{d_i(t)}{t}$				
How does $d_{i}(t)$ evolve as $t \to \infty$?				

What is the rate of growth of d_i?

• Expected change of $d_i(t)$:

$$\underbrace{d_i(t+1) - d_i(t)}_{t} = p \frac{1}{t} + (1-p) \frac{d_i(t)}{t}$$

$$\underbrace{dd_i(t)}_{dt} = p \frac{1}{t} + (1-p) \frac{d_i(t)}{t} = \frac{p+qd_i(t)}{t}$$

$$q = (1-p)$$

$$\underbrace{dd_i(t)}_{t} = \frac{1}{t} dt$$

$$\underbrace{dd_i(t)}_{p+qd_i(t)} = \frac{1}{t} dt$$

$$f \frac{1}{p+qd_i(t)} dd_i(t) = \int \frac{1}{t} dt$$

$$\underbrace{dd_i(t)}_{p+qd_i(t)} = \ln t + c$$

$$\underbrace{dd_i(t)}_{t} = \frac{1}{t} dt$$

$$\underbrace{dd_i(t)}_{p+qd_i(t)} = \ln t + c$$

$$\underbrace{dd_i(t)}_{t} = \frac{1}{t} dt$$

•
$$p + qd_i(t) = e^{qc} t^q \Rightarrow d_i(t) = \frac{1}{q}((At)^q - p)$$
 A=?

What is the constant A?

$$d_i(t) = \frac{1}{q} (At^q - p)$$

What is the value of constant A?

• We know: $d_i(i) = 0$

• So:
$$d_i(i) = \frac{1}{q}((Ai)^q - p) = 0$$

• $\Rightarrow A = \frac{p}{i^q}$

• And so
$$\Rightarrow d_i(t) = \frac{p}{q} \left(\left(\frac{t}{i} \right)^q - 1 \right)$$

Observation: Old nodes (small *i* values) have higher in-degrees $d_i(t)$