Network Formation Processes: Power-law degrees and Preferential Attachment

CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu

Next Time: New Topics

Observations

Small diameter,
Edge clustering
Patterns of signed edge creation

Viral Marketing, Blogosphere, Memetracking

Models

Algorithms

Decentralized search

Models for predicting edge signs

Influence maximization,
Outbreak detection, LIM

Scale-Free

Preferential attachment, Copying model

PageRank, Hubs and authorities

Link prediction, Supervised random walks

Community detection: Girvan-Newman, Modularity

Network Formation Processes

What do we observe that needs explaining?

- Small-world model:
- Diameter
- Clustering coefficient
- Preferential Attachment:

- Node degree distribution
- What fraction of nodes has degree \boldsymbol{k} (as a function of \boldsymbol{k})?
- Prediction from simple random graph models: $p(k)=$ exponential function of \boldsymbol{k}
- Observation: Often a power-law: $\boldsymbol{p}(\boldsymbol{k}) \propto \boldsymbol{k}^{-\boldsymbol{\alpha}}$

Degree Distributions

Node Degrees in Networks

- Take a network, plot a histogram of $\boldsymbol{P}(\boldsymbol{k})$ vs. \boldsymbol{k}

Node Degrees in Networks

- Plot the same data on log-log scale:

Node Degrees: Faloutsos³

- Internet Autonomous Systems
[Faloutsos, Faloutsos and Faloutsos, 1999]

Node Degrees: Web

- The World Wide Web [Broder et al., 2000]

Node Degrees: Barabasi\&Albert

- Other Networks [Barabasi-Albert, 1999]

Actor collaborations
Web graph
Power-grid

Exponential vs. Power-Law

- Above a certain \boldsymbol{x} value, the power law is always higher than the exponential!

Exponential vs. Power-Law

- Power-law vs. Exponential on log-log and semi-log (log-lin) scales

Exponential vs. Power-Law

Bell Curve

Power Law Distribution

Power-Law Degree Exponents

- Power-law degree exponent is typically $2<\alpha<3$
- Web graph:
- $\alpha_{\text {in }}=2.1, \alpha_{\text {out }}=2.4$ [Broder et al. 00]
- Autonomous systems:
- $\alpha=2.4$ [Faloutsos ${ }^{3}$, 99]
- Actor-collaborations:
- $\alpha=2.3$ [Barabasi-Albert 00]
- Citations to papers:
- $\alpha \approx 3$ [Redner 98]
- Online social networks:
- $\alpha \approx 2$ [Leskovec et al. 07]

Scale-Free Networks

- Definition:

Networks with a power-law tail in their degree distribution are called "scale-free networks"

- Where does the name come from?
- Scale invariance: There is no characteristic scale
- Scale invariance is that laws do not change if scales of length, energy, or other variables, are multiplied by a common factor
- Scale-free function: $f(a x)=a^{\lambda} f(x)$
- Power-law function: $\boldsymbol{f}(\boldsymbol{a x})=\boldsymbol{a}^{\lambda} \boldsymbol{x}^{\lambda}=\boldsymbol{a}^{\lambda} \boldsymbol{f}(\boldsymbol{x})$

$$
\begin{aligned}
& \log () \text { or } \operatorname{Exp}() \text { are not scale free! } \\
& f(a x)=\log (a x)=\log (a)+\log (x)=\log (a)+f(x) \\
& f(a x)=\exp (a x)=\exp (x)^{a}=f(x)^{a}
\end{aligned}
$$

Power-Laws are Everywhere

Many other quantities follow heavy-tailed distributions

Anatomy of the Long Tail

ANATOMY OF THE LONG TAIL

Online services carry far more inventory than traditional retailers. Rhapsody, for example, offers 19 times as many songs as War-Mart's stock of 39,000 tunes. The appetite for Rhapsody's more obscure tunes (charted below in yellow) makes up the so-called Long Tail. Mesinwhile, even as consumers flock to mainstream books, music, and films (right), there is real demand for niche fare found only online.

THE MEU GROUTH MARKET: OBSCURE PRODUCTS YOU CAN'T GET ANYYHERE BUT ONLINE

[^0]
Not Everyone Likes Power-Laws ©

Mathematics of Power-Laws

Heavy Tailed Distributions

- Degrees are heavily skewed: Distribution $P(X>x)$ is heavy tailed if:

$$
\lim _{x \rightarrow \infty} \frac{P(X>x)}{e^{-\lambda x}}=\infty
$$

- Note:
- Normal PDF: $p(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
- Exponential PDF: $p(x)=\lambda e^{-\lambda x}$
- then $P(X>x)=1-P(X \leq x)=e^{-\lambda x}$ are not heavy tailed!

Heavy Tailed Distributions

- Various names, kinds and forms:
- Long tail, Heavy tail, Zipf's law, Pareto's law
- Heavy tailed distributions:
- $\mathrm{P}(\mathrm{x})$ is proportional to:
power law $\mid P(x) \propto x^{-\alpha}$
power law
with cutoff
stretched
exponential
log-normal $\frac{1}{x} \exp \left[-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}\right]$

Mathematics of Power-laws

- What is the normalizing constant?

$$
p(x)=Z x^{-\alpha} \quad Z=?
$$

- $\boldsymbol{p}(\boldsymbol{x})$ is a distribution: $\int \boldsymbol{p}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}=\mathbf{1}$

Continuous approximation

- $1=\int_{x_{m}}^{\infty} p(x) d x=Z \int_{x_{m}}^{\infty} x^{-\alpha} d x$

$p(x)$ diverges as $x \rightarrow 0$ so x_{m} is the minimum value of the power-law distribution $x \in\left[x_{m}, \infty\right]$
$-=-\frac{Z}{\alpha-1}\left[x^{-\alpha+1}\right]_{x_{m}}^{\infty}=-\frac{Z}{\alpha-1}\left[\infty^{1-\alpha}-x_{m}^{1-\alpha}\right]$
- $\Rightarrow Z=(\alpha-1) x_{m}^{\alpha-1}$

Need: $\alpha>1$!

$$
p(x)=\frac{\alpha-1}{x_{m}}\left(\frac{x}{x_{m}}\right)^{-\alpha}
$$

Integral:
$\int(a x)^{n}=\frac{(a x)^{n+1}}{a(n+1)}$

Mathematics of Power-laws

- What's the expected value of a power-law random variable X ?
- $E[X]=\int_{x_{m}}^{\infty} x p(x) d x=Z \int_{x_{m}}^{\infty} x^{-\alpha+1} d x$
$=\frac{Z}{2-\alpha}\left[x^{2-\alpha}\right]_{x_{m}}^{\infty}=\frac{(\alpha-1) x_{m}^{\alpha-1}}{-(\alpha-2)}\left[\infty^{2-\alpha}-x_{m}^{2-\alpha}\right]$
Need: $\alpha>2$!

$$
\Rightarrow E[X]=\frac{\alpha-1}{\alpha-2} x_{m}
$$

Power-law density:

$$
p(x)=\frac{\alpha-1}{x_{m}}\left(\frac{x}{x_{m}}\right)^{-\alpha}
$$

$$
Z=\frac{\alpha-1}{x_{m}^{1-\alpha}}
$$

Mathematics of Power-Laws

- Power-laws have infinite moments!

$$
E[X]=\frac{\alpha-1}{\alpha-2} x_{m}
$$

- If $\alpha \leq 2: E[X]=\infty$
- If $\alpha \leq 3: \operatorname{Var}[X]=\infty$

In real networks $2<\alpha<3$ so:
$E[X]=$ const
$\operatorname{Var}[X]=\infty$

- Average is meaningless, as the variance is too high!
- Consequence: Sample average of n samples from a power-law with exponent α

Estimating Power-law
Exponent Alpha

Estimating Power-Law Exponent α

Estimating α from data:

- (1) Fit a line on log-log axis using least squares:

Solve $\arg \min _{\alpha}(\log (y)-\alpha \log (x)+b)^{2}$

Estimating Power-Law Exponent α

Estimating α from data:

- Plot Complementary CDF (CCDF) $\boldsymbol{P}(\boldsymbol{X} \geq \boldsymbol{x})$.

Then the estimated $\boldsymbol{\alpha}=\mathbf{1}+\boldsymbol{\alpha}^{\prime}$ where $\boldsymbol{\alpha}^{\prime}$ is the slope of $\boldsymbol{P}(\boldsymbol{X} \geq \boldsymbol{x})$.

- Fact: If $p(x)=P(X=x) \propto x^{-\alpha}$ then $P(X \geq x) \propto x^{-(\alpha-1)}$
- $P(X \geq x)=\sum_{j=x}^{\infty} p(j) \approx \int_{x}^{\infty} Z y^{-\alpha} d y=$
$=\frac{Z}{1-\alpha}\left[y^{1-\alpha}\right]_{x}^{\infty}=\frac{Z}{1-\alpha} x^{-(\alpha-1)}$

Estimating Power-Law Exponent α

Estimating α from data:

- Use maximum likelihood approach:
- The log-likelihood of observed data d_{i} :
- $L(\alpha)=\ln \left(\prod_{i}^{n} p\left(d_{i}\right)\right)=\sum_{i}^{n} \ln p\left(d_{i}\right)$
$=\sum_{i}^{n}\left(\ln (\alpha-1)-\ln \left(x_{m}\right)-\alpha \ln \left(\frac{d_{i}}{x_{m}}\right)\right)$
- Want to find α that max $L(\alpha)$: Set $\frac{\mathrm{dL}(\alpha)}{\mathrm{d} \alpha}=0$
$-\frac{\mathrm{dL}(\alpha)}{\mathrm{d} \alpha}=0 \Rightarrow \frac{n}{\alpha-1}-\sum_{i}^{n} \ln \left(\frac{d_{i}}{x_{m}}\right)=0$
$-\Rightarrow \widehat{\boldsymbol{\alpha}}=\mathbf{1}+\boldsymbol{n}\left[\sum_{i}^{n} \ln \left(\frac{\boldsymbol{d}_{\boldsymbol{i}}}{\boldsymbol{x}_{\boldsymbol{m}}}\right)\right]^{\boldsymbol{1}} \quad \begin{aligned} & \text { Power-law density: } \\ & p(x)=\frac{\alpha-1}{x_{m}}\left(\frac{x}{x_{m}}\right)^{-\alpha}\end{aligned}$

Flickr: Fitting Degree Exponent

Why are Power-Laws Surprising

Can not arise from sums of independent events!

- Recall: in $\boldsymbol{G}_{\boldsymbol{n} \boldsymbol{p}}$ each pair of nodes in connected independently with prob. \boldsymbol{p}
- \boldsymbol{X}... degree of node \boldsymbol{v}
- $\boldsymbol{X}_{\boldsymbol{w}} \ldots$ event that \boldsymbol{w} links to \boldsymbol{v}
- $\boldsymbol{X}=\sum_{w} \boldsymbol{X}_{\boldsymbol{w}}$
- $E[X]=\sum_{w} E\left[X_{w}\right]=(n-1) p$
- Now, what is $P(X=k)$? Central limit theorem!
- $\boldsymbol{X}_{\mathbf{1}}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}$: random vars with mean $\boldsymbol{\mu}$, variance σ^{2}
- $\boldsymbol{S}_{\boldsymbol{n}}=\sum_{\boldsymbol{i}} \boldsymbol{X}_{\boldsymbol{i}}: E\left[S_{n}\right]=\boldsymbol{n} \boldsymbol{\mu}, \operatorname{Var}\left[S_{n}\right]=\boldsymbol{n} \boldsymbol{\sigma}^{\mathbf{2}}, \mathrm{SD}\left[S_{n}\right]=\boldsymbol{\sigma} \sqrt{\boldsymbol{n}}$
- $P\left(S_{n}=E\left[S_{n}\right]+x \cdot \operatorname{SD}\left[S_{n}\right]\right) \sim \frac{1}{2 \pi} \mathrm{e}^{-\frac{\mathrm{x}^{2}}{2}}$

Random vs. Scale-free network

Random network
(Erdos-Renyi random graph)

Scale-free (power-law) network
Degree distribution is Power-law

Consequence of
Power-Law Degrees

Consequence: Network Resilience

- How does network connectivity change as nodes get removed? [Albert et al. 00; Palmer et al. 01]
- Nodes can be removed:
- Random failure:

- Remove nodes uniformly at random
- Targeted attack:
- Remove nodes in order of decreasing degree
- This is important for robustness of the internet as well as epidemiology

Network Resilience

- Networks with equal number of nodes and edges:
- ER random graph
- Scale-free network
- Study the properties of the network as an increasing fraction of nodes are removed
- Node selection:
- Random (this corresponds to random failures)
- Nodes with largest degrees (corresponds to targeted attacks)
- Measures:
- Fraction of nodes in the largest connected component
- Average shortest path length between nodes in the largest component

Network Resilience: Connectivity

- Scale-free graphs are resilient to random attacks, but sensitive to targeted attacks:

Network Resilience: Connectivity

What proportion of random nodes must be removed in order for the size (S) of the giant component to drop to 0 ?

$\gamma .$. degree exponent
K... maximum degree

- Infinite scale-free networks with $\gamma<3$ never break down under random node failures

Network Resilience: Path Length

- Real networks are resilient to random failures
- G_{np} has better resilience to targeted attacks
- E.g., we need to remove all pages of degree >5 to disconnect the Web. But this is a very small fraction of all web pages!

Resilience in Real Networks

Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-László Barabási

Zoom-in

The first few \% of nodes removed:

- $E: G_{n p}$
- SF: Scale-free
- Notice how targeted attacks very quickly disconnect the network

Preferential Attachment Model

Model: Preferential attachment

- Preferential attachment
[Price '65, Albert-Barabasi '99, Mitzenmacher '03]
- Nodes arrive in order 1,2,...,n
- At step \boldsymbol{j}, let $\boldsymbol{d}_{\boldsymbol{i}}$ be the degree of node $\boldsymbol{i}<\boldsymbol{j}$
- A new node \boldsymbol{j} arrives and creates \boldsymbol{m} out-links
- Prob. of \boldsymbol{j} linking to a previous node \boldsymbol{i} is proportional to degree $\boldsymbol{d}_{\boldsymbol{i}}$ of node \boldsymbol{i}

$$
P(j \rightarrow i)=\frac{d_{i}}{\sum_{k} d_{k}}
$$

Rich Get Richer

- New nodes are more likely to link to nodes that already have high degree
- Herbert Simon's result:
- Power-laws arise from "Rich get richer" (cumulative advantage)
- Examples
- Citations [de Solla Price '65]: New citations to a paper are proportional to the number it already has
- Herding: If a lot of people cite a paper, then it must be good, and therefore I should cite it too
- Sociology: Matthew effect, http://en.wikipedia.org/wiki/Matthew effect
- "For whoever has will be given more, and they will have an abundance. Whoever does not have, even what they have will be taken from them."
- Eminent scientists often get more credit than a comparatively unknown researcher, even if their work is similar

The Exact Model

We will analyze the following model:

- Nodes arrive in order $1,2,3, \ldots, n$
- When node \boldsymbol{j} is created it makes a single out-link to an earlier node \boldsymbol{i} chosen:
- 1) With prob. p, j links to i chosen uniformly at random (from among all earlier nodes)
- 2) With prob. $\mathbf{1}$ - \boldsymbol{p}, node \boldsymbol{j} chooses \boldsymbol{i} uniformly at random \& links to a random node l that i points to
- This is same as saying: With prob. $\mathbf{1 - p}$, node \boldsymbol{j} links to node \boldsymbol{l} with prob. proportional to $\boldsymbol{d}_{\boldsymbol{l}}$ (the in-degree of \boldsymbol{l})
- Our graph is directed: Every node has out-degree 1

The Model Givens Power-Laws

- Claim: The described model generates networks where the fraction of nodes with in-degree \boldsymbol{k} scales as:

$$
-\left(1+\frac{1}{\infty}\right)
$$

$P\left(d_{i}=k\right) \propto k$
q
where $q=1-p$

So we get power-law degree distribution with exponent:

$$
\alpha=1+\frac{1}{1-p}
$$

Continuous Approximation

- Consider deterministic and continuous approximation to the degree of node \boldsymbol{i} as a function of time \boldsymbol{t}
- \boldsymbol{t} is the number of nodes that have arrived so far
- In-Degree $d_{i}(t)$ of node $\boldsymbol{i}(i=1,2, \ldots, n)$ is a continuous quantity and it grows deterministically as a function of time \boldsymbol{t}
- Plan: Analyze $d_{i}(t)$ - continuous in-degree of node \boldsymbol{i} at time $\boldsymbol{t}(\boldsymbol{t}>\boldsymbol{i})$
- Note: Node \boldsymbol{i} arrives to the graph at time \boldsymbol{i}

Continuous Degree: What We Know

- Initial condition:
$\boldsymbol{d}_{\boldsymbol{i}}(\boldsymbol{t})=\mathbf{0}$, when $\boldsymbol{t}=\boldsymbol{i} \quad$ (node i just arrived)
- Expected change of $d_{i}(t)$ over time:
- Node \boldsymbol{i} gains an in-link at step $\boldsymbol{t}+\mathbf{1}$ only if a link from a newly created node $t+1$ points to it
- What's the probability of this event?
- With prob. \boldsymbol{p} node $\boldsymbol{t}+\mathbf{1}$ links randomly:
- Links to our node \boldsymbol{i} with prob. $\mathbf{1 / t}$
- With prob. $\mathbf{1}-\boldsymbol{p}$ node $\boldsymbol{t}+\mathbf{1}$ links preferentially:
- Links to our node \boldsymbol{i} with prob. $\boldsymbol{d}_{\boldsymbol{i}}(\boldsymbol{t}) / \boldsymbol{t}$
- Prob. node $t+1$ links to i is: $p \frac{1}{t}+(1-p) \frac{d_{i}(t)}{t}$ Note: each node creates exactly 1 edge. So after t nodes/steps there are t edges in total.

Continuous Degree

- At $t=4$ node $i=4$ comes. It has out-degree of 1 to deterministically share with other nodes:

Node \boldsymbol{i}	$\boldsymbol{d}_{i}(\boldsymbol{t})$	$\boldsymbol{d}_{i}(\boldsymbol{t}+\mathbf{1})$
0	0	$=0+p \frac{1}{4}+(1-p) \frac{0}{4}$
1	2	$=2+p \frac{1}{4}+(1-p) \frac{2}{4}$
2	0	$=0+p \frac{1}{4}+(1-p) \frac{1}{4}$
3	1	$=1+p \frac{1}{4}+(1-p) \frac{1}{4}$
$\mathbf{4}$	1	0

- $d_{i}(t)-d_{i}(t-1)=\frac{\mathrm{d} d_{i}(t)}{\mathrm{d} t}=\mathrm{p} \frac{1}{t}+(1-p) \frac{d_{i}(t)}{t}$
- How does $d_{i}(t)$ evolve as $t \rightarrow \infty$?

What is the rate of growth of d_{i} ?

Expected change of $d_{i}(t)$:

$$
\begin{array}{ll}
=\underbrace{\boldsymbol{d}_{i}(\boldsymbol{t}+\mathbf{1})-\boldsymbol{d}_{i}(\boldsymbol{t})}=\boldsymbol{p} \frac{1}{t}+(\mathbf{1}-\boldsymbol{p}) \frac{d_{i}(t)}{t} & \\
=\frac{\mathrm{d} d_{i}(t)}{\mathrm{d} t}=p \frac{1}{t}+(1-p) \frac{d_{i}(t)}{t}=\frac{p+q d_{i}(t)}{t} & \begin{array}{l}
\text { Divide by } \\
p+q d_{i}(t)
\end{array} \\
=\frac{1}{p+q d_{i}(t)} \mathrm{d} d_{i}(t)=\frac{1}{t} \mathrm{~d} t & \begin{array}{l}
\text { integrate }
\end{array} \\
=\int \frac{1}{p+q d_{i}(t)} \mathrm{d} d_{i}(t)=\int \frac{1}{t} \mathrm{~d} t & \begin{array}{l}
\text { Exponentiate } \\
\text { and let } A=e^{c}
\end{array} \\
=\frac{1}{q} \ln \left(p+q d_{i}(t)\right)=\ln t+c & \\
=p+q d_{i}(t)=e^{q c} t^{q} \Rightarrow \boldsymbol{d}_{\boldsymbol{i}}(\boldsymbol{t})=\frac{\mathbf{1}}{\boldsymbol{q}}\left((\boldsymbol{A} \boldsymbol{t})^{\boldsymbol{q}}-\boldsymbol{p}\right) & \mathrm{A}=?
\end{array}
$$

What is the constant A?

What is the value of constant A?

$$
d_{i}(t)=\frac{1}{q}\left(A t^{q}-p\right)
$$

- We know: $d_{i}(i)=0$
- So: $d_{i}(i)=\frac{1}{q}\left((A i)^{q}-p\right)=0$
$\Rightarrow A=\frac{p}{i q}$
- And so $\Rightarrow d_{i}(t)=\frac{p}{q}\left(\left(\frac{t}{i}\right)^{q}-1\right)$

Observation: Old nodes (small i values) have higher in-degrees $d_{i}(t)$

[^0]:

