
CS224W: Analysis of Networks
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

HW2 Q1.1 parts (b) and (c) cancelled.
HW3 released. It is long. Start early.

¡ (1) New	problem: Outbreak	detection
¡ (2) Develop	an	approximation	algorithm
§ It	is	a	submodular opt.	problem!

¡ (3)	Speed-up	greedy	hill-climbing
§ Valid	for	optimizing	general	submodular functions
(i.e.,	also	works	for	influence	maximization)

¡ (4) Prove	a	new	“data	dependent”	bound	
on	the	solution	quality
§ Valid	for	optimizing	any	submodular function
(i.e.,	also	works	for	influence	maximization)

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 2

¡ Given	a	real	city	water	
distribution	network

¡ And	data	on	how	
contaminants	spread	
in	the	network

¡ Detect	the	
contaminant	as	quickly	
as	possible

¡ Problem	posed	by	the	
US	Environmental	
Protection	Agency

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 3

SS

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 4

Blogs

Posts

Time
ordered

hyperlinks

Information
cascade

Which blogs should one read to
detect cascades as effectively

as possible?
10/26/17

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 5

Detect	all
stories	but	late.

Want	to	read	things	
before others	do.

Detect	blue &	yellow	
stories soon	but	miss	

the	red	story.

¡ Both	of	these	two	are	an	instance	of	the	
same	underlying	problem!

¡ Given	a	dynamic	process	spreading	over	
a	network	we	want	to	select	a	set	of	nodes	
to	detect	the	process	effectively

¡ Many	other	applications:
§ Epidemics
§ Influence	propagation
§ Network	security

610/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

¡ Utility	of	placing	sensors:
§ Water	flow	dynamics,	demands	of	households,	…

¡ For	each	subset	S	Í V	compute	utility	f(S)

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 7

S2

S3

S4S1 S2

S3

S4

S1

High sensing “quality” (e.g., f(S) = 0.9) Low sensing “quality” (e.g. f(S)=0.01)

High impact
outbreak

Medium
impact
outbreak

Low impact
outbreak

Sensor reduces
impact through
early detection!

S1

Contamination

Set V of all
network junctions

Given:
¡ Graph	𝐺(𝑉, 𝐸)
¡ Data	on	how	outbreaks	spread	over	the	𝑮:
§ For	each	outbreak	𝑖 we	know	the	time	𝑇(𝑢, 𝑖)	
when	outbreak	𝑖 contaminates	node	𝑢

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 8

Water distribution network
(physical pipes and junctions)

Simulator of water consumption&flow
(built by Mech. Eng. people)

We simulate the contamination spread for
every possible location.

Given:
¡ Graph	𝐺(𝑉, 𝐸)
¡ Data	on	how	outbreaks	spread	over	the	𝑮:
§ For	each	outbreak	𝑖 we	know	the	time	𝑇(𝑢, 𝑖)	
when	outbreak	𝑖 contaminates	node	𝑢

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 9

The network of
the blogosphere

Traces of the information flow and
identify influence sets

Collect lots of blogs posts and trace
hyperlinks to obtain data about information

flow from a given blog.

a

b
c

a b
c

Given:
¡ Graph	𝐺(𝑉, 𝐸)
¡ Data	on	how	outbreaks	spread	over	the	𝑮:
§ For	each	outbreak	𝑖 we	know	the	time	𝑇(𝑢, 𝑖)	
when	outbreak	𝑖 contaminates	node	𝑢

¡ Goal: Select	a	subset	of	nodes	S that	
maximizes	the	expected	reward:

subject	to:	cost(S) < B

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 10

Expected reward for
detecting outbreak i

max
/⊆1

𝑓 𝑆 =5𝑃 𝑖 	𝑓7 𝑆
�

7

P(i)… probability of outbreak i occurring.
f(i)… reward for detecting outbreak i using sensors S.

¡ Reward	(one	of	the	following	three):
§ (1)Minimize	time	to	detection
§ (2)Maximize	number	of	detected	propagations
§ (3)Minimize	number	of	infected	people

¡ Cost (context	dependent):
§ Reading	big	blogs	is	more	time	consuming
§ Placing	a	sensor	in	a	remote	location	is	expensive

11

outbreak i

Monitoring blue node saves more
people than monitoring the green node

1
2

3
6

7

5
9

11

10

8

f(S)
10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

¡ Objective	functions:
§ 1)	Time	to	detection (DT)

§ How	long	does	it	take	to	detect	a	contamination?
§ Penalty for	detecting	at	time	𝒕: 𝜋7(𝑡) = 𝑡

§ 2)	Detection	likelihood (DL)
§ How	many	contaminations	do	we	detect?
§ Penalty	for	detecting	at	time	𝒕: 𝜋7(𝑡) = 0,	𝜋7(∞) = 1

§ Note,	this	is	binary	outcome:	we	either	detect	or	not
§ 3)	Population	affected	(PA)

§ How	many	people	drank	contaminated	water?
§ Penalty	for	detecting	at	time	𝒕:	𝜋7(𝑡) = {#	of	infected	
nodes	in	outbreak	𝑖 by	time	𝑡}.

¡ Observation:
In	all	cases	detecting	sooner	does	not	hurt!

1210/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

¡ Observation: Diminishing	returns

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 13

S1

S2

Placement S={s1, s2}

S’

New sensor:

Adding s’ helps a lot

S2

S4

S1

S3

Placement S’={s1, s2, s3, s4}

s’

Adding s’ helps
very little

We define 𝒇𝒊 𝑺 as penalty reduction:
𝑓7 𝑆 = 𝜋7 ∅ − 𝜋7(𝑇(𝑆, 𝑖))

¡ Claim: For	all	𝑨 ⊆ 𝑩 ⊆ 𝑽 and	sensors	𝒔 ∈ 𝑽\𝑩
𝒇 𝑨 ∪ 𝒔 − 𝒇 𝑨 ≥ 𝒇 𝑩 ∪ 𝒔 − 𝒇 𝑩

¡ Proof:	All	our	objectives	are	submodular
§ Fix	cascade/outbreak	𝒊
§ Show	𝒇𝒊 𝑨 = 𝝅𝒊 ∞ − 𝝅𝒊(𝑻(𝑨, 𝒊)) is	submodular
§ Consider 𝑨 ⊆ 𝑩 ⊆ 𝑽 and	sensor	𝒔 ∈ 𝑽\𝑩
§ When	does	node	𝒔 detect	cascade	𝒊?

§ We	analyze	3	cases	based	on	when	𝒔 detects	outbreak	i
§ (1) 𝑻 𝒔, 𝒊 ≥ 𝑻(𝑨, 𝒊):	𝒔 detects	late,	nobody	benefits:
𝑓7 𝐴 ∪ 𝑠 = 𝑓7 𝐴 ,	also	𝑓7 𝐵 ∪ 𝑠 = 𝑓7 𝐵 and	so
𝑓7 𝐴 ∪ 𝑠 − 𝑓7 𝐴 = 0 = 𝑓7 𝐵 ∪ 𝑠 − 𝑓7 𝐵

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 14

¡ Proof	(contd.):	
§ (2)	𝑻 𝑩, 𝒊 ≤ 𝑻 𝒔, 𝒊 < 𝑻 𝑨, 𝒊 :	𝒔 detects	after B but	before	A
𝒔 detects	sooner	than	any	node	in	𝑨 but	after	all	in	𝑩.	
So	𝒔 only	helps	improve	the	solution	𝑨 (but	not	𝑩)
𝑓7 𝐴 ∪ 𝑠 − 𝑓7 𝐴 ≥ 0 = 𝑓7 𝐵 ∪ 𝑠 − 𝑓7 𝐵

§ (3)	𝑻 𝒔, 𝒊 < 𝑻(𝑩, 𝒊):	𝒔 detects	early
𝑓7 𝐴 ∪ 𝑠 − 𝑓7 𝐴 = 𝜋7 ∞ − 𝜋7 𝑇 𝑠, 𝑖 − 𝑓7(𝐴) ≥
𝜋7 ∞ − 𝜋7 𝑇 𝑠, 𝑖 − 𝑓7(𝐵) = 𝑓7 𝐵 ∪ 𝑠 − 𝑓7 𝐵
§ Ineqaulity is	due	to	non-decreasingness of	𝑓7(⋅),	i.e.,	𝑓7 𝐴 ≤ 𝑓7(𝐵)

§ So,	𝒇𝒊(⋅) is	submodular!
¡ So,	𝒇(⋅) is	also	submodular
10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 15

𝑓 𝑆 =5𝑃 𝑖 	𝑓7 𝑆
�

7

Remember 𝑨 ⊆ 𝑩

¡ What	do	we	know	about	
optimizing	submodular
functions?
§ A	hill-climbing	(i.e.,	greedy)	is	near	
optimal:	(𝟏 − 𝟏

𝒆
) ⋅ 𝑶𝑷𝑻

¡ But:	
§ (1) This	only	works	for	unit	cost	
case! (each	sensor	costs	the	same)
§ For	us	each	sensor	𝒔 has	cost	𝒄(𝒔)

§ (2) Hill-climbing	algorithm	is	slow
§ At	each	iteration	we	need	to	re-evaluate	
marginal	gains	of	all	nodes

§ Runtime	𝑶(|𝑽| · 𝑲) for	placing	𝑲 sensors
Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu Part	2-16

a

b

c

a
b

c
d

d
reward

e

e

Hill-climbing

Add sensor with
highest marginal gain

10/26/17

¡ Consider	the	following	algorithm	to	solve
the	outbreak	detection	problem:
Hill-climbing	that	ignores	cost
§ Ignore	sensor	cost	𝒄(𝒔)
§ Repeatedly	select	sensor	with	highest	marginal	gain
§ Do	this	until	the	budget	is	exhausted

¡ Q:	How	well	does	this	work?
¡ A:	It	can	fail	arbitrarily	badly!	L
§ Next	we	come	up	with	an	example	where	Hill-
climbing	solution	is	arbitrarily	away	from	OPT

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 18

¡ Bad	example	when	we	ignore	cost:
§ 𝒏 sensors,		budget	𝑩
§ 𝒔𝟏:	reward	𝒓,	cost	𝑩,				𝒔𝟐… 𝒔𝒏:	reward	𝒓 − 𝜺,	
§ All	sensors	have	the	same	cost:	c 𝒔𝒊 = 𝟏
§ Hill-climbing	always	prefers	more	expensive	sensor	
𝒔𝟏 with	reward	𝒓 (and	exhausts	the	budget).
It	never	selects	cheaper	sensors	with	reward	𝒓 − 𝜺
→ For	variable	cost	it	can	fail	arbitrarily	badly!

¡ Idea:What	if	we	optimize	benefit-cost	ratio?

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 19

𝑠7 = argmax
d∈1

𝑓 𝐴7ef ∪ {𝑠} − 𝑓(𝐴7ef)
𝒄 𝒔

Greedily pick sensor
𝒔𝒊 that maximizes
benefit to cost ratio.

¡ Benefit-cost	ratio	can	also	fail	arbitrarily	badly!
¡ Consider: budget	𝑩:	
§ 2	sensors	𝒔𝟏 and	𝒔𝟐:

§ Costs: 𝒄(𝒔𝟏) = 𝜺,	 𝒄(𝒔𝟐) = 𝑩
§ Only	1	cascade: 𝒇(𝒔𝟏) = 𝟐𝜺,		𝒇(𝒔𝟐) = 𝑩

§ Then	benefit-cost	ratio	is:
§ 𝑩/𝒄(𝒔𝟏) = 𝟐 and		𝑩/𝒄(𝒔𝟐) = 𝟏

§ So,	we	first	select	𝒔𝟏 and	then	can	not	afford	𝒔𝟐
→We	get	reward	𝟐𝜺 instead	of	𝑩! Now	send	𝜺 → 𝟎
and	we	get	arbitrarily	bad	solution!

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 20

This algorithm incentivizes choosing nodes with very low cost, even when slightly
more expensive ones can lead to much better global results.

¡ CELF (Cost-Effective	Lazy	Forward-selection)
A	two	pass	greedy	algorithm:

§ Set	(solution)	𝑺′: Use	benefit-cost	greedy
§ Set	(solution)	𝑺′′: Use	unit-cost	greedy

§ Final	solution:	𝑺	 = 	𝒂𝒓𝒈	𝒎𝒂𝒙	(𝒇(𝑺′), 𝒇(𝑺′′))

¡ How	far	is	CELF	from	(unknown)	optimal	
solution?

¡ Theorem:	CELF	is	near	optimal [Krause&Guestrin,	‘05]
§ CELF	achieves	½(1-1/e) factor	approximation!

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 21

This is surprising: We have two clearly suboptimal solutions, but taking best of the
two is guaranteed to give a near-optimal solution.

¡ What	do	we	know	about	
optimizing	submodular
functions?
§ A	hill-climbing	(i.e.,	greedy)	is	near	
optimal	(that	is,	(1 − f

r
) ⋅ 𝑂𝑃𝑇)

¡ But:	
§ (2) Hill-climbing	algorithm	is	slow!

§ At	each	iteration	we	need	to	re-
evaluate	marginal	gains	of	all	nodes

§ Runtime	𝑂(|𝑉| · 𝐾) for	placing	𝐾
sensors

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 23

a

b

c

a
b

c
d

d
reward

e

e

Hill-climbing

Add sensor with
highest marginal gain

10/26/17

¡ In	round	𝒊 + 𝟏:	So	far	we	picked	𝑆𝑖	 = 	 {𝑠1, … , 𝑠𝑖}
§ Now	pick	𝐬𝒊w𝟏 = 𝐚𝐫𝐠𝐦𝐚𝐱

𝒖
𝒇(𝑺𝒊 ∪	{𝒖}) 	− 	𝒇(𝑺𝒊)

§ This	our	old	friend	– greedy	hill-climbing	algorithm.	
It	maximizes	the	“marginal	gain”	

𝜹𝒊 𝒖 	= 	𝒇(𝑺𝒊 ∪	{𝒖}) 	− 	𝒇(𝑺𝒊)

¡ By	submodularity property:
𝑓 𝑆7 ∪ 𝑢 − 𝑓 𝑆7 ≥ 𝑓 𝑆� ∪ 𝑢 − 𝑓 𝑆� for	𝑖 < 𝑗

¡ Observation:	By	submodularity:
For	every	𝒖
𝛿7(𝑢) ≥ 𝛿�(𝑢) for	𝑖 < 	𝑗 since	𝑆𝑖 ⊂ 𝑆𝑗
Marginal	benefits	di(u)	only	shrink!
(as	i grows)

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 24

u

di(u) ³ dj(u)

Activating node u in step i helps
more than activating it at step j (j>i)

¡ Idea:	
§ Use	di as	upper-bound	on	dj (j	>	i)

¡ Lazy hill-climbing:
§ Keep	an	ordered	list	of	marginal	
benefits	di from	previous	iteration

§ Re-evaluate	di only	for	top	node
§ Re-sort	and	prune

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 25

a

b

c

d

Marginal gain

e

f(S	È {u})	– f(S)			≥		f(T	È {u})	– f(T) S Í T

S1={a}

¡ Idea:	
§ Use	di as	upper-bound	on	dj (j	>	i)

¡ Lazy hill-climbing:
§ Keep	an	ordered	list	of	marginal	
benefits	di from	previous	iteration

§ Re-evaluate	di only	for	top	node
§ Re-sort	and	prune

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 26

a

d

b

c

e

Marginal gain

f(S	È {u})	– f(S)			≥		f(T	È {u})	– f(T) S Í T

S1={a}

¡ Idea:	
§ Use	di as	upper-bound	on	dj (j	>	i)

¡ Lazy hill-climbing:
§ Keep	an	ordered	list	of	marginal	
benefits	di from	previous	iteration

§ Re-evaluate	di only	for	top	node
§ Re-sort	and	prune

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 27

a

c

d

b

e

Marginal gain

f(S	È {u})	– f(S)			≥		f(T	È {u})	– f(T) S Í T

S1={a}

S2={a,b}

¡ CELF (using	Lazy	
evaluation)	runs	
700 times	faster	
than	greedy	hill-
climbing	algorithm

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 28

¡ Back	to	the	solution	quality!

¡ The	(1-1/e)	bound	for	submodular functions	
is	the	worst	case	bound	(worst	over	all	
possible	inputs)

¡ Data	dependent	bound:
§ Value	of	the	bound	depends	on	the	input	data

§ On	“easy”	data,	hill	climbing	may	do	better	than	63%

§ Can	we	say	something	about	the	solution
quality	when	we	know	the	input	data?

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 30

¡ Suppose	𝑺 is	some	solution	to 𝒇(𝑺) s.t. 𝑺 ≤ 𝒌
§ 𝒇(𝑺) is	monotone	&	submodular

¡ Let	𝑶𝑷𝑻	 = 	 {𝒕𝟏, … , 𝒕𝒌} be	the OPT	solution
¡ For	each		𝒖 let	𝜹 𝒖 = 	𝒇 𝑺 ∪ 𝒖 − 	𝒇 𝑺
¡ Order	𝜹 𝒖 so	that	𝜹 𝟏 ≥ 𝜹 𝟐 ≥ ⋯
¡ Then:	𝒇 𝑶𝑷𝑻 ≤ 𝒇 𝑺 + ∑ 𝜹 𝒊𝒌

𝒊�𝟏
§ Note:

§ This	is	a	data	dependent	bound	(𝛿 𝑖 depends	on	input	data)
§ Bound	holds	for	any algorithm

§ Makes	no	assumption	about	how	𝑺 was	computed

§ For	some	inputs	it	can	be	very	“loose”	(worse	than	63%)
10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 31

¡ Claim:
§ For	each	𝑢 let		𝜹(𝒖) 	= 	𝒇(𝑺 ∪ {𝒖}) 	− 	𝒇(𝑺)
§ Order	𝜹 𝒖 so	that	𝜹 𝟏 ≥ 𝜹 𝟐 ≥ ⋯
§ Then: 𝒇 𝑶𝑷𝑻 ≤ 𝒇 𝑺 + ∑ 𝜹(𝒊)𝒌

𝒊�𝟏
¡ Proof:
§ 𝑓 𝑂𝑃𝑇 ≤ 𝑓 𝑂𝑃𝑇 ∪ 𝑆
§ =	𝑓 𝑆 + 𝑓 𝑂𝑃𝑇 ∪ 𝑆 − 𝑓(𝑆)
§ ≤ 𝑓 𝑆 + ∑ 𝑓 𝑆 ∪ 𝑡7 − 𝑓 𝑆�

7�f

§ = 𝑓 𝑆 + ∑ 𝛿(𝑡7)�
7�f

§ ≤ 𝑓 𝑆 + ∑ 𝛿(𝑖)	�
7�f 		⇒ 		𝒇 𝑻 ≤ 𝒇 𝑺 + ∑ 𝜹(𝒊)𝒌

𝒊�𝟏
10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 32

Instead of taking tiÎOPT (of benefit 𝛿(𝑡7)),
we take the best possible element (𝛿(𝑖))

(we proved this
last time)

¡ Real	metropolitan	area	
water	network	
§ V	=	21,000	nodes
§ E	=	25,000	pipes

¡ Use	a	cluster	of	50	machines	for	a	month
¡ Simulate	3.6	million	epidemic	scenarios
(random	locations,	random	days,	random	
time	of	the	day)

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 34

Data-dependent	bound	is	much	tighter	
(gives	more	accurate	estimate	of	alg.	performance)

35

So
lu

tio
n

qu
al

ity
 F

(A
)

Hi
gh

er
 is

 b
et

te
r

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4
“Offline”

the (1-1/e) bound

Data-dependent
bound

Hill Climbing

Number of sensors placed

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

¡ Placement	heuristics	perform	
much	worse

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 36

Author Score

CELF 26

Sandia 21

U	Exter 20

Bentley	systems 19

Technion	(1) 14

Bordeaux 12

U	Cyprus 11

U	Guelph 7

U	Michigan 4

Michigan	Tech	U 3

Malcolm	 2

Proteo 2

Technion	(2) 1

Battle of Water Sensor
Networks competition

[w/ Ostfeld et al., J. of Water Resource Planning]

¡ Different	objective	functions	give	different	
sensor	placements

37

Population affected Detection likelihood

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

Here	CELF	is	many	times	faster	than	greedy	hill-climbing!
§ (But	there	might	be	datasets/inputs	where	the	CELF	will	
have	the	same	running	time	as	greedy	hill-climbing)

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 38

=	I	have	10	minutes.	Which	
blogs	should	I	read	to	be	
most	up	to	date?	

=	Who	are	the	most	
influential	bloggers?

39

?

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 40

Detect	all
stories	but	late.

Want	to	read	things	
before others	do.

Detect	blue &	yellow
soon	but	miss	red.

¡ Crawled	45,000	blogs	for	1	year
¡ Obtained	10	million	posts
¡ And	identified	350,000	cascades
¡ Cost	of	a	blog	is	the	number	of	posts	it	has

4110/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

¡ Online	bound	turns	out	to	be	much	tighter!
§ Based	on	the	plot	below:	87%	instead	of	32.5%

Old bound

Our bound
CELF

10/26/17 42Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu

vs.

¡ Heuristics	perform	much	worse!
¡ One	really	needs	to	perform	the	optimization

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 43

¡ CELF	has	2	sub-algorithms.	Which	wins?
¡ Unit	cost:
§ CELF	picks	large	
popular	blogs

¡ Cost-benefit:
§ Cost	proportional
to	the	number	of	
posts

¡ We	can	do	much	
better	when	considering	costs

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 44

¡ Problem: Then	CELF	
picks	lots	of	small	
blogs	that	participate	
in	few	cascades

¡ We	pick	best	solution	
that	interpolates	
between	the	costs

¡ We	can	get	good	
solutions	with	few	
blogs	and	few	posts

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 45

Each curve represents a set of
solutions S with the same final

reward f(S)

Score f(S)=0.4
f(S)=0.3

f(S)=0.2

¡ We	want	to	generalize	well	to	future	(unknown)	
cascades

¡ Limiting	selection	to	bigger	blogs	improves	
generalization!

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu Part	2-4610/26/17

¡ CELF runs	700
times	faster	than	
simple	hill-
climbing	
algorithm

10/26/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 47

[Leskovec et al., KDD ’07]

