HW2 Q1.1 parts (b) and (c) cancelled. HW3 released. It is long. Start early.

Outbreak Detection in Networks

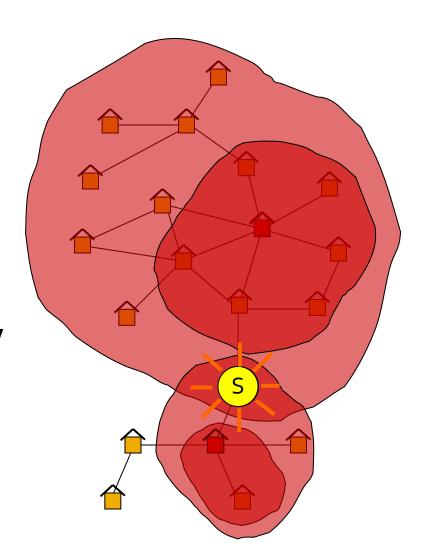
CS224W: Analysis of Networks
Jure Leskovec, Stanford University
http://cs224w.stanford.edu

Plan for Today

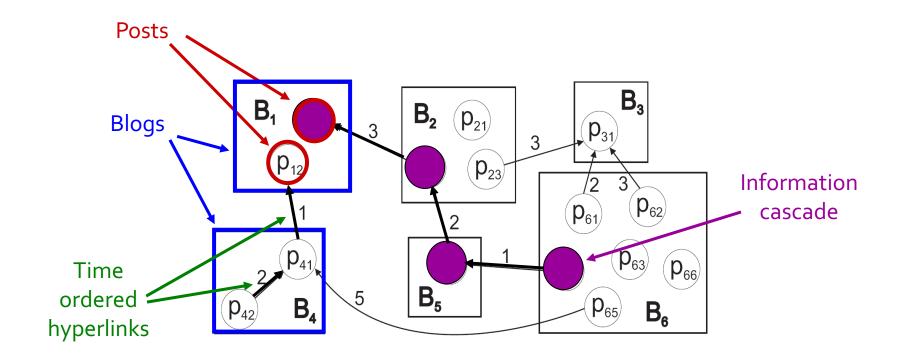
- (1) New problem: Outbreak detection
- (2) Develop an approximation algorithm
 - It is a submodular opt. problem!
- (3) Speed-up greedy hill-climbing
 - Valid for optimizing general submodular functions (i.e., also works for influence maximization)
- (4) Prove a new "data dependent" bound on the solution quality
 - Valid for optimizing any submodular function (i.e., also works for influence maximization)

Detecting Contamination Outbreaks

- Given a real city water distribution network
- And data on how contaminants spread in the network
- Detect the contaminant as quickly as possible
- Problem posed by the US Environmental Protection Agency

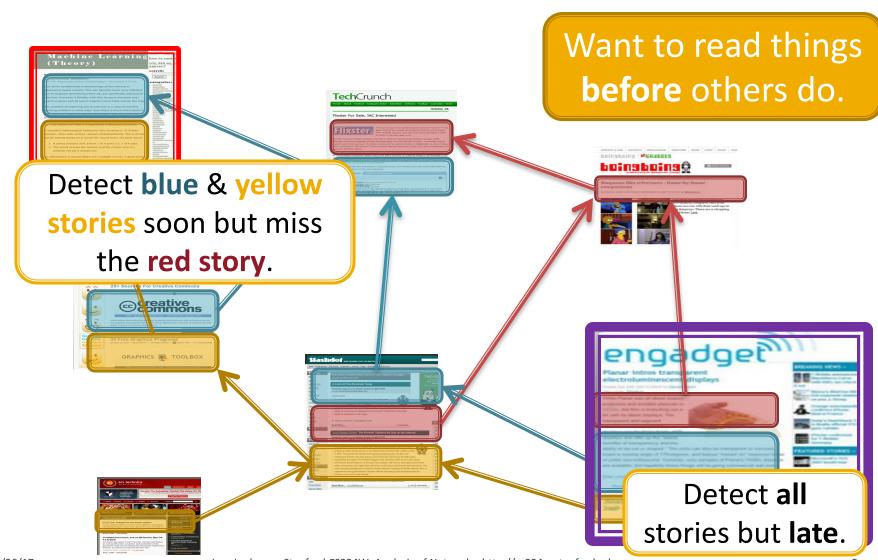


Detecting Information Outbreaks



Which blogs should one read to detect cascades as effectively as possible?

Detecting Information Outbreaks

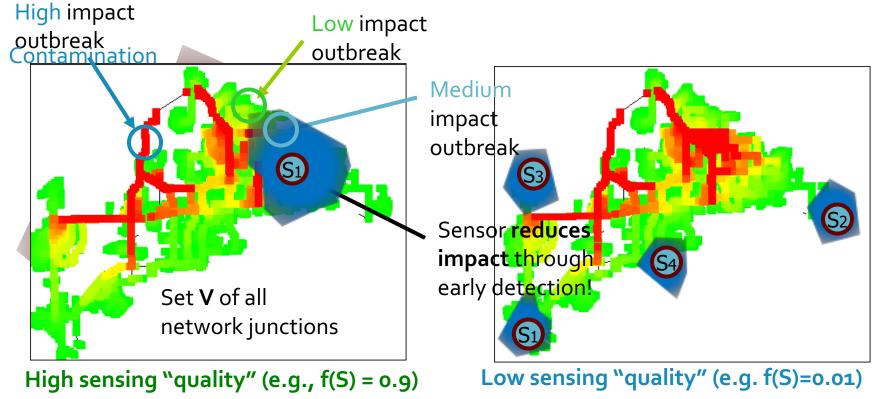


General Problem

- Both of these two are an instance of the same underlying problem!
- Given a dynamic process spreading over a network we want to select a set of nodes to detect the process effectively
- Many other applications:
 - Epidemics
 - Influence propagation
 - Network security

Water Network: Utility

- Utility of placing sensors:
 - Water flow dynamics, demands of households, ...
- For each subset S ⊆ V compute utility f(S)

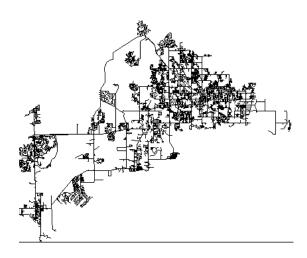


Problem Setting: Contamination

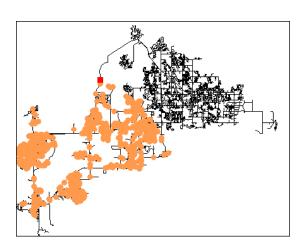
Given:

• Graph G(V, E)

- Data on how outbreaks spread over the G:
 - For each outbreak i we know the time T(u, i) when outbreak i contaminates node u



Water distribution network (physical pipes and junctions)



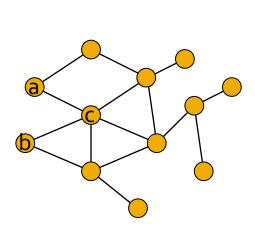
Simulator of water consumption&flow

(built by Mech. Eng. people)
We simulate the contamination spread for every possible location.

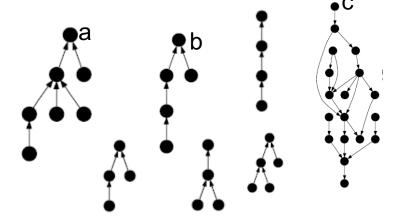
Problem Setting: Blogospehere

Given:

- Graph G(V, E)
- Data on how outbreaks spread over the G:
 - For each outbreak i we know the time T(u, i) when outbreak i contaminates node u



The network of the blogosphere



Traces of the information flow and identify influence sets

Collect lots of blogs posts and trace hyperlinks to obtain data about information flow from a given blog.

Problem Setting

Given:

- Graph G(V, E)
- Data on how outbreaks spread over the G:
 - For each outbreak i we know the time T(u, i) when outbreak i contaminates node u
- Goal: Select a subset of nodes S that maximizes the expected reward:

$$\max_{S \subseteq V} f(S) = \sum_{i} P(i) f_i(S)$$
Expected reward for detecting outbreak *i*

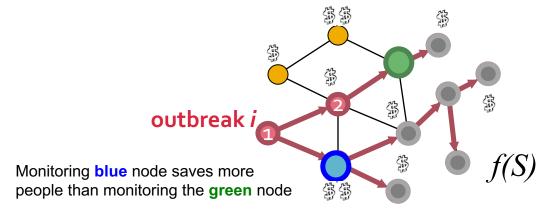
subject to: cost(S) < B

P(i)... probability of outbreak i occurring.

f(*i*)... reward for detecting outbreak *i* using sensors *S*.

Two Parts to the Problem

- Reward (one of the following three):
 - (1) Minimize time to detection
 - (2) Maximize number of detected propagations
 - (3) Minimize number of infected people
- Cost (context dependent):
 - Reading big blogs is more time consuming
 - Placing a sensor in a remote location is expensive



Objective functions are Submodular

Objective functions:

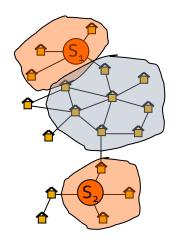
- 1) Time to detection (DT)
 - How long does it take to detect a contamination?
 - Penalty for detecting at time t: $\pi_i(t) = t$
- 2) Detection likelihood (DL)
 - How many contaminations do we detect?
 - Penalty for detecting at time t: $\pi_i(t) = 0$, $\pi_i(\infty) = 1$
 - Note, this is binary outcome: we either detect or not
- 3) Population affected (PA)
 - How many people drank contaminated water?
 - Penalty for detecting at time t: $\pi_i(t) = \{ \text{# of infected nodes in outbreak } i \text{ by time } t \}$.
- Observation: In all cases detecting sooner does not hurt!

Structure of the Problem

We define $f_i(S)$ as penalty reduction:

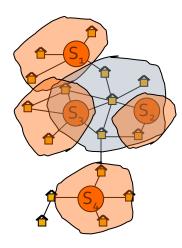
$$f_i(S) = \pi_i(\emptyset) - \pi_i(T(S, i))$$

Observation: Diminishing returns



Placement $S=\{s_1, s_2\}$

New sensor:



Placement S'= $\{s_{1}, s_{2}, s_{3}, s_{4}\}$

Adding s' helps a lot

Adding s' helps very little

Objective functions are Submodular

- Claim: For all $A \subseteq B \subseteq V$ and sensors $s \in V \setminus B$ $f(A \cup \{s\}) f(A) \ge f(B \cup \{s\}) f(B)$
- Proof: All our objectives are submodular
 - Fix cascade/outbreak i
 - Show $f_i(A) = \pi_i(\infty) \pi_i(T(A, i))$ is submodular
 - **Consider** $A \subseteq B \subseteq V$ and sensor $s \in V \backslash B$
 - When does node s detect cascade i?
 - We analyze 3 cases based on when s detects outbreak i
 - **(1)** $T(s, i) \ge T(A, i)$: s detects late, nobody benefits: $f_i(A \cup \{s\}) = f_i(A)$, also $f_i(B \cup \{s\}) = f_i(B)$ and so $f_i(A \cup \{s\}) f_i(A) = 0 = f_i(B \cup \{s\}) f_i(B)$

Objective functions are Submodular

Remember $A \subseteq B$

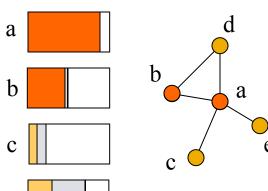
- Proof (contd.):
 - (2) $T(B, i) \le T(s, i) < T(A, i)$: s detects after B but before A s detects sooner than any node in A but after all in B. So s only helps improve the solution A (but not B) $f_i(A \cup \{s\}) - f_i(A) \ge 0 = f_i(B \cup \{s\}) - f_i(B)$
 - **(3)** T(s, i) < T(B, i): s detects early $f_i(A \cup \{s\}) f_i(A) = \left[\pi_i(\infty) \pi_i(T(s, i))\right] f_i(A) \ge \left[\pi_i(\infty) \pi_i(T(s, i))\right] f_i(B) = f_i(B \cup \{s\}) f_i(B)$
 - Inequality is due to non-decreasingness of $f_i(\cdot)$, i.e., $f_i(A) \le f_i(B)$
 - So, $f_i(\cdot)$ is submodular!
- So, $f(\cdot)$ is also submodular

$$f(S) = \sum_{i} P(i) f_i(S)$$

Background: Submodular functions

Hill-climbing

reward



Add sensor with highest marginal gain

What do we know about optimizing submodular functions?

• A hill-climbing (i.e., greedy) is near optimal: $(1 - \frac{1}{e}) \cdot OPT$

But:

- (1) This only works for unit cost case! (each sensor costs the same)
 - For us each sensor s has cost c(s)
- (2) Hill-climbing algorithm is slow
 - At each iteration we need to re-evaluate marginal gains of all nodes
 - Runtime $O(|V| \cdot K)$ for placing K sensors

CELF: Algorithm for optimizing submodular functions under cost constraints

Towards a New Algorithm

- Consider the following algorithm to solve the outbreak detection problem:
 Hill-climbing that ignores cost
 - Ignore sensor cost c(s)
 - Repeatedly select sensor with highest marginal gain
 - Do this until the budget is exhausted
- Q: How well does this work?
- A: It can fail arbitrarily badly! ⊗
 - Next we come up with an example where Hillclimbing solution is arbitrarily away from OPT

Problem 1: Ignoring Cost

- Bad example when we ignore cost:
 - n sensors, budget B
 - s_1 : reward r, cost B, $s_2 \dots s_n$: reward $r \varepsilon$,
 - All sensors have the same cost: $c(s_i) = 1$
 - Hill-climbing always prefers more expensive sensor s_1 with reward r (and exhausts the budget). It never selects cheaper sensors with reward $r-\varepsilon$
 - → For variable cost it can fail arbitrarily badly!
- Idea: What if we optimize benefit-cost ratio?

$$s_i = \arg\max_{s \in V} \frac{f(A_{i-1} \cup \{s\}) - f(A_{i-1})}{c(s)}$$

Greedily pick sensor s_i that maximizes benefit to cost ratio.

Problem 2: Benefit-Cost

- Benefit-cost ratio can also fail arbitrarily badly!
- Consider: budget B:
 - 2 sensors s_1 and s_2 :
 - Costs: $c(s_1) = \varepsilon$, $c(s_2) = B$
 - Only 1 cascade: $f(s_1) = 2\varepsilon$, $f(s_2) = B$
 - Then benefit-cost ratio is:
 - $B/c(s_1) = 2$ and $B/c(s_2) = 1$
 - lacksquare So, we first select s_1 and then can not afford s_2
 - ightharpoonup We get reward 2ε instead of B! Now send $\varepsilon \to 0$ and we get arbitrarily bad solution!

This algorithm incentivizes choosing nodes with very low cost, even when slightly more expensive ones can lead to much better global results.

Solution: CELF Algorithm

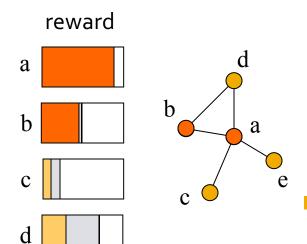
- CELF (Cost-Effective Lazy Forward-selection)
 - A two pass greedy algorithm:
 - Set (solution) S': Use benefit-cost greedy
 - Set (solution) S'': Use unit-cost greedy
 - Final solution: S = arg max(f(S'), f(S''))
- How far is CELF from (unknown) optimal solution?
- Theorem: CELF is near optimal [Krause&Guestrin, '05]
 - CELF achieves $\frac{1}{2}(1-1/e)$ factor approximation!

This is surprising: We have two clearly suboptimal solutions, but taking best of the two is guaranteed to give a near-optimal solution.

Speeding-up Hill-Climbing: Lazy Evaluations

Background: Submodular functions

Hill-climbing



Add sensor with highest marginal gain

- What do we know about optimizing submodular functions?
 - A hill-climbing (i.e., greedy) is near optimal (that is, $(1 \frac{1}{e}) \cdot OPT$)

But:

- (2) Hill-climbing algorithm is slow!
 - At each iteration we need to reevaluate marginal gains of all nodes
 - Runtime $O(|V| \cdot K)$ for placing K sensors

Speeding up Hill-Climbing

- In round i + 1: So far we picked $S_i = \{s_1, ..., s_i\}$
 - Now pick $\mathbf{s}_{i+1} = \arg \max_{u} f(S_i \cup \{u\}) f(S_i)$
 - This our old friend greedy hill-climbing algorithm. It maximizes the "marginal gain" $\delta_i(u) = f(S_i \cup \{u\}) f(S_i)$
- By submodularity property:

$$f(S_i \cup \{u\}) - f(S_i) \ge f(S_j \cup \{u\}) - f(S_j) \text{ for } i < j$$

Observation: By submodularity:

For every $oldsymbol{u}$

$$\delta_i(u) \ge \delta_i(u)$$
 for $i < j$ since $S_i \subset S_j$

$$\delta_i(\mathbf{u}) \geq \delta_j(\mathbf{u})$$

Marginal benefits $\delta_i(u)$ only shrink!

u

(as i grows) Activating node u in step i helps more than activating it at step j (j>i)

Lazy Hill Climbing

Idea:

- Use δ_i as upper-bound on δ_j (j > i)
- Lazy hill-climbing:
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

Marginal gain

$$S_1 = \{a\}$$

$$f(S \cup \{u\}) - f(S) \ge f(T \cup \{u\}) - f(T)$$

 $S \subseteq T$

Lazy Hill Climbing

Idea:

- Use δ_i as upper-bound on δ_j (j > i)
- Lazy hill-climbing:
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

Marginal gain

 $S_1 = \{a\}$

$$f(S \cup \{u\}) - f(S) \ge f(T \cup \{u\}) - f(T)$$

 $S \subseteq T$

Lazy Hill Climbing

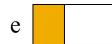
Idea:

- Use δ_i as upper-bound on δ_j (j > i)
- Lazy hill-climbing:
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

Marginal gain

$$S_1 = \{a\}$$

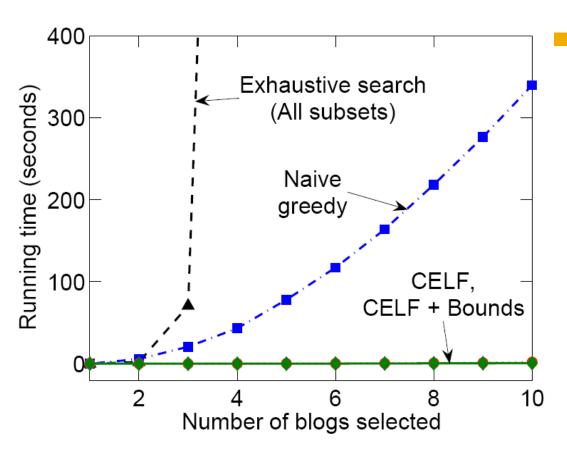
$$S_2=\{a,b\}$$



$$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$$

 $S \subseteq T$

CELF: Scalability



celf (using Lazy evaluation) runs
700 times faster than greedy hill-climbing algorithm

Data Dependent Bound on the Solution Quality

Solution Quality

- Back to the solution quality!
- The (1-1/e) bound for submodular functions is the worst case bound (worst over all possible inputs)
- Data dependent bound:
 - Value of the bound depends on the input data
 - On "easy" data, hill climbing may do better than 63%
 - Can we say something about the solution quality when we know the input data?

Data Dependent Bound

- Suppose S is some solution to f(S) s.t. $|S| \le k$
 - f(S) is monotone & submodular
- Let $OPT = \{t_1, ..., t_k\}$ be the OPT solution
- For each u let $\delta(u) = f(S \cup \{u\}) f(S)$
- Order $\delta(u)$ so that $\delta(1) \geq \delta(2) \geq \cdots$
- Then: $f(OPT) \leq f(S) + \sum_{i=1}^{k} \delta(i)$
 - Note:
 - This is a data dependent bound ($\delta(i)$ depends on input data)
 - Bound holds for any algorithm
 - Makes no assumption about how S was computed
 - For some inputs it can be very "loose" (worse than 63%)

Data Dependent Bound

Claim:

- For each u let $\delta(u) = f(S \cup \{u\}) f(S)$
- Order $\delta(u)$ so that $\delta(1) \geq \delta(2) \geq \cdots$
- Then: $f(OPT) \le f(S) + \sum_{i=1}^{k} \delta(i)$
- Proof:
 - $f(OPT) \le f(OPT \cup S)$
 - $= f(S) + f(OPT \cup S) f(S)$
 - $\le f(S) + \sum_{i=1}^{k} [f(S \cup \{t_i\}) f(S)]$

(we proved this last time)

$$= f(S) + \sum_{i=1}^{k} \delta(t_i)$$

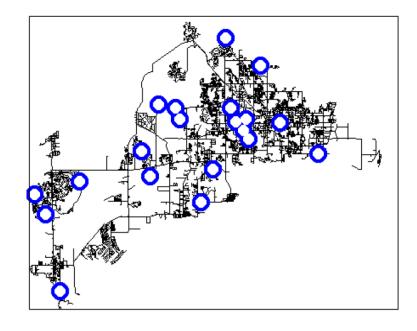
Instead of taking $t_i \in OPT$ (of benefit $\delta(t_i)$), we take the best possible element $(\delta(i))$

$$\bullet \leq f(S) + \sum_{i=1}^{k} \delta(i) \Rightarrow f(T) \leq f(S) + \sum_{i=1}^{k} \delta(i)$$

Case Study: Water distribution network & blogs

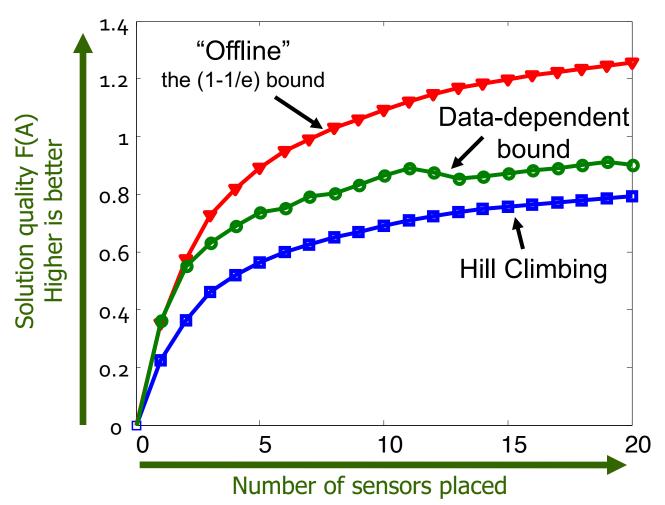
Case Study: Water Network

- Real metropolitan area water network
 - V = 21,000 nodes
 - E = 25,000 pipes



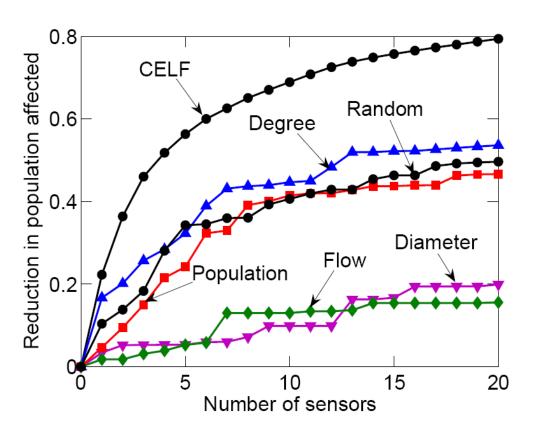
- Use a cluster of 50 machines for a month
- Simulate 3.6 million epidemic scenarios (random locations, random days, random time of the day)

Bounds on the Optimal Solution



Data-dependent bound is much tighter (gives more accurate estimate of alg. performance)

Water: Heuristic Placement



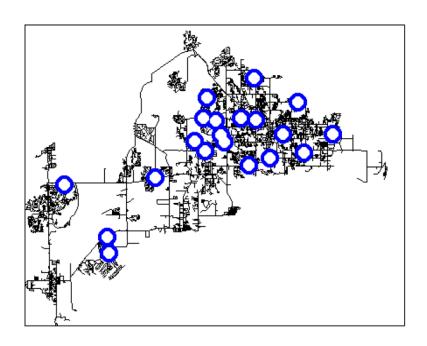
Placement heuristics perform much worse

Author	Score
CELF	26
Sandia	21
U Exter	20
Bentley systems	19
Technion (1)	14
Bordeaux	12
U Cyprus	11
U Guelph	7
U Michigan	4
Michigan Tech U	3
Malcolm	2
Proteo	2
Technion (2)	1

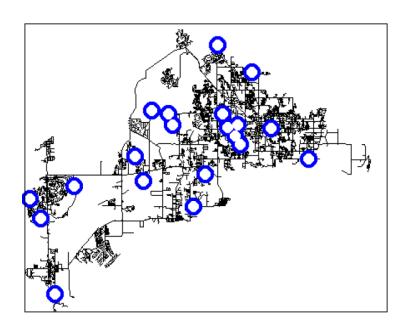
Battle of Water Sensor Networks competition

Water: Placement visualization

 Different objective functions give different sensor placements

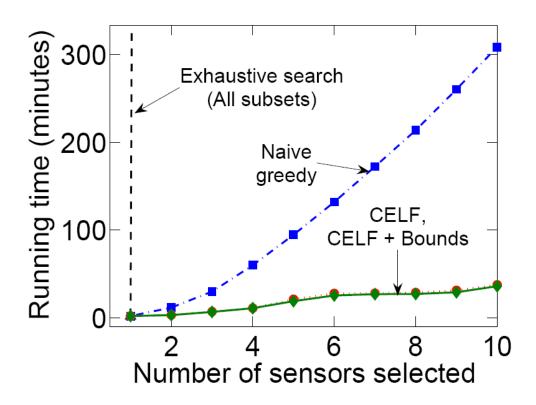


Population affected



Detection likelihood

Water: Scalability



Here CELF is many times faster than greedy hill-climbing!

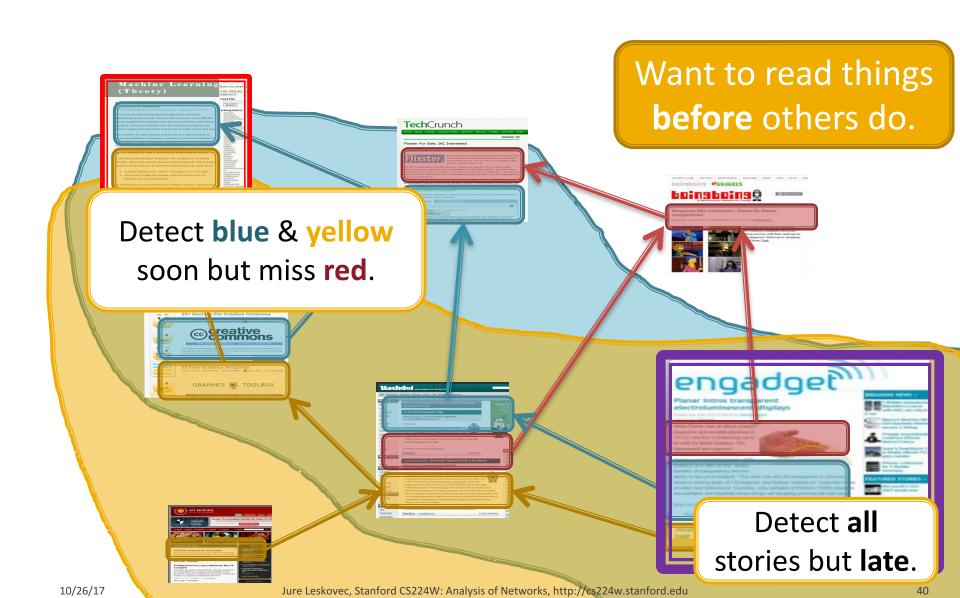
 (But there might be datasets/inputs where the CELF will have the same running time as greedy hill-climbing)

Question...

= I have 10 minutes. Which blogs should I read to be most up to date?

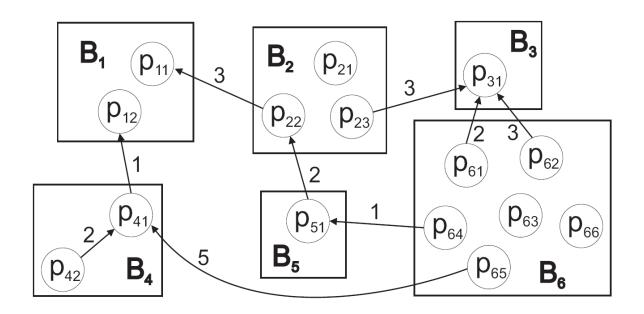
= Who are the most influential bloggers?

Detecting information outbreaks



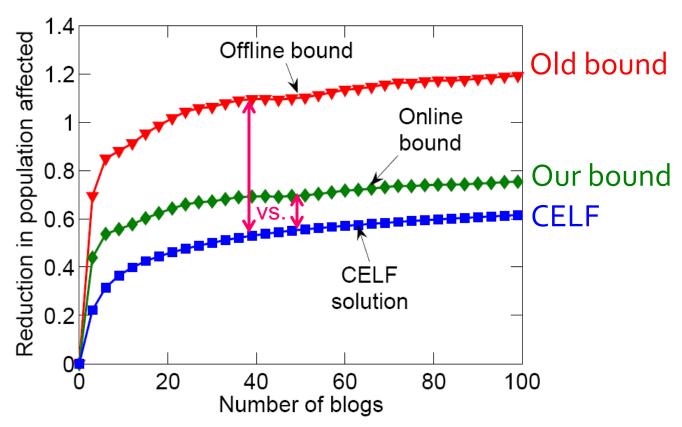
Case study 2: Cascades in blogs

- Crawled 45,000 blogs for 1 year
- Obtained 10 million posts
- And identified 350,000 cascades
- Cost of a blog is the number of posts it has

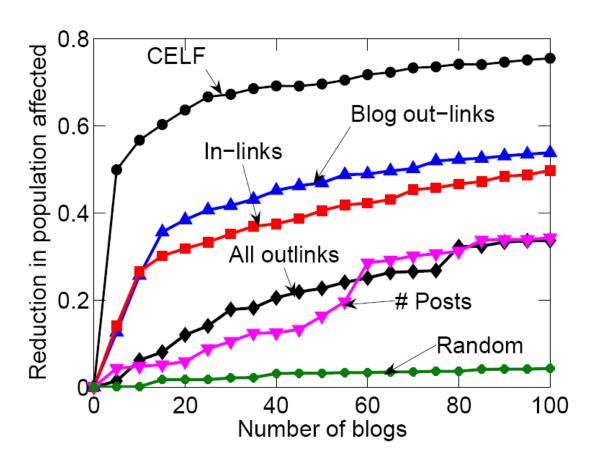


Blogs: Solution Quality

- Online bound turns out to be much tighter!
 - Based on the plot below: 87% instead of 32.5%



Blogs: Heuristic Selection



- Heuristics perform much worse!
- One really needs to perform the optimization

Blogs: Cost of a Blog

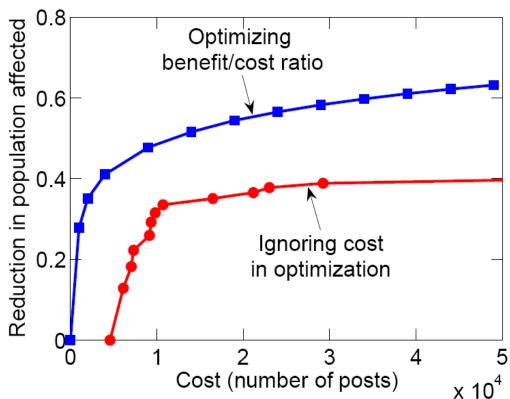
CELF has 2 sub-algorithms. Which wins?

Unit cost:

CELF picks large popular blogs

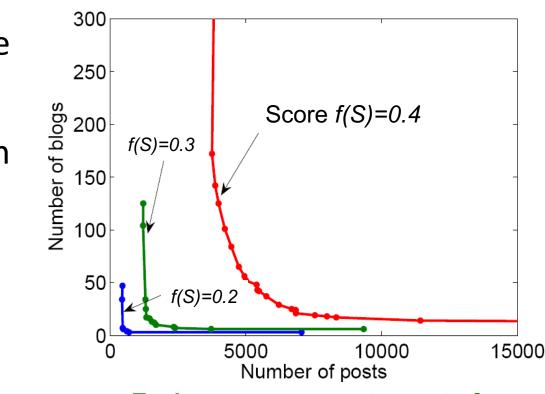
Cost-benefit:

Cost proportional to the number of posts



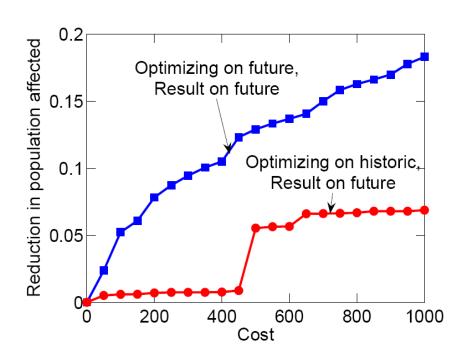
Blogs: Cost of a Blog

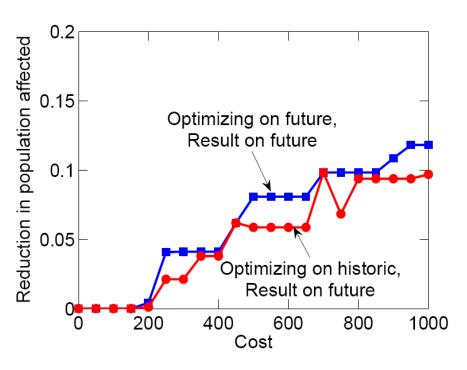
- Problem: Then CELF picks lots of small blogs that participate in few cascades
- We pick best solution that interpolates between the costs
- We can get good solutions with few blogs and few posts



Each curve represents a set of solutions S with the same final reward f(S)

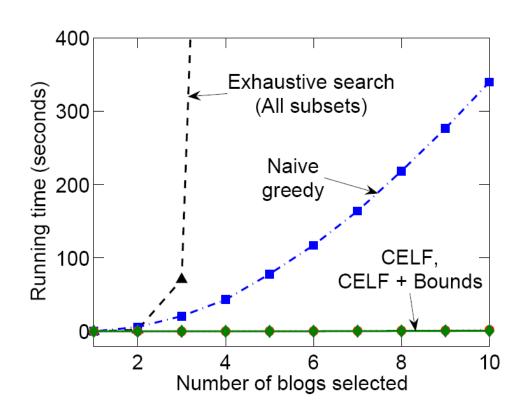
Blogs: Generalization to Future





- We want to generalize well to future (unknown) cascades
- Limiting selection to bigger blogs improves generalization!

Blogs: Scalability



CELF runs 700
 times faster than
 simple hill climbing
 algorithm