Influence Maximization in Networks

CS224W: Analysis of Networks
Jure Leskovec, Stanford University http://cs224w.stanford.edu

Viral Marketing?

- We are more influenced by our friends than strangers

$\square 68 \%$ of consumers consult friends and family before purchasing home electronics
$\square 50 \%$ do research online before purchasing electronics

Viral Marketing

Identify influential customers

Convince them to adopt the product Offer discount or free samples

These customers endorse the product among their friends

How to Create Big Cascades?

- Information epidemics:
- Which are the influential users?
- Which news sites create big cascades?
- Where should we advertise?

Probabilistic Contagion

- Independent Cascade Model
- Directed finite $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$
- Set \boldsymbol{S} starts out with new behavior
- Say nodes with this behavior are "active"
- Each edge ($\boldsymbol{v}, \boldsymbol{w}$) has a probability $\boldsymbol{p}_{\boldsymbol{v} \boldsymbol{w}}$
- If node \boldsymbol{v} is active, it gets one chance to make \boldsymbol{w} active, with probability $\boldsymbol{p}_{v \boldsymbol{w}}$
- Each edge fires at most once
- Does scheduling matter? No
- If $\boldsymbol{u}, \boldsymbol{v}$ are both active at the same time, it doesn't matter which tries to activate \boldsymbol{w} first
- But the time moves in discrete steps

Independent Cascade Model

- Initially some nodes S are active
- Each edge ($\boldsymbol{v}, \boldsymbol{w}$) has probability (weight) $\boldsymbol{p}_{\boldsymbol{v} \boldsymbol{w}}$

- When node v becomes active:
- It activates each out-neighbor \boldsymbol{w} with prob. $\boldsymbol{p}_{v w}$
- Activations spread through the network

Most Influential Set

Problem: kis users.specified parameter)

- Most influential set of size \boldsymbol{k} : set \boldsymbol{S} of \boldsymbol{k} nodes producing largest expected cascade size f(S) if activated [DomingosRichardson ‘01]

- Optimization problem: $\max _{\text {sof size k }} f(S)$

Why "expected cascade size"? X_{a} is a result of a random process. So in practice we would want to compute X_{a} for many random realizations and then maximize the "average" value $f(S)$. For now let's ignore this nuisance and

$$
f(S)=\frac{1}{|I|} \sum_{\substack{\text { Random } \\ \text { realiations } i}} f_{i}(S)
$$

Most Influential Set of Nodes

- S : is initial active set
- $f(S)$: The expected size of final active set
- $f(S)$ is the size of the union of $X_{u}: \boldsymbol{f}(\boldsymbol{S})=\left|\cup_{\boldsymbol{u} \in \boldsymbol{S}} X_{\boldsymbol{u}}\right|$

- Set S is more influential if $f(S)$ is larger

$$
\boldsymbol{f}(\{a, b\})<\boldsymbol{f}(\{a, c\})<\boldsymbol{f}(\{a, d\})
$$

How hard is influence maximization?

Most Influential Subset of Nodes

- Problem: Most influential set of k nodes: set \boldsymbol{S} on \boldsymbol{k} nodes producing largest expected cascade size $f(S)$ if activated
- The optimization problem:

$$
\max _{\text {Sof sizek }} f(S)
$$

- How hard is this problem?
- NP-COMPLETE!
- Show that finding most influential set is at least as hard as a set cover problem

Background: Set Cover

- Set cover problem
(a known NP-complete problem):
- Given universe of elements $\boldsymbol{U}=\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{n}}\right\}$ and sets $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{m}} \subseteq \boldsymbol{U}$
- Q: Are there k sets among $X_{1, \ldots,} X_{m}$ such that their union is U ?
- Goal:

Encode set cover as an instance of $\max _{\text {sot } 5 \times 5 \in \mathcal{k}} f(S)$

Influence Maximization is NP-hard

- Given a set cover instance with sets X_{1}, \ldots, X_{m}
- Build a bipartite "X-to-U" graph:

e.g.:
$x_{1}=\left\{u_{1}, u_{2}, u_{3}\right\}$

Construction:

- Create edge
$\left(X_{i}, u\right) \forall X_{i} \forall u \in X_{i}$
-- directed edge
from sets to their elements
- Put weight 1 on each edge (the activation is deterministic)
- Set Cover as Influence Maximization in X-to-U graph: There exists a set S of size k with $f(S)=k+n$ iff there exists a size k set cover

Summary so Far

- Extremely bad news:
- Influence maximization is NP-complete
- Next, good news:
- There exists an approximation algorithm!
- For some inputs the algorithm won't find globally optimal solution/set OPT
- But we will also prove that the algorithm will never do too badly either. More precisely, the algorithm will find a set S that where $f(S)>0.63^{*} g(O P T)$, where OPT is the globally optimal set.

The Approximation Algorithm

- Consider a Greedy Hill Climbing algorithm to find S :
- Input:

Influence set \boldsymbol{X}_{u} of each node $\boldsymbol{u}: \boldsymbol{X}_{\boldsymbol{u}}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots\right\}$

- That is, if we activate \boldsymbol{u}, nodes $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots\right\}$ will eventually get active
- Algorithm: At each iteration \boldsymbol{i} activate the node \boldsymbol{u} that gives largest marginal gain: $\max _{\boldsymbol{u}} \boldsymbol{f}\left(\boldsymbol{S}_{\boldsymbol{i}-\mathbf{1}} \cup\{\boldsymbol{u}\}\right)$

[^0]
(Greedy) Hill Climbing

Algorithm:

- Start with $\boldsymbol{S}_{\mathbf{0}}=\{ \}$
- For $\boldsymbol{i}=1$... \boldsymbol{k}
- Activate node \boldsymbol{u} that $\max \boldsymbol{f}\left(\boldsymbol{S}_{\boldsymbol{i - 1}} \cup\{\boldsymbol{u}\}\right)$
- Let $\boldsymbol{S}_{\boldsymbol{i}}=\boldsymbol{S}_{\boldsymbol{i}-\mathbf{1}} \cup\{\boldsymbol{u}\}$
- Example:
- Eval. $f(\{a\}), \ldots, f(\{e\})$, pick argmax of them \square
- Eval. $f(\{\boldsymbol{d}, a\}), \ldots, f(\{\boldsymbol{d}, e\})$, pick argmax

- Eval. $f(\boldsymbol{d}, \boldsymbol{b}, a\}), \ldots, f(\{\boldsymbol{d}, \boldsymbol{b}, e\})$, pick argmax \squaree

Approximation Guarantee

- Claim: Hill climbing produces a solution S where: $f(S) \geq(1-1 / e)^{*} f(O P T) \quad(f(S)>0.63 * f(O P T))$ [Nemhauser, Fisher, Wolsey '78, Kempe, Kleinberg, Tardos '03]
- Claim holds for functions $f(\cdot)$ with 2 properties:
- f is monotone: (activating more nodes doesn't hurt) if $S \subseteq \boldsymbol{T}$ then $f(S) \leq f(T)$ and $f(\})=\mathbf{0}$
- f is submodular: (activating each additional node helps less) adding an element to a set gives less improvement than adding it to one of its subsets: $\forall \boldsymbol{S} \subseteq \boldsymbol{T}$

$$
\underbrace{f(S \cup\{u\})-f(S)}_{\text {Gain of adding a node to a small set }} \geq \underbrace{f(T \cup\{u\})-f(T)}_{\text {Gain of adding a node to a large set }}
$$

Submodularity- Diminishing returns

- Diminishing returns:

$\underbrace{f(S \cup\{u\})-f(S)}_{\text {Gain of adding a node to a small set }} \geq \underbrace{f(T \cup\{u\})-f(T)}_{\text {Gain of adding a node to a large set }}$

Plan: Prove 2 things

 (1) Our $f(S)$ is submodular (2) Hill Climbing gives nearoptimal solutions(for monotone submodular functions)

Also see the hangout posted on the course website.

Background: Submodular Functions

- We must show our $f(\cdot)$ is submodular:
- $\forall S \subseteq T$
$f(S \cup\{u\})-f(S) \geq f(T \cup\{u\})-f(T)$
Gain of adding a node to a large set
Gain of adding a node to a small set
- Basic fact 1:
- If $f_{1}(x), \ldots, f_{k}(x)$ are submodular, and $c_{1}, \ldots, c_{k} \geq 0$ then $\boldsymbol{F}(\boldsymbol{x})=\sum_{i} \boldsymbol{c}_{\boldsymbol{i}} \cdot \boldsymbol{f}_{\boldsymbol{i}}(\boldsymbol{x})$ is also submodular
(Non-negative combination of submodular functions is a submodular function)

Background: Submodular Functions

- Basic fact 2: A simple submodular function
- Sets $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{m}}$
- $\boldsymbol{f}(\boldsymbol{S})=\left|\mathrm{U}_{\boldsymbol{k} \in \boldsymbol{S}} \boldsymbol{X}_{\boldsymbol{k}}\right| \quad$ (size of the union of sets $X_{k}, k \in S$)
- Claim: $f(S)$ is submodular!

The more sets you already have the less new area a given set \boldsymbol{u} will cover

Our $f(S)$ is Submodular!

$$
f(s)=\frac{1}{1 / 2} \sum_{n} f(s)
$$

- Proof strategy:
- We will argue that influence maximization is an instance of the Set cover problem:
- Set cover problem:
$f(S)$ is the size of the union of nodes influenced by active set \mathbf{S}
" Note $f(S)$ is "random" (a result of a random process) so we need to be a bit careful
- Principle of deferred decision to the rescue!
- We will create many parallel universes and then average over them

Our $f(S)$ is Submodular!

[ivel

- Flip all the coins at the beginning and record which edges fire successfully
- Now we have a deterministic graph!

- Def: Edge is live if it fired successfully
- That is, we remove edges that did not fire

Influence sets for realization i :

$$
\begin{aligned}
X_{a}^{i} & =\{a, f, c, g\} \\
X_{b}^{i} & =\{b, c\}, \\
X_{c}^{i} & =\{c\} \\
X_{d}^{i} & =\{d, e, h\}
\end{aligned}
$$

- What is influence set X_{u} of node u ?
- The set reachable by live-edge paths from u

Our $f(S)$ is Submodular!

$$
f(S)=\frac{1}{|I|} \sum_{\substack{\text { Random } \\ \text { realizations } i}} f_{i}(S)
$$

- What is an influence set X_{u} ?
- The set reachable by live-edge paths from u - What is now $f(S)$?
- $f_{i}(S)=$ size of the set reachable by live-edge paths from nodes in \boldsymbol{S}
- For the i-th realization of coin flips

$$
\begin{aligned}
& f_{i}(S=\{a, b\})=|\{a, f, c, g\} \cup\{b, c\}|=5 \\
& f_{i}(S=\{a, d\})=|\{a, f, c, g\} \cup\{d, e, h\}|=7
\end{aligned}
$$

Influence sets for realization i :

$$
\begin{aligned}
X_{a}^{i} & =\{a, f, c, g\} \\
X_{b}^{i} & =\{b, c\}, \\
X_{c}^{i} & =\{c\} \\
X_{d}^{i} & =\{d, e, h\}
\end{aligned}
$$

Our $f(S)$ is Submodular!

$$
f(S)=\frac{1}{|I|} \sum_{\substack{\text { Random } \\ \text { realizations } i}} f_{i}(S)
$$

Activate edges by coin flipping

- Fix outcome $i \in I$ of coin flips
- $\boldsymbol{X}_{\boldsymbol{v}}^{\boldsymbol{i}}=$ set of nodes reachable from \boldsymbol{v} on live-edge paths
- $\boldsymbol{f}_{\boldsymbol{i}}(\boldsymbol{S})=$ size of cascades from \boldsymbol{S} given the coin flips i
- $f_{i}(S)=\left|\cup_{v \in S} X_{v}^{i}\right| \Rightarrow f_{i}(S)$ is submodular!
- \boldsymbol{X}_{v}^{i} are sets, $\boldsymbol{f}_{i}(\boldsymbol{S})$ is the size of their union
- Expected influence set size: $f(S)=\frac{1}{|I|} \sum_{i \in I} f_{i}(S) \Rightarrow f(S)$ is submodular!
- $\boldsymbol{f}(\boldsymbol{S})$ is a linear combination of submodular functions

RECAP: Influence Maximization

- Find most influential set \boldsymbol{S} of size \boldsymbol{k} : largest expected cascade size $f(S)$ if set \boldsymbol{S} is activated

Network, each edge activates with prob. $\boldsymbol{p}_{u v}$

Multiple realizations i. Each realization is a "parallel universe"

- Want to solve:
$\underset{|S|=k}{\arg \max } f(S)=\frac{1}{|I|} \sum_{i \in I} f_{i}(S)$
Consider $S=\{a, d\}$ then: $\mathrm{f}_{1}(\mathrm{~S})=5, \mathrm{f}_{2}(\mathrm{~S})=4, \mathrm{f}_{3}(\mathrm{~S})=\mathbf{3}$ and $f(S)=12$
D... influence set of node a . influence set of node d

Plan: Prove 2 things

 (1) Our $f(S)$ is submodular (2) Hill Climbing gives nearoptimal solutions(for monotone submodular functions)

Proof for Hill Climbing

Claim:
When $f(S)$ is monotone and submodular then Hill climbing produces active set S
where: $f(S) \geq\left(1-\frac{1}{e}\right) \cdot f($ OPT $)$

- In other words: $f(S) \geq 0.63 \cdot f(O P T)$
- The setting:
- Keep adding nodes that give the largest gain
- Start with $\boldsymbol{S}_{\mathbf{0}}=\{ \}$, produce sets $\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \ldots, \boldsymbol{S}_{\boldsymbol{k}}$
- Add elements one by one
- Let $\boldsymbol{O P T}=\left\{\boldsymbol{t}_{\mathbf{1}} \ldots \boldsymbol{t}_{\boldsymbol{k}}\right\}$ be the optimal set (OPT) of size \boldsymbol{k}
- We need to show: $f(S) \geq\left(1-\frac{1}{e}\right) f(O P T)$

Proof Overview

- Define: Marginal gain: $\delta_{i}=f\left(S_{i}\right)-f\left(S_{i-1}\right)$
- Proof: 3 steps:
- 0) Lemma: $f(A \cup B)-f(A) \leq \sum_{j=1}^{k}\left[f\left(A \cup\left\{b_{j}\right\}\right)-f(A)\right]$
- where: $B=\left\{b_{1}, \ldots, b_{k}\right\}$ and $f(\cdot)$ is submodular
- 1) $\delta_{i+1} \geq \frac{1}{k}\left[f(O P T)-f\left(S_{i}\right)\right]$
- 2) $f\left(S_{i+1}\right) \geq\left(1-\frac{1}{k}\right) f\left(S_{i}\right)+\frac{1}{k} f(O P T)$
- 3) $f\left(S_{k}\right) \geq\left(1-\frac{1}{e}\right) f(O P T)$

Step zero: Basic Hill Climbing Fact

- $f(A \cup B)-f(A) \leq \sum_{j=1}^{k}\left[f\left(A \cup\left\{b_{j}\right\}\right)-f(A)\right]$
- where: $B=\left\{b_{1}, \ldots, b_{k}\right\}$ and $f(\cdot)$ is submodular
- Proof:
- Let $\boldsymbol{B}_{\boldsymbol{i}}=\left\{\boldsymbol{b}_{1}, \ldots \boldsymbol{b}_{\boldsymbol{i}}\right\}$, so we have $\boldsymbol{B}_{\mathbf{1}}, \boldsymbol{B}_{2}, \ldots, \boldsymbol{B}_{\boldsymbol{k}}(=\boldsymbol{B})$
- $f(A \cup B)-f(A)=\sum_{i=1}^{k}\left[f\left(A \cup B_{i}\right)-f\left(A \cup B_{i-1}\right)\right]$
$-=\sum_{i=1}^{k}\left[f\left(A \cup B_{i-1} \cup\left\{b_{i}\right\}\right)-f\left(A \cup B_{i-1}\right)\right]$
- $\leq \sum_{i=1}^{k}\left[f\left(A \cup\left\{b_{i}\right\}\right)-f(A)\right]$

By submodularity
since $A \cup X \supseteq A$

Work out the sum.
Everything but $1^{\text {st }}$ and last term cancel out:
$f\left(A \cup B_{1}\right)-f\left(A \cup B_{0}\right)$
$+f\left(A-B_{2}\right)-f\left(A \cup B_{1}\right)$
$+f\left(A \cup B_{3}\right)-f\left(A \cup B_{2}\right) \ldots$
$+f\left(A \cup B_{k}\right)-f\left(A \cup B_{k-1}\right)$

Step one: What is δ_{i} gain at step i?

Remember: $\delta_{i}=f\left(S_{i}\right)-f\left(S_{i-1}\right)$

- $f(O P T) \leq f\left(S_{i} \cup O P T\right)$
(by monotonicity)
$=f\left(S_{i} \cup O P T\right)-f\left(S_{i}\right)+f\left(S_{i}\right)$
- $\leq \sum_{j=1}^{k}\left[f\left(S_{i} \cup\left\{t_{j}\right\}\right)-f\left(S_{i}\right)\right]+f\left(S_{i}\right)$
(by prev. slide)
- $\leq \sum_{j=1}^{k}\left[\delta_{i+1}\right]+f\left(S_{i}\right)$
$=f\left(S_{i}\right)+k \delta_{i+1}$
- Thus: $f(O P T) \leq f\left(S_{i}\right)+k \delta_{i+1}$
$-\Rightarrow \delta_{i+1} \geq \frac{1}{k}\left[f(O P T)-f\left(S_{i}\right)\right]$
$O P T=\left\{t_{1}, \ldots t_{k}\right\}$
t_{j} is j-th element of the optimal solution.
Rather than choosing t_{j} let's greedily choose the best element \boldsymbol{q}_{i}, which gives a gain of δ_{i+1}. So, $f\left(S_{i} \cup\left\{\boldsymbol{t}_{j}\right\}\right) \leq \boldsymbol{\delta}_{i+1}$. This is the "hill-climbing" assumption.

Step two: What is $f\left(\mathrm{~S}_{\mathrm{i}+1}\right)$?

- We just showed: $\delta_{i+1} \geq \frac{1}{k}\left[f(O P T)-f\left(S_{i}\right)\right]$
- What is $f\left(S_{i+1}\right)$?
- $f\left(S_{i+1}\right)=f\left(S_{i}\right)+\delta_{i+1}$
$-\geq f\left(S_{i}\right)+\frac{1}{k}\left[f(O P T)-f\left(S_{i}\right)\right]$
$-\geq\left(1-\frac{1}{k}\right) f\left(S_{i}\right)+\frac{1}{k} f(O P T)$
- What is $f\left(S_{k}\right)$?

Step three: What is $f\left(\mathrm{~S}_{\mathrm{k}}\right)$?

Claim: $f\left(S_{i}\right) \geq\left[1-\left(1-\frac{1}{k}\right)^{i}\right] f(O P T)$ Proof by induction:

- $\boldsymbol{i}=\mathbf{0}$:
- $f\left(S_{0}\right)=f(\{ \})=0$
- $\left[1-\left(1-\frac{1}{k}\right)^{0}\right] f(O P T)=0$

Step three: What is $f\left(\mathrm{~S}_{\mathrm{k}}\right)$?

- Given that this is true for $\mathbf{S}_{\mathbf{i}}: f\left(S_{i}\right) \geq\left[1-\left(1-\frac{1}{k}\right)^{i}\right] f(O P T)$

Proof by induction:

- At $\boldsymbol{i}+1$:

$$
\begin{aligned}
& f\left(S_{i+1}\right) \geq\left(1-\frac{1}{k}\right) f\left(S_{i}\right)+\frac{1}{k} f(O P T) \longleftarrow \\
& \geq\left(1-\frac{1}{k}\right)\left[1-\left(1-\frac{1}{k}\right)^{i}\right] f(O P T)+\frac{1}{k} f(O P T) \\
& =\left[1-\left(1-\frac{1}{k}\right)^{i+1}\right] f(O P T) \quad \\
& \quad \begin{array}{l}
\text { the claim }
\end{array} \\
& \quad \begin{array}{l}
\text { Two slides ago we showed: } \\
\\
=\left[S_{i+1}\right) \geq\left(1-\frac{1}{k}\right) f\left(S_{i}\right)+\frac{1}{k} f(O P T)
\end{array}
\end{aligned}
$$

What is $f\left(S_{k}\right)$?

- Thus:

$$
\begin{aligned}
& f(S)=f\left(S_{k}\right) \geq[1-\underbrace{\left(1-\frac{1}{k}\right)^{k}}_{\leq \frac{1}{e}}] f(O P T) \\
& \text { So: }
\end{aligned}
$$

$$
f\left(S_{k}\right) \geq\left(1-\frac{1}{e}\right) f(O P T)
$$

qed.

Apply inequality: $1+x \leq e^{x}$ where $x=-\frac{1}{k}$

Solution Quality

We just proved:

- Hill climbing finds solution S which $f(S) \geq(1-1 / e) * f(O P T) \quad$ i.e., $f(S) \geq 0.63 * f(O P T)$
- This is a data independent bound
- This is a worst case bound
- No matter what is the input data, we know that the Hill-Climbing will never do worse than $0.63 * f(O P T)$

Evaluating our $f(S)$?

- How to evaluate influence maximization $f(S)$?
- Still an open question of how to compute it efficiently
- But: Very good estimates by simulation
- Repeating the diffusion process often enough (polynomial in $n ; 1 / \varepsilon$)
- Achieve ($1 \pm \varepsilon$)-approximation to $f(S)$
- Generalization of Nemhauser-Wolsey proof: Greedy algorithm is now a (1-1/e- ε)approximation

RECAP: Influence Maximization

- Find most influential set \boldsymbol{S} of size \boldsymbol{k} : largest expected cascade size $f(S)$ if set \boldsymbol{S} is activated

Network, each edge activates with prob. $\boldsymbol{p}_{u v}$

Multiple realizations i. Each realization is a "parallel universe"

- Want to solve:
$\underset{|S|=k}{\arg \max } f(S)=\frac{1}{|I|} \sum_{i \in I} f_{i}(S)$
Consider $S=\{a, d\}$ then: $\mathrm{f}_{1}(\mathrm{~S})=5, \mathrm{f}_{2}(\mathrm{~S})=4, \mathrm{f}_{3}(\mathrm{~S})=\mathbf{3}$ and $f(S)=1 / 3^{*}(5+4+3)=4$
D... influence set of node a . influence set of node d

Experiments and Concluding Thoughts

Experiment Data

- A collaboration network: co-authorships in papers of the arXiv high-energy physics theory:
- 10,748 nodes, 53,000 edges
- Example cascade process: Spread of new scientific terminology/method or new research area
- Independent Cascade Model:
- Case 1: Uniform probability p on each edge
- Case 2: Edge from v to w has probability 1/deg(w) of activating w.

Experiment Settings

- Simulate the process 10,000 times for each targeted set
- Every time re-choosing edge outcomes randomly
- Compare with other 3 common heuristics
- Degree centrality: Pick nodes with highest degree
" Closeness centrality: Pick nodes in the "center" of the network
- Random nodes: Pick a random set of nodes

Independent Cascade Model

Uniform edge firing probability $p_{u v}$

Independent Cascade Model

Non-uniform edge firing probability $p_{u v}$

Discussion

- Notice: Greedy approach is slow!
- For a given network \boldsymbol{G}, repeat 10,000s of times:
- Flip coin for each edge and determine influence sets under coin-flip realization i
- Each node u is associated with 10,000s influence sets $X_{u}{ }^{i}$
- Greedy's complexity is $\boldsymbol{O}(\boldsymbol{k} \cdot \boldsymbol{n} \cdot \boldsymbol{R} \cdot \boldsymbol{M})$
- n... number of nodes in G
- k... number of nodes to be selected/influenced
- R... number of simulation rounds
- m... number of edges in G

Cottage Industry of Heuristics

- Many researchers have since proposed heuristics that work well in practice and run faster than the greedy algorithm
[Chen, Wang, Yang]

Figure 2: Influence spreads of different algorithms on the collaboration graph NetPHY under the independent cascade model ($n=37,154, m=231,584$, and $p=0.01$).

Figure 4: Running times of different algorithms on the collaboration graph NetPHY under the independent cascade model ($n=37,154, m=231,584, p=0.01$, and $k=50$).

Open Questions

- More realistic viral marketing:
- Different marketing actions increase likelihood of initial activation, for several nodes at once
- Study more general influence models:
- Find trade-offs between generality and feasibility
- Deal with negative influences:
- Model competing ideas
- Obtain more data (better models) about how activations occur in real social networks

[^0]: $S_{i} \ldots$ Initially active set
 $f\left(S_{i}\right)$... Size of the union of $X_{u}, u \in S_{i}$

