Influence Maximization in Networks

CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu

Viral Marketing?

We are more influenced by our friends than strangers

68% of consumers consult friends and family before purchasing home electronics

□50% do research online before purchasing electronics

Viral Marketing

Identify influential customers

Convince them to adopt the product – Offer discount or free samples

Start

These customers endorse the product among their friends

How to Create Big Cascades?

Information epidemics:

- Which are the influential users?
- Which news sites create big cascades?
- Where should we advertise?

Probabilistic Contagion

Independent Cascade Model

- Directed finite G = (V, E)
- Set S starts out with new behavior
 - Say nodes with this behavior are "active"
- Each edge (v, w) has a probability p_{vw}
- If node v is active, it gets <u>one</u> chance to make w active, with probability p_{vw}
 - Each edge fires at most once

Does scheduling matter? No

If u, v are both active at the same time, it doesn't matter which tries to activate w first

But the time moves in discrete steps

Independent Cascade Model

- Initially some nodes S are active
- Each edge (v, w) has probability (weight) p_{vw}

When node v becomes active:

It activates each out-neighbor w with prob. pvw Activations spread through the network

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Most Influential Set

Problem: (*k* is a user-specified parameter)

 Most influential set of size k: set S of k nodes producing largest
 expected cascade size f(S)
 if activated [Domingos-Richardson '01]

set **X**_a of **a**

Influence set **X_d of d**

Optimization problem: $\max_{\text{Sof size } k} f(S)$

Why "expected cascade size"? X_a is a result of a random process. So in practice we would want to compute X_a for many random realizations and then maximize the "average" value f(S). For now let's ignore this nuisance and simply assume that each node u influences a set of nodes X_u

Random realizations *i*

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Most Influential Set of Nodes

- S: is initial active set
- f(S): The expected size of final active set
 - **f(S)** is the size of the union of X_u : $f(S) = |\cup_{u \in S} X_u|$

• Set S is more influential if f(S) is larger $f(\{a, b\}) < f(\{a, c\}) < f(\{a, d\})$

How hard is influence maximization?

Most Influential Subset of Nodes

 Problem: Most influential set of k nodes: set S on k nodes producing largest expected cascade size f(S) if activated
 The optimization problem:

 $\max_{S \text{ of size } k} f(S)$

- How hard is this problem?
 - NP-COMPLETE!
 - Show that finding most influential set is at least as hard as a set cover problem

<u>Background:</u> Set Cover

Set cover problem

(a known NP-complete problem):

Given universe of elements $U = \{u_1, \dots, u_n\}$ and sets $X_1, \dots, X_m \subseteq U$

Q: Are there k sets among X₁,..., X_m such that their union is U?

Goal:

Encode set cover as an instance of

Χ,

Influence Maximization is NP-hard

- Given a set cover instance with sets $X_1, ..., X_m$
- Build a bipartite "X-to-U" graph:

e.g.: $X_1 = \{u_1, u_2, u_3\}$

- Construction: • Create edge $(X_i, u) \forall X_i \forall u \in X_i$ -- directed edge from sets to their elements • Put weight 1 on
- each edge (the activation is deterministic)

Set Cover as Influence Maximization in X-to-U graph: There exists a set S of size k with f(S)=k+n iff there exists a size k set cover

Note: Optimal solution is always a set of nodes X_i (we never influence nodes "u") This problem is hard in general, but there could be special cases that are easier. 10/23/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Summary so Far

Extremely bad news:

- Influence maximization is NP-complete
- Next, good news:
 - There exists an <u>approximation</u> algorithm!
 - For some inputs the algorithm won't find globally optimal solution/set OPT
 - But we will also prove that the algorithm will never do too badly either. More precisely, the algorithm will find a set *S* that where *f(S) > 0.63*g(OPT)*, where *OPT* is the globally optimal set.

The Approximation Algorithm

- Consider a <u>Greedy Hill Climbing</u> algorithm to find S:
 - Input:

Influence set X_u of each node u: $X_u = \{v_1, v_2, ...\}$

- That is, if we activate u, nodes {v₁, v₂, ... } will eventually get active
- Algorithm: At each iteration i activate the node u that gives largest marginal gain: $\max_{u} f(S_{i-1} \cup \{u\})$

 S_i ... Initially active set $f(S_i)$... Size of the union of X_u , $u \in S_i$

(Greedy) Hill Climbing

Algorithm:

- Start with $S_0 = \{ \}$
- For *i* = 1 ... *k*
 - Activate node u that $\max f(S_{i-1} \cup \{u\})$

• Let
$$S_i = S_{i-1} \cup \{u\}$$

Example:

- Eval. $f(\{a\}), \dots, f(\{e\})$, pick argmax of them
- Eval. f({d, a}), ..., f({d, e}), pick argmax
- Eval. f(d, b, a}), ..., f({d, b, e}), pick argmax

Approximation Guarantee

Claim: Hill climbing produces a solution S where: *f(S)* ≥(1-1/e)**f(OPT)* (*f(S)*>0.63**f(OPT*))

[Nemhauser, Fisher, Wolsey '78, Kempe, Kleinberg, Tardos '03]

- Claim holds for functions $f(\cdot)$ with 2 properties:
 - f is monotone: (activating more nodes doesn't hurt) if *S* <u></u> ⊂ *T* then *f*(S) ≤ *f*(T) and *f*({})=0
 - **f** is submodular: (activating each additional node helps less) adding an element to a set gives less improvement than adding it to one of its subsets: $\forall S \subseteq T$

$f(S \cup \{u\}) - f(S) \ge f(T \cup \{u\}) - f(T)$

Gain of adding a node to a small set Gain of adding a node to a large set

Submodularity– Diminishing returns

Plan: Prove 2 things (1) Our f(S) is submodular (2) Hill Climbing gives nearoptimal solutions (for monotone submodular functions)

Also see the hangout posted on the course website.

Background: Submodular Functions

We must show our *f(·)* is submodular: ∀*S* ⊆ *T*

$$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$$

Gain of adding a node to a small set

Gain of adding a node to a large set

Basic fact 1:

• If $f_1(x), ..., f_k(x)$ are submodular, and $c_1, ..., c_k \ge 0$ then $F(x) = \sum_i c_i \cdot f_i(x)$ is also submodular

(Non-negative combination of submodular functions is a submodular function)

Background: Submodular Functions

$$\forall S \subseteq T: f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$$

Gain of adding *u* to a small set Gain of adding *u* to a large set

Basic fact 2: A simple submodular function

- $f(S) = |\bigcup_{k \in S} X_k|$ (size of the union of sets X_k , $k \in S$)
- Claim: f(S) is submodular!

The more sets you already have the less new area a given set *u* will cover

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

$f(S) = \frac{1}{|I|} \sum_{\substack{\text{Random}\\\text{realizations }i}} f_i(S)$

а

Proof strategy:

- We will argue that influence maximization is an instance of the Set cover problem:
 - Set cover problem:

f(S) is the size of the union of nodes influenced by active set **S**

 Note *f(S)* is "random" (a result of a random process) so we need to be a bit careful

Principle of deferred decision to the rescue!

 We will create many parallel universes and then average over them

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

a

Principle of deferred decision:

- Flip all the coins at the beginning and record which edges fire successfully
- Now we have a deterministic graph!
- Def: Edge is <u>live</u> if it fired successfully
 - That is, we remove edges that did not fire

What is influence set X_u of node u? ..." The set reachable by live-edge paths from u

Influence sets for realization *i*: $X_a^i = \{a, f, c, g\}$ $X_b^i = \{b, c\},$ $X_c^i = \{c\}$ $X_d^i = \{d, e, h\}$

a

- What is an influence set X_u?
 The set reachable by live-edge paths from u
 What is now f(S)?
 - *f_i(S)* = size of the set reachable by live-edge paths from nodes in *S*

For the i-th realization of coin flips

• $f_i(S = \{a, b\}) = |\{a, f, c, g\} \cup \{b, c\}| = 5$ • $f_i(S = \{a, d\}) = |\{a, f, c, g\} \cup \{d, e, h\}| = 7$

Influence sets for realization *i*: $X_a^i = \{a, f, c, g\}$ $X_b^i = \{b, c\},$ $X_c^i = \{c\}$ $X_d^i = \{d, e, h\}$

Activate edges by coin flipping

 X^1_a

а

 X_a^3

- Fix outcome $i \in I$ of coin flips
- Xⁱ_v = set of nodes reachable from
 v on live-edge paths
- *f_i(S)* = size of cascades from *S* given the coin flips *i*
- $f_i(S) = \left| \bigcup_{v \in S} X_v^i \right| \Rightarrow f_i(S)$ is submodular!
 - X_{v}^{i} are sets, $f_{i}(S)$ is the size of their union
- Expected influence set size:
 - $f(S) = \frac{1}{|I|} \sum_{i \in I} f_i(S) \Rightarrow f(S)$ is submodular!
 - f(S) is a linear combination of submodular functions

RECAP: Influence Maximization

Find most influential set S of size k: largest expected cascade size f(S) if set S is activated

Network, each edge activates with prob. p_{uv}

Activate edges by coin flipping

Multiple realizations *i.* Each realization is a "parallel universe"

Want to solve:

and **f(S) = 12**

$$\underset{|S|=k}{\operatorname{arg\,max}\,f(S)} = \frac{1}{|I|} \sum_{i \in I} f_i(S)$$

Consider S={a,d} then:
f_1(S)=5, f_2(S)=4, f_3(S)=3

influence set of node a
influence set of node d

Plan: Prove 2 things (1) Our f(S) is submodular (2) Hill Climbing gives nearoptimal solutions (for monotone submodular functions)

Proof for Hill Climbing

Claim:

When f(S) is monotone and submodular then Hill climbing produces active set S where: $f(S) \ge (1 - \frac{1}{e}) \cdot f(OPT)$

In other words: $f(S) \ge 0.63 \cdot f(OPT)$

The setting:

- Keep adding nodes that give the largest gain
- Start with $S_0 = \{\}$, produce sets S_1, S_2, \dots, S_k
- Add elements one by one
- Let $OPT = \{t_1 \dots t_k\}$ be **the optimal set (OPT)** of size k
- We need to show: $f(S) \ge (1 \frac{1}{e}) f(OPT)$

Proof Overview

Define: Marginal gain: δ_i = f(S_i) - f(S_{i-1})
Proof: 3 steps:

• 0) Lemma: $f(A \cup B) - f(A) \le \sum_{j=1}^{k} [f(A \cup \{b_j\}) - f(A)]$ • where: $B = \{b_1, \dots, b_k\}$ and $f(\cdot)$ is submodular • 1) $\delta_{i+1} \ge \frac{1}{k} [f(OPT) - f(S_i)]$ • 2) $f(S_{i+1}) \ge (1 - \frac{1}{k}) f(S_i) + \frac{1}{k} f(OPT)$ • 3) $f(S_k) \ge (1 - \frac{1}{k}) f(OPT)$

Step zero: Basic Hill Climbing Fact

- $f(A \cup B) f(A) \le \sum_{j=1}^{k} [f(A \cup \{b_j\}) f(A)]$
 - where: $B = \{b_1, \dots, b_k\}$ and $f(\cdot)$ is submodular
- Proof:
- Let $B_i = \{b_1, \dots, b_i\}$, so we have $B_1, B_2, \dots, B_k (= B)$ • $f(A \cup B) - f(A) = \sum_{i=1}^{k} [f(A \cup B_i) - f(A \cup B_{i-1})]$ • = $\sum_{i=1}^{k} [f(A \cup B_{i-1} \cup \{b_i\}) - f(A \cup B_{i-1})]$ • $\leq \sum_{i=1}^{k} [f(A \cup \{b_i\}) - f(A)]$ Work out the sum. Everything but 1st and last term cancel out: $f(A \cup B_1) - f(A \cup B_0)$ $+ f(A \cup B_2) - f(A \cup B_1)$ By submodularity since $A \cup X \supset A$ $+f(A \cup B_3) - f(A \cup B_2) \dots$ $+ f(A \cup B_k) - f(A \cup B_{k-1})$

Step one: What is δ_i gain at step *i*?

Remember: $\delta_i = f(S_i) - f(S_{i-1})$

• $f(OPT) \le f(S_i \cup OPT)$ (by monotonicity) $= f(S_i \cup OPT) - f(S_i) + f(S_i)$ $\leq \sum_{j=1}^{k} \left[f\left(S_i \cup \{t_j\}\right) - f\left(S_i\right) \right] + f\left(S_i\right)$ (by prev. slide) $\leq \sum_{i=1}^{k} [\delta_{i+1}] + f(S_i)$ $OPT = \{ t_1, \dots, t_k \}$ t_i is j-th element of the optimal solution. $= f(S_i) + k \,\delta_{i+1}$

• Thus: $f(OPT) \le f(S_i) + k \delta_{i+1}$

 $\Rightarrow \delta_{i+1} \geq \frac{1}{k} [f(OPT) - f(S_i)]$

Rather than choosing t_j let's greedily choose **the best element** q_i , which gives a gain of δ_{i+1} . So, $f(S_i \cup \{t_j\}) \le \delta_{i+1}$. This is the "hill-climbing"

assumption.

Step two: What is f(S_{i+1})?

- We just showed: $\delta_{i+1} \ge \frac{1}{k} [f(OPT) f(S_i)]$
- What is *f*(*S*_{*i*+1})?

•
$$f(S_{i+1}) = f(S_i) + \delta_{i+1}$$

$$\bullet \ge f(S_i) + \frac{1}{k} [f(OPT) - f(S_i)]$$

$$\bullet \ge \left(1 - \frac{1}{k}\right) f(S_i) + \frac{1}{k} f(OPT)$$

• What is $f(S_k)$?

Step three: What is f(S_k)?

_

• Claim:
$$f(S_i) \ge \left\lfloor 1 - \left(1 - \frac{1}{k}\right)^i \right\rfloor f(OPT)$$

Proof by induction:

• i = 0:

•
$$f(S_0) = f(\{\}) = 0$$

• $\left[1 - \left(1 - \frac{1}{k}\right)^0\right] f(OPT) = 0$

Step three: What is f(S_k)?

• Given that this is true for S_i : $f(S_i) \ge \left| 1 - \left(1 - \frac{1}{k}\right)^i \right| f(OPT)$

Proof by induction:

• At *i* + 1:

•
$$f(S_{i+1}) \ge \left(1 - \frac{1}{k}\right) f(S_i) + \frac{1}{k} f(OPT)$$

• $\ge \left(1 - \frac{1}{k}\right) \left[1 - \left(1 - \frac{1}{k}\right)^i\right] f(OPT) + \frac{1}{k} f(OPT)$
• $= \left[1 - \left(1 - \frac{1}{k}\right)^{i+1}\right] f(OPT)$
the claim
Two slides ago we showed:

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

 $f(S_{i+1}) \ge \left(1 - \frac{1}{k}\right)f(S_i) + \frac{1}{k}f(OPT)$

What is f(S_k)?

Thus: $f(S) = f(S_k) \ge \left[1 - \left(1 - \frac{1}{k}\right)^k\right] f(OPT)$ $\text{So:} \qquad \qquad \leq \frac{1}{e}$ $f(S_k) \ge \left(1 - \frac{1}{e}\right) f(OPT)$

qed.

Apply inequality: $1 + x \le e^x$ where $x = -\frac{1}{k}$

10/23/17

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Solution Quality

We just proved:

Hill climbing finds solution S which
 f(S) ≥ (1-1/e)*f(OPT) i.e., f(S) ≥ 0.63*f(OPT)

This is a data independent bound

- This is a worst case bound
- No matter what is the input data, we know that the Hill-Climbing will never do worse than 0.63*f(OPT)

Evaluating our f(S)?

How to evaluate influence maximization f(S)?

Still an open question of how to compute it efficiently

But: Very good estimates by simulation

- Repeating the diffusion process often enough (polynomial in *n*; 1/ε)
- Achieve (1± ε)-approximation to f(S)
- Generalization of Nemhauser-Wolsey proof: Greedy algorithm is now a (1-1/e- ε)approximation

RECAP: Influence Maximization

Find most influential set S of size k: largest expected cascade size f(S) if set S is activated

Network, each edge activates with prob. p_{uv}

Activate edges by coin flipping

Multiple realizations *i.* Each realization is a "parallel universe"

Want to solve:

$$\underset{|S|=k}{\operatorname{arg\,max}\,f(S)} = \frac{1}{|I|} \sum_{i \in I} f_i(S)$$

Consider S={a,d} then:
f_1(S)=5, f_2(S)=4, f_3(S)=3

and f(S) = 1/3*(5+4+3)=4

 $\bigcirc \dots \text{ influence set of node } a$ $\bigcirc \dots \text{ influence set of node } d$

Experiments and Concluding Thoughts

Experiment Data

- A collaboration network: co-authorships in papers of the arXiv high-energy physics theory:
 - 10,748 nodes, 53,000 edges
 - Example cascade process: Spread of new scientific terminology/method or new research area
- Independent Cascade Model:
 - Case 1: Uniform probability p on each edge
 - Case 2: Edge from v to w has probability
 1/deg(w) of activating w.

Experiment Settings

- Simulate the process 10,000 times for each targeted set
 - Every time re-choosing edge outcomes randomly

Compare with other 3 common heuristics

- Degree centrality: Pick nodes with highest degree
- Closeness centrality: Pick nodes in the "center" of the network
- Random nodes: Pick a random set of nodes

Independent Cascade Model

Uniform edge firing probability p_{uv}

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Independent Cascade Model

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Discussion

• **Notice:** Greedy approach is slow!

- For a given network G, repeat 10,000s of times:
 - Flip coin for each edge and determine influence sets under coin-flip realization *i*
 - Each node u is associated with 10,000s influence sets X_uⁱ
- Greedy's complexity is $O(k \cdot n \cdot R \cdot M)$
 - n ... number of nodes in G
 - k ... number of nodes to be selected/influenced
 - R ... number of simulation rounds
 - m ... number of edges in G

Cottage Industry of Heuristics

 Many researchers have since proposed heuristics that work well in practice and run faster than the greedy algorithm

Figure 2: Influence spreads of different algorithms on the collaboration graph NetPHY under the independent cascade model (n = 37, 154, m = 231, 584, and p = 0.01). 10/23/17 Jure Leskovec, Stanford CS224W: Ana

and p = 0.01). (n = 37, 154, m = 231, 584, p = 0.01, and k = 50). Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

oration graph NetPHY under the independent cascade model

Open Questions

More realistic viral marketing:

- Different marketing actions increase likelihood of initial activation, for several nodes at once
- Study more general influence models:
 - Find trade-offs between generality and feasibility
- Deal with negative influences:
 - Model competing ideas
- Obtain more data (better models) about how activations occur in real social networks