Announcements:
Please fill HW Survey
Weekend Office Hours starting this weekend (Hangout only)
Proposal: Can use 1 late period

Probabilistic Contagion and
Models of Influence




Models of Cascading Behavior

So far:
Decision Based Models

Utility based
Deterministic

“Node” centric: A node observes decisions of its
neighbors and makes its own decision

Require us to know too much about the data
Next: Probabilistic Models

Lets you do things by observing data

We lose “why people do things”
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Epidemic Model Based on
Trees



Probabilistic Spreading Models

Epidemic Model based on Random Trees

(a variant of a branching processes) Root node,
“patient 0”
A patient meets d other people Start of epidemic

d subtrees

With probability g > 0 she infects each
of them

Q: For which values of d and g

does the epidemic run forever?
{At least 1 infected } 20

node at depth h

Run forever: {im P

h—o0
Die out: - || - =0
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Probabilistic Spreading Models

p;, = prob. there is an infected node at depth h
We need: Aim p, =7 (based on g and d)

We are reasoning about a behavior at the root of the tree. Once we
get a level out, we are left with identical problem of depth h-1.

Need recurrence for p,,
; E‘:\\E d subtrees

pp=1-(1-q- Ph—1)cf
We iterate:

No infectgd node
fx)=1—(1—q-x)¢ x=(1)

at depth h from the root
X=f(x4)

lim p;, = result of iterating
Starting at the root: x = 1 (sincep; = 1) x5=f(X,)

h— oo
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Fixed Point: f(x) =1 — (1 — gx)¢

X ... prob. there

f(x) y=x=1 is an infected node
Fixed point: at level h-1. We start
B ] at x=1 because p,=1.
f(x)=x

f(x) ... prob. there

is an infected node
y = f(X) at level h

g ... infection prob.

d ... degree

This means that ™
prob. there is an
infected node at depth

h is constant (>0) Going to the first

fixed point We iterate:
x,=f(1)
X,=f(X4)
X3=f(Xy)

If we want to epidemic to die out, then
iterating f(x) must go to zero.
So, f(x) must be below y=x
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Fixed Point: f(x) =1 — (1 — gx)“

f(x)

y=X=1 X ... prob. there
is an infected node
at level h-1
f(x) ... prob. there
is an infected node

_ at level h
y= f(X) q ... infection prob.
d ... degree

Going to the first

fixed point

What do we know about the shape of f(x)?

f(0)=0
fM=1-1-¢%<1
fl(x) =¢q-d(1—gx)*?
f'(0)=gq-d

f(x) is monotone: If g'(y)>0 for all y then g(y) is monotone.
In our case, 0=<x,9<1, d>1 so f'(x)>0 so f(x) is monotone.
f’(x) non-increasing: since term (1-gx)%-" in f(x) is
decreasing as x decreases.

f'(x) IS monotone non-increasing on [0,1]!
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Fixed Point: When is this zero?

f(x) y=X

Reproductive
number R, =
q-d.

There is an
X v = f(x) epidemic if

R,>1

1 X
For the epidemic to die out
we need f(x) to be below y=x!
So: f'(0)=q-d<1
limp, =0 when q-d <1

h—oo

g - d = expected # of people that get infected
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Important Points

Reproductive number R, = q - d:
There is an epidemicif R, = 1

Only R, matters:

R, = 1: epidemic never dies and the number of
infected people increases exponentially

R, < 1: Epidemic dies out exponentially quickly
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Models of Disease Spreading



Spreading Models of Viruses

Virus Propagation: 2 Parameters:
(Virus) Birth rate B:

probability than an infected neighbor attacks
(Virus) Death rate 6:

Probability that an infected node heals

Healthy

Infected
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More Generally: S+E+I+R Models

General scheme for epidemic models:
Each node can go through phases:

Transition probs. are governed by the model parameters

recruitment exit exit exit

; f ?
ENs »

AERETE

E...exposed

l...infected
+ R...recovered
exit Z....immune
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SIR Model

SIR model: Node goes through phases
| B 5

Infected

Recovered

Models chickenpox or plague:

Once you heal, you can never get infected again
Assuming perfect mixing (The network is a

complete graph) the e
.. =gt o

model dynamics is: ol R()
dsS dR o=
o —pSI A Ol 5. I(t)

t gu S |
- = ﬁSI _ 61 < sz;..nﬁﬁi;f: .“’%""“,w.....:;::::::.’.Z::::g;
dt T Ttme "
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SIS Model

Susceptible-Infective-Susceptible (SIS) model
Cured nodes immediately become susceptible
Virus “strength”:s=B/ 6

Node state transition diagram:

Infected by neighbor
with prob. 3

Susceptible Infective

Cured with
prob. &
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SIS Model

500--—-—.‘;\, , : . . Models flu:

a0y I(t) T Susceptible node
g 400 b 0” .‘wmooooooooooooooooooom becomes Infected
2 ¢ PR 1 The node then heals
S w00} I : and become
é 20} . : susceptible again
e D : Assuming perfect

180} S(t) : mixing (complete

100 + J o SIS S S 68 % B S8 % & & ol h .

graph):
50+ R i
|’ dS

"5 0 20 30 10 50 B0 - = S] + é]
time dt ﬂ
— = [BST — 0Ol
dt p
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Question: Epidemic threshold t

SIS Model:
Epidemic threshold of an arbitrary
graph G is t, such that:

If virus “strength” s = /0 <t the epidemic can
not happen (it eventually dies out)

Given a graph what is its epidemic threshold?
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[Wang et al. 2003]

Epidemic Threshold in SIS Model

Fact: We have no epidemic if:

Epidemic threshold

(Virus) Death ——
rate jl
Bra<t=1/1,,
t

/
/
(Virus) Birth réte largest eigenvalue
of adj. matrix A of G

> A, c alone captures the property of the graph!
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[Wang et al. 2003]

Experiments (AS graph)

500 - 10,900 nodes and
. 5= 0.001 31,180 edges
5 400 s=p/06 > 1
2 (above threshold)
O
8300 -
O
2
£
= 200 -
8 s=p/o=1
£ 100 (at the threshold)
z
0
0 s=Pp/o <t

Time (below threshold)

6: === 0.05 == 0.06 =« 0.07
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Experiments

Does it matter how many people are
initially infected?

3(10 x 10

I
N
I

w

Number of carriers
> [\*]
Number of carriers
>
/ | o
/ /_,._‘.,.........
Number of carriers
~ N
S

w
W
,
Y

N
AN A\ <

T T -
WIS - e o= . ‘
0 50 100
Simulation epochs ° Simulatig(r)x epochs 10 0 g(i)mulation1 ggochs 150
(a) Below the threshold, (b) At the threshold, (¢) Above the threshold,
s=0.912 s=1.003 s=11
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Example: Ebola

> ? —
Transition Transition rate
.
(SE =51 BL) (8;SI + By SH+8£SF)/N
(E.I) = (E-1, 14-1) ak
(ILH) — (I-1, H41) b1
(H.F) — (H-1, F+1) Yano2H
(F,R) — (F-1, R+1) vl
(LR) — (I-1, R+1) Yi(1 —01)(1 —61)I
(LF) = (I-1, F+1) 01(1 — 61 )7al \_

N/

(H.R) — (H-1, R+1) vin(l — d2)H

[Gomes et al., Assessing the International Spreading Risk Associated with the 2014 West
African Ebola Outbreak, PLOS Current Outbreaks, 2014]
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[Gomes et al., 2014]

Example: Ebola, R,=1.5-2.0

T 1 T

Calibration Region

Projection Region

[
o
[

Total number of deaths since July 1%
=
o

Read an article about how to estimate RQ of ebola.
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[Gomes et al., 2014]

Example: Ebola
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Independent Cascade Model



Independent Cascade Model

Initially some nodes S are active
Each edge (u,v) has probability (weight) p,,,

When node u becomes active/infected:

It activates each out-neighbor v with prob. p,,
Activations spread through the network!

10/18/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 24



Independent Cascade Modal

Independent cascade model ,
is simple but requires
many parameters!

Estimating them from
data is very hard
[Goyal et al. 2010]

Solution: Make all edges have the same
weight (which brings us back to the SIR model)

Simple, but too simple
Can we do something better?
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Exposures and Adoptions

From exposures to adoptions

Exposure: Node’s neighbor exposes the
node to the contagion

Adoption: The node acts on the contagion

g &2
R—£
2 R
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Exposure Curves

Exposure curve:

Probability of adopting new
behavior depends on the total number )
of friends who have already adopted

What'’s the dependence?

@ ... adopters

Prob. of adoption
Prob. of adoption

k = number of friends adopting k = number of friends adopting
Critical mass:

Diminishing returns:

Viruses, Information

Decision making
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Exposure Curves

From exposures to adoptions

Exposure: Node’s neighbor exposes the node to

information

Adoption: The node acts on the information

Adoption curve:

Prob(Infection)

# exposures

10/18/17 Jure

Probability of
infection ever
increases
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resistance




Example Application

10/18

/17

Marketing agency would like you

to adopt/buy product X
They estimate the adoption
curve

Should they expose you

to X three times?

Or, is it better to expose you X,
then Y and then X again?

ure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.sta
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[Leskovec et al.,, TWEB '07]

Diffusion in Viral Marketing

Senders and followers of recommendations
receive discounts on products

{ ‘V?):)
c?ﬁ %
. N af)
10% credit T
/.“i'/‘
1 \—J{w‘\‘
. :

Data: Incentivized Viral Marketing program
16 million recommendations
4 million people, 500k products
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[Leskovec et al.,, TWEB '07]

Exposure Curve: Validation

o
_

0.09
0.08
0.07 [

it
E——
0.05 =4 Tuilu lHHNHHH
0.04 :I = l
0.03

0.02

0.01

N

Probability of purchasing

0 10 20 30 40
# recommendations received

DVD recommendations

(8.2 million observations)
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[Backstrom et al. KDD '06]

Exposure Curve: LiveJournal

Group memberships spread over the

network:

circles represent
existing group members

squares may join

How does prob. of joining
a group depend on the
number of friends already
in the group?

N\

?\'\\

Q

[\

2.
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[Backstrom et al., KDD '06]

Exposure Curve: LiveJournal

LiveJournal group membership

SR
% 0.015 {X}ﬁﬂ/}\ﬁMH{ H H LI
57

o 0wsr

1 1
40 45 50

k (numbér of friends in the group)
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Exposure Curve: Information

Twitter [Romero et al. ‘11]

10/18/17

Aug ‘09 to Jan "10, 3B tweets, 60M users

0.025
0.02
0.015f

o

0.01

0.005

O0 5 10 15 20 25 30

K
Avg. exposure curve for the top 500 hashtags

What are the most important aspects of the
shape of exposure curves?

Curve reaches peak fast, decreases after!
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Modeling the Shape of the Curve

Persistence of P is the

ratio of the area under

the curve P and the area -
of the rectangle of height
max(P), width max(D(P)) "

D(P) is the domain of P AL L

Persistence measures the - e -
decay of exposure curves

_plk)
|

Stickiness of P is max(P)

Stickiness is the probability of KR
usage at the most effective exposure
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Exposure Curve: Persistence

Category Examples
° ° Celebrity myj, brazilwantsjb, regis, iwantpeterfacinelli

IVI a n u a I Iy I d e nt Ify 8 Music thisiswar, mj, musicmonday, pandora
Games mafiawars, spymaster, mw2, zyngapirates

b d t : : t h Political tcot, glennbeck, obama, her

ro a Ca eg o rl e S W I Idiom cantlivewithout, dontyouhate, musicmonday
. Sports golf, yankees, nhl, cricket

at I e a St 20 H Ts I n e a c h Movies/TV lost, glennbeck, bones, newmoon

Technology || digg. iphone, jquery, photoshop

074 . . : : . . . .
e 1 e ldioms and Music
L | have lower persistence
o ) than that of a random
Q el | | subset of hashtags of
2 o L O O S the same size
‘B oeef 1 e Politics and Sports
2 have higher persistence
o84 1 than that of a random
subset of hashtags of
| /' | the same size
True Rnd. subset
0.6 . L L . L L L .
Polical ldloms  Music Technology Movies  Spors  Games  Celebrity
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Exposure Curve: Stickiness

0.032

0.03 g -
0.028 .
0.026 .

0.024 | ) 4 -

Stickiness

0.022 - -1

0.02 —

0.018 | ‘ -

0.016

1 I 1 I 1 1 1
Political Idioms Music Technology Movies Sports Games Celebrity

Technology and Movies have lower stickiness than
that of a random subset of hashtags

Music has higher stickiness than that of a random
subset of hashtags (of the same size)
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Modeling Interactions
Between Contagions



Information Diffusion

So far we considered pieces of information as independently
propagating. Do pieces of information interact?

Did 1st cat video decrease
adoption probability of 2
cat video?

d

increase adoption
probability of dog
video?

Did cat videos /'
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Modeling Interactions

Goal: Model interaction between
many pieces of information

Some pieces of information may help
each other in adoption

Other may compete for attention
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Neighbors

P(adopt c3 | exposed to cz, c1, co)

10/18/17 orks, http://cs



You are reading posts on Twitter:
You examine posts one by one
Currently you are examining X

How does your probability of reposting X
depend on what you have seen in the past?
Contagions adopted by neighbors

(X is exposed by them in order):

okl

Adopt?

—
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The Model

We assume K most recent exposures effect a
user’s adoption:
P(adopt X=c, | exposed Y,=¢c,, Y,=¢,, ..., Y, =¢,)

N

Contagion the user is Contagions the user
viewing now. previously viewed.

Contagions adopted by neighbors:

© © PO

Adopt?
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The Model

We assume K most recent exposures effect a
user’s adoption:
P(adopt X=c, | exposed Y,=¢c,, Y,=¢,, ..., Y, =¢,)

N

Contagion the user is Contagions the user
viewing now. previously viewed.

Contagions adopted by neighbors:

coolkldd

Adopt?
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The Model: Problem

We want to estimate: P(X | Y, ... Y:)
What’s the problem?

What'’s the size of probability table P(X | Y, ... Y:)?
= (Num. Contagions)® = 1.9x1 0?21

Simplification: Assume Y; is independent of Y,

K
1
P(XIY1, .. Vi) = popieci [ [Pecxiv
k=1

We apply Bayes theorem twice and use the independence assumption
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The Model

Goal: Model P(adopt X | Y, ..., Yk)

Assume:
P(X = u;|Yy = u;) = P(X = u;) + Amnt (wi,uy),
Prior irﬁection Interactlgn term
prob.
Next, assume “topics”:

E’f,llt(u,, j) models the change in infection prob. of u;

given that exposure k-steps ago was u;

We estimate P(X) and 4% (u,, u;) by simply counting
P(X) ... fraction of people exposed to X that got infected by X

A® (u;, u;) ... P(X) — fraction of people first exposed to u; and then
to u; and then got infected by u;.
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Dataset: Twitter

Data from Twitter

Complete data from Jan 2011: 3 billion tweets

All URLs tweeted by at least 50 users: 191k
Task:

Predict whether a user will post URL X

What do we learn from the model?
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How do Tweets Interact?

How P(post u,[ exp. u,) changes if ...

u, and u, are similar/different in the content?
LCS (low content similarity), HCS (high content similarity)

u, is highly viral? Prob. of infection P(u):

P(X=Ug) > P(X=uy) - !H-' [~ Observations:
p(x=u2) < P(X=u1) _ E | e If u, is not viral,
{ this boost u,
P(X=u,) < P(X=u4), LCS o +—— - e If u, is highly viral,
i this kills u,
P(X=u,) < P(X=u,), HCS - | —— | BUT:
', Only if u,; and u, are
P(X=uy) > P(X=uy), LCS - ] ~ of low co1ntent i
_ - _ | | similarity (LCS) else,
P(X=u,) > P(X=u,), HCS | —— U, helps u,
I I | I | |
-0.2 -0.1 0 0.1 0.2 0.3

Relative change in infection prob.

10/18/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 48



Final Remarks

Modeling contagion interactions

71% of the adoption probability comes
from the topic interactions!
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Conclusion

R,: Epidemics die out if R,<1

R,: reproductive number

Epidemic Threshold: Virus “strength” s = /0
< 7 the epidemic can not happen (it eventually
dies out)

Shape of the adoption curve:

Modeling interactions between
contagions

10/18/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



