
CS224W: Analysis of Networks
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Announcements:
• Please fill HW Survey
• Weekend Office Hours starting this weekend (Hangout only)
• Proposal: Can use 1 late period



¡ So	far:
Decision	Based	Models
§ Utility	based
§ Deterministic
§ “Node”	centric:	A	node	observes	decisions	of	its	
neighbors	and	makes	its	own	decision

§ Require	us	to	know	too	much	about	the	data
¡ Next:	Probabilistic	Models
§ Lets	you	do	things	by	observing	data
§ We	lose	“why	people	do	things”
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Simple probabilistic model of 
cascades where we will learn about 
the reproductive number



¡ Epidemic	Model	based	on	Random	Trees
§ (a	variant	of	a	branching	processes)
§ A	patient	meets	d other	people
§ With	probability	q	>	0 she	infects	each	
of	them

¡ Q:	For	which	values	of	d and	q
does	the	epidemic	run	forever?
§ Run	forever:	

§ Die	out: -- ||	-- = 0
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¡ 𝒑𝒉 =	prob.	there	is	an	infected	node	at	depth	𝒉
¡ We	need: lim

(→*
𝑝( =	?	 (based	on	𝑞 and	𝑑)

§ We	are	reasoning	about	a	behavior	at	the	root	of	the	tree.	Once	we	
get	a	level	out,	we	are	left	with	identical	problem	of	depth	h-1.

¡ Need	recurrence	for	𝒑𝒉
𝑝( = 1 − 1 − 𝑞 ⋅ 𝑝(34 5

¡ 𝒍𝒊𝒎
𝒉→*

𝒑𝒉 =	result	of	iterating
f x = 1 − 1 − 𝑞 ⋅ 𝑥 5

§ Starting	at	the	root:	𝑥 = 1 (since	𝑝4 = 1)
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No infected node
at depth h from the root

d subtrees

We iterate:
x1=f(1)
x2=f(x1)
x3=f(x2)



¡ If	we	want	to	epidemic	to	die	out,	then	
iterating	f(x)	must	go	to	zero.

¡ So,	f(x)	must	be	below y=x
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x

f(x)

1

y=x=1

Going to the first 
fixed point

y = f x

x … prob. there
is an infected node
at level h-1. We start
at x=1 because p1=1.
f(x) … prob. there 
is an infected node
at level h
q … infection prob.
d … degree

Fixed point:
f(x)=x
This means that
prob. there is an 
infected node at depth 
ℎ is constant (>0)

We iterate:
x1=f(1)
x2=f(x1)
x3=f(x2)
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x

f(x)

1

y=x=1

𝑓 0 = 0
𝑓 1 = 1 − 1 − 𝑞 5 < 1
𝑓@ 𝑥 = 𝑞 ⋅ 𝑑 1 − 𝑞𝑥 534

𝑓@ 0 = 𝑞 ⋅ 𝑑
	𝒇′(𝒙) is monotone non-increasing on [0,1]!

What do we know about the shape of f(x)?

Going to the first 
fixed point

x … prob. there
is an infected node
at level h-1
f(x) … prob. there 
is an infected node
at level h
q … infection prob.
d … degree

f(x) is monotone: If g’(y)>0 for all y then g(y) is monotone.
In our case, 0≤x,q≤1, d>1 so f’(x)>0 so f(x) is monotone.
f’(x) non-increasing: since term (1-qx)d-1 in f’(x) is 
decreasing as x decreases.

y = f x
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x

f(x)

1

y=x

y = f x

For the epidemic to die out 
we need f(x) to be below y=x!

So: 𝒇@ 𝟎 = 𝒒 ⋅ 𝒅 < 𝟏
lim
(→*

𝑝( = 0		𝑤ℎ𝑒𝑛		𝒒 ⋅ 𝒅 < 𝟏
𝒒 ⋅ 𝒅 = expected # of people that get infected

Reproductive
number 𝑹𝟎 =

𝒒 ⋅ 𝒅:
There is an 
epidemic if 
𝑹𝟎³	𝟏



¡ Reproductive	number	𝑹𝟎 = 𝒒 ⋅ 𝒅:
¡ There	is	an	epidemic	if	𝑹𝟎 ≥ 	𝟏

¡ Only	R0 matters:
§ 𝑹𝟎 ≥ 	𝟏:	epidemic	never	dies	and	the	number	of	
infected	people	increases	exponentially

§ 𝑹𝟎 < 	𝟏:	Epidemic	dies	out	exponentially	quickly

10/18/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 9



We will learn about the 
epidemic threshold



Virus	Propagation:	2	Parameters:
¡ (Virus)	Birth	rate	β:	
§ probability	than	an	infected	neighbor	attacks

¡ (Virus)	Death	rate	δ:
§ Probability	that	an	infected	node	heals
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¡ General	scheme	for	epidemic	models:
§ Each	node	can	go	through	phases:

§ Transition	probs.	are	governed	by	the	model	parameters
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S…susceptible
E…exposed
I…infected
R…recovered
Z…immune

12



¡ SIR	model:	Node	goes	through	phases

§ Models	chickenpox	or	plague:	
§ Once	you	heal,	you	can	never	get	infected	again

¡ Assuming	perfect	mixing (The	network	is	a	
complete	graph) the	
model	dynamics	is:
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¡ Susceptible-Infective-Susceptible	(SIS)	model	
¡ Cured	nodes	immediately	become	susceptible
¡ Virus	“strength”:	s	=	β / δ
¡ Node	state	transition	diagram:
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Susceptible Infective

Infected by neighbor 
with prob. β

Cured with 
prob. δ



¡ Models	flu:
§ Susceptible	node	
becomes	infected

§ The	node	then	heals	
and	become	
susceptible	again

¡ Assuming	perfect	
mixing	(complete	
graph):
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¡ SIS	Model:	
Epidemic	threshold	of	an	arbitrary	

¡ graph	G is	τ,	such	that:
§ If	virus	“strength”	s = β / δ < τ the	epidemic	can	
not	happen	(it	eventually	dies	out)

¡ Given	a	graph	what	is	its	epidemic	threshold?

Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 1610/18/17



¡ Fact: We	have	no	epidemic	if:
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β/δ < τ = 1/ λ1,A

► λ1,G alone captures the property of the graph!

(Virus) Birth rate

(Virus) Death 
rate

Epidemic threshold

largest eigenvalue
of adj. matrix A of G

[Wang et al. 2003]
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¡ Does	it	matter	how	many	people	are	
initially	infected?
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[Gomes et al., Assessing the International Spreading Risk Associated with the 2014 West 
African Ebola Outbreak, PLOS Current Outbreaks, 2014]
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[Gomes et al., 2014]

Read an article about how to estimate R0 of ebola.
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[Gomes et al., 2014]





¡ Initially	some	nodes	S	are	active
¡ Each	edge	(u,v) has	probability	(weight)	puv

¡ When	node	u becomes	active/infected:	
§ It	activates	each	out-neighbor	v with	prob.	puv

¡ Activations	spread	through	the	network!
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¡ Independent	cascade	model	
is	simple	but	requires
many	parameters!
§ Estimating	them	from
data	is	very	hard
[Goyal et	al.	2010]

¡ Solution:Make	all	edges	have	the	same	
weight	(which	brings	us	back	to	the	SIR	model)
§ Simple,	but	too	simple

¡ Can	we	do	something	better?
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¡ From	exposures to adoptions
§ Exposure: Node’s	neighbor	exposes	the	
node	to	the	contagion

§ Adoption: The	node	acts	on	the	contagion

26

[KDD ‘12]
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¡ Exposure	curve:
§ Probability	of	adopting	new	
behavior	depends	on	the	total	number	
of	friends	who	have	already	adopted

¡ What’s	the	dependence?

10/18/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 27

k = number of friends adopting

Pr
ob

. o
f a

do
pt

io
n

k = number of friends adopting

Pr
ob

. o
f a

do
pt

io
n

Diminishing returns:
Viruses, Information

Critical mass:
Decision making

… adopters



¡ From	exposures to	adoptions
§ Exposure: Node’s	neighbor	exposes	the	node	to	
information

§ Adoption: The	node	acts	on	the	information
¡ Adoption	curve:

28
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# exposures

Probability of
infection ever
increases

Nodes build 
resistance

[KDD ‘12]
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¡ Marketing	agency	would like	you	
to	adopt/buy	product	X

¡ They	estimate	the	adoption
curve

¡ Should	they	expose	you	
to	X three	times?

¡ Or,	is	it	better	to	expose	you	X,	
then	Y and	then	X again?

29

3

10/18/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu



¡ Senders	and	followers	of	recommendations	
receive	discounts	on	products

¡ Data:	Incentivized	Viral	Marketing	program
§ 16	million	recommendations
§ 4	million	people,	500k	products
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10% credit 10% off

[Leskovec et al., TWEB ’07]
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¡ Group	memberships	spread	over	the	
network:
§ Red circles	represent	
existing	group	members

§ Yellow squares	may	join
¡ Question:
§ How	does	prob.	of	joining	
a	group	depend	on	the	
number	of	friends	already	
in	the	group?
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[Backstrom et al. KDD ‘06]
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¡ LiveJournal group	membership	
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¡ Twitter [Romero	et	al.	‘11]
§ Aug	‘09	to	Jan	’10,	3B	tweets,	60M	users

§ Avg.	exposure	curve	for	the	top	500	hashtags
§ What	are	the	most	important	aspects	of	the	
shape	of	exposure	curves?

§ Curve	reaches	peak	fast,	decreases	after!
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¡ Persistence	of	P is	the	
ratio	of	the	area	under	
the	curve	P and	the	area
of	the	rectangle	of	height
max(P),	width	max(D(P))
§ D(P) is	the	domain	of	P
§ Persistence	measures	the	
decay	of	exposure	curves

¡ Stickiness	of	P is	max(P)
§ Stickiness	is	the	probability	of	
usage	at	the	most	effective	exposure
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¡ Manually	identify	8	
broad	categories	with	
at	least	20	HTs	in	each
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• Idioms and Music 
have lower persistence 
than that of a random 
subset of hashtags of 
the same size
• Politics and Sports 
have higher persistence 
than that of a random 
subset of hashtags of 
the same size

True Rnd. subset



¡ Technology	and	Movies	have	lower	stickiness	than	
that	of	a	random	subset	of	hashtags

¡ Music	has	higher	stickiness	than	that	of	a	random	
subset	of	hashtags (of	the	same	size)
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`

Did	1st	cat	video	decrease
adoption	probability	of	2nd	
cat	video?

Did	cat	videos	
increase adoption	
probability	of	dog	
video?

So	far	we	considered	pieces	of	information	as	independently
propagating.	Do	pieces	of	information	interact?
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¡ Goal: Model	interaction	between	
many	pieces	of	information
§ Some	pieces	of	information	may	help
each	other	in	adoption

§ Other	may	compete	for	attention
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P(adopt c0)

Neighbors

The User

P(adopt c1 | exposed to c0)P(adopt c2 | exposed to c1 , c0)P(adopt c3 | exposed to c2 , c1, c0)

c0 c1c2 c3
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¡ You	are	reading	posts	on	Twitter:
§ You	examine	posts	one	by	one
§ Currently	you	are	examining	X
§ How	does	your	probability	of	reposting	X
depend	on	what	you	have	seen	in	the	past?

c5 c4 c3 c2

Time

Contagions	adopted	by	neighbors	
(X	is	exposed	by	them	in	order):

XY1Y2

Adopt?
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¡ We	assume	Kmost	recent	exposures	effect	a	
user’s	adoption:

¡ P(adopt	X=c0 |	exposed	Y1=c1,	Y2=c2,	...	,	YK=ck)	

Contagion the user is 
viewing now.

Contagions the user 
previously viewed.

c5 c4 c3 c2 c1

Time

Contagions	adopted	by	neighbors:
Y1 X

Adopt?

Y2
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¡ We	assume	Kmost	recent	exposures	effect	a	
user’s	adoption:

¡ P(adopt	X=c0 |	exposed	Y1=c1,	Y2=c2,	...	,	YK=ck)	

Contagion the user is 
viewing now.

Contagions the user 
previously viewed.

c5 c4 c3 c2 c1 c0

Time

Contagions	adopted	by	neighbors:
Y1 X

Adopt?

Y2
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¡ We	want	to	estimate:	P(X	|	Y1,	…	Y5)
¡ What’s	the	problem?
§ What’s	the	size	of	probability	table	P(X	|	Y1,	…	Y5)?

=	(Num.	Contagions)5

¡ Simplification: Assume	Yi is	independent	of	Yj

𝑷 𝑿 𝒀𝟏,… , 𝒀𝑲 =
𝟏

𝑷 𝑿 𝑲3𝟏X𝑷𝒌(𝑿|𝒀𝒌)
𝑲

𝒌[𝟏
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≈ 1.9x1021

We apply Bayes theorem twice and use the independence assumption



¡ Goal:	Model	P(adopt X | Y1,…, YK) 
¡ Assume:

¡ Next,	assume	“topics”:
§ 𝜟𝒄𝒐𝒏𝒕

𝒌 𝒖𝒊, 𝒖𝒋 models	the	change	in	infection	prob.	of	𝒖𝒋
given	that	exposure	k-steps	ago	was	𝒖𝒋

§ We	estimate	P(X)	and	𝜟(𝒌)(𝒖𝒊, 𝒖𝒋) by	simply	counting
§ P(X)	… fraction	of	people	exposed	to	X	that	got	infected	by	X
§ 𝚫(𝐤)(𝐮𝐢, 𝐮𝐣) … P(X)	– fraction	of	people	first	exposed	to	𝐮𝐢 and	then	
to	𝐮𝐣 and	then	got	infected	by	𝐮𝐣.
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Prior infection 
prob.

Interaction term



¡ Data	from	Twitter
§ Complete data	from	Jan	2011:	3	billion	tweets
§ All	URLs	tweeted	by	at	least	50	users:	191k

¡ Task:	
Predict	whether	a	user	will	post	URL	X

¡ What	do	we	learn	from	the	model?
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¡ How	P(post	u2|	exp.	u1)	changes	if	…
§ u2 and	u1 are	similar/different	in	the	content?

§ LCS	(low	content	similarity),	HCS	(high	content	similarity)

§ u1 is	highly	viral?	Prob.	of	infection	P(u):

48

Observations:
• If u1 is not viral,
this boost u2
• If u1 is highly viral, 
this kills u2
BUT:
Only if u1 and u2 are 
of low content 
similarity (LCS) else, 
u1 helps u2

Relative change in infection prob.
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¡ Modeling	contagion	interactions
§ 71%	of	the	adoption	probability	comes	
from	the	topic	interactions!
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¡ R0:	Epidemics	die	out	if	R0<1
§ R0:	reproductive	number

¡ Epidemic	Threshold: Virus	“strength”	s = β / δ
< τ the	epidemic	can	not	happen	(it	eventually	
dies	out)

¡ Shape	of	the	adoption	curve:

¡ Modeling	interactions	between
contagions
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