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Observations

Small	diameter,	
Edge	clustering

Patterns	of	signed
edge	creation

Viral	Marketing,	Blogosphere,	
Memetracking

Scale-Free

Densification	power	law,
Shrinking	diameters

Strength	of	weak	ties,	
Core-periphery

Models

Erdös-Renyi model,
Small-world	model

Structural	balance,	
Theory	of	status

Independent	cascade	model,	
Game	theoretic	model

Preferential	attachment,	
Copying	model

Microscopic	model	of	
evolving	networks

Kronecker Graphs

Algorithms

Decentralized	search

Models	for	predicting	
edge	signs

Influence	maximization,	
Outbreak	detection,	LIM

PageRank,	Hubs	and	
authorities

Link	prediction,
Supervised	random	walks

Community	detection:	
Girvan-Newman,	Modularity



¡ Spreading	through	
networks:
§ Cascading	behavior
§ Diffusion	of	innovations
§ Network	effects
§ Epidemics

¡ Behaviors	that	cascade	
from	node	to	node	like	
an	epidemic

¡ Examples:
§ Biological:

§ Diseases	via	contagion

§ Technological:
§ Cascading	failures
§ Spread	of	information

§ Social:
§ Rumors,	news,	new	
technology

§ Viral	marketing
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Obscure 
tech story

Small tech 
blog

WiredSlashdot

Engadget

CNNNYT

BBC
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¡ Product	adoption:
§ Senders	and	followers	of	recommendations
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¡ Contagion	that	spreads	over	the	edges	
of	the	network

¡ It	creates	a	propagation	tree,	i.e.,	cascade
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Cascade 
(propagation graph)

Network

Terminology:
• Stuff that spreads: Contagion
• “Infection” event: Adoption, infection, activation
• We have: Infected/active nodes, adoptors



¡ Decision	based	models	(today!):
§ Models	of	product	adoption,	decision	making

§ A	node	observes	decisions	of	its	neighbors	
and	makes	its	own	decision

§ Example:
§ You	join	demonstrations	if	k of	your	friends	do	so	too

¡ Probabilistic	models	(on	Thursday):
§ Models	of	influence	or	disease	spreading

§ An	infected	node	tries	to	“push”
the	contagion	to	an	uninfected	node

§ Example:
§ You	“catch”	a	disease	with	some	prob.	
from	each	active	neighbor	in	the	network
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¡ Collective	Action [Granovetter,	‘78]
§ Model	where	everyone	sees	everyone	else’s	
behavior (that	is,	we	assume	a	complete	graph)

§ Examples:
§ Clapping	or	getting	up	and	leaving	in	a	theater
§ Keeping	your	money	or	not	in	a	stock	market
§ Neighborhoods	in	cities	changing	ethnic	composition
§ Riots,	protests,	strikes

¡ How	does	the	number	of	people	participating	
in	a	given	activity	grow	or	shrink	over	time?
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[Granovetter ‘78]



¡ n	people	– everyone	observes	all	actions
¡ Each	person	i has	a	threshold	ti (0 ≤ 𝑡$ ≤ 1)
§ Node	i will	adopt	the	behavior	iff
at	least	ti fraction	of	people	have	
already	adopted:
§ Small	ti:	early	adopter
§ Large	ti:	late	adopter

§ Time	moves	in	discrete	steps
¡ The	population	is	described	by	{t1,…,tn}
§ F(x) …	fraction	of	people	with	threshold	ti £ x

§ F(x)	is	given	to	us.	F(x)	is	a	property	of	the	contagion.
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¡ F(x) …	fraction	of	people	with	threshold	ti £ x
§ F(x)	is	non-decreasing:	𝑭 𝒙 + 𝜺 ≥ 	𝑭 𝒙

¡ The	model	is	dynamic:
§ Step-by-step	change	
in	number	of	people	
adopting	the	behavior:
§ F(x) …	frac.	of	people	
with	threshold	£ x

§ s(t) …	frac.	of	people
participating	at	time	t

§ Simulate:
§ s(0)	=	0
§ s(1)	=	F(0)
§ s(2)	=	F(s(1))	=	F(F(0))

10/16/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 14

Threshold, x

F(x)

F(0)

Fr
ac

. o
f p

op
ul

at
io

n

0 1

1 Frac. of people
with threshold ≤ 𝒙

y=x

s(0)

s(1)



¡ Step-by-step	change	in	number	of	people	:
§ F(x) …	fraction	of	people	with	threshold	£ x
§ s(t) …	number	of	participants	at	time	t

¡ Easy	to	simulate:
§ s(0)	=	0
§ s(1)	=	F(0)
§ s(2)	=	F(s(1))	=	F(F(0))
§ s(t+1)	=	F(s(t))	=	Ft+1(0)

¡ Fixed	point:	F(x)=x
§ Updates	to	s(t) to	converge
to	a	stable	fixed	point	x=y

§ There	could	be	other	fixed	
points	but	starting	from	0
we	only	reach	the	first	one
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¡ What	if	we	start	the	process	somewhere	else?
§ We	move	up/down	to	the	next	fixed	point	
§ How	is	market	going	to	change?
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¡ Each	threshold	ti is	drawn	independently	from	
some	distribution	F(x)	=	Pr[thresh	£ x]
§ Suppose: Truncated	normal	with		µ=45,	variance	s
Small	s: Large	s:
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Normal(45, 10) Normal(45, 27)
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Bigger variance lets you build a bridge from early adopters to mainstream

Small s
Medium s

F(x)
F(x)

No cascades! Small cascades

Fixed 
point is 

low

Normal(45, 10) Normal(45, 27)
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But if we increase the variance the fixed point starts going down!

Big s Huge s

Big cascades!
Fixed point
gets lower!

Fixed point
is high!

Normal(45, 33) Normal(45, 50)



¡ No	notion	of	social	network:
§ Some	people	are	more	influential
§ It	matters	who	the	early	adopters	are,	not	just	how	many

¡ Models	people’s	awareness of	size	of	participation	
not	just	actual	number	of	people	participating
§ Modeling	perceptions	of	who	is	adopting	the	behavior	vs.	
who	you	believe	is	adopting

§ Non-monotone	behavior	– dropping	out	if	too	many	
people	adopt

§ People	get	“locked	in”	to	certain	choice	over	a	period	of	
time

¡ Modeling	thresholds
§ Richer	distributions
§ Deriving	thresholds	from	more	basic	assumptions

§ Game	theoretic	models
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¡ Dictator	tip: Pluralistic	ignorance – erroneous	
estimates	about	the	prevalence	of	certain	
opinions	in	the	population

§ Survey	conducted	in	the	U.S.	in	1970	showed	that	
while	a	clear	minority	of	white	Americans	at	that	
point	favored	racial	segregation,	significantly	more	
than	50%	believed that	it	was	favored	by	a	
majority	of	white	Americans	in	their	region	of	the	
country
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¡ Based	on	2	player	coordination	game
§ 2	players	– each	chooses	technology	A	or	B
§ Each	person	can	only	adopt	one “behavior”,	A or	B
§ You	gain	more	payoff	if	your	friend	has	adopted	the	
same behavior	as	you
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[Morris 2000]

Local view of the 
network of node v
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¡ Payoff	matrix:
§ If	both v and w adopt	behavior A,	
they	each	get	payoff a	>	0

§ If v and	w adopt	behavior B,
they	reach	get	payoff b	>	0

§ If v and w adopt	the	opposite	
behaviors,	they	each	get 0

¡ In	some	large	network:
§ Each	node	v is	playing	a	copy	of	the	
game	with	each	of	its	neighbors

§ Payoff:	sum	of	node	payoffs	per	game
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¡ Let	v have	d neighbors
¡ Assume	fraction	p of	v’s	neighbors	adopt	A

§ Payoffv = a∙p∙d if v chooses A
= b∙(1-p)∙d if v chooses B

¡ Thus: v chooses	A	if: a·p·d >	b·(1-p)·d

q
ba
bp =
+

>

Threshold:
v chooses A if

p… frac. v’s nbrs. with A
q… payoff threshold



Scenario:
¡ Graph	where	everyone	starts	with	all	B
¡ Small	set	S of	early	adopters	of	A
§ Hard-wire	S – they	keep	using	A no	matter	
what	payoffs	tell	them	to	do

¡ Assume	payoffs	are	set	in	such	a	way	that	
nodes	say:
If	more	than	q=50%	of	my	friends	take	A
I’ll	also	take	A
This	means:	a	=	b-ε (ε>0,	small	positive	constant)	
and	q=1/2
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If more than 
q=50% of my 
friends are red 
I’ll be red

30

},{ vuS =
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u v

If more than 
q=50% of my 
friends are red 
I’ll also be red
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If more than 
q=50% of my 
friends are red 
I’ll also be red

32
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If more than 
q=50% of my 
friends are red 
I’ll also be red
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If more than 
q=50% of my 
friends are red 
I’ll also be red
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If more than 
q=50% of my 
friends are red 
I’ll also be red
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¡ Observation:	Use	of	A	spreads	monotonically
(Nodes	only	switch	B®A,	but	never	back	to	B)

¡ Why?	Proof	sketch:
§ Nodes	keep	switching	from	B	to	A: B®A
§ Now,	suppose	some	node	switched	back	
from	A®B,	consider	the	first node	u
(not	in	S)	to	do	so	(say	at	time	t)

§ Earlier	at	some	time	t’ (t’<t)	the	same	
node	u switched	B®A

§ So	at	time	t’ u was	above	threshold	for	A
§ But	up	to	time	t no	node	switched	back	to	
B,	so	node	u could	only	have	more	neighbors	
who	used	A at	time	t compared	to	t’.	
There	was	no	reason	for u to	switch	at	the	first	place!
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!! Contradiction !!

0

1
2

3

5

4
6
u



¡ Consider	infinite graph	G
§ (but	each	node	has	finite	number	of	neighbors!)

¡ We	say	that	a	finite	set	S causes	a	cascade	in	
G with	threshold	q if,	when	S adopts	A,
eventually	every	node	in	G	adopts	A

¡ Example:	Path

10/16/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 37

ba
bq
+

=

v chooses A if p>q

If q<1/2 then cascade occurs 

S p… frac. v’s nbrs. with A
q… payoff threshold
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S

S

If q<1/3 then 
cascade occurs 

¡ Infinite	Tree:

¡ Infinite	Grid:

If q<1/4 then 
cascade occurs 



¡ Def:
§ The	cascade	capacity of	a	graph	G is	the	largest	q
for	which	some	finite	set	S can	cause	a	cascade

¡ Fact:
§ There	is	no	(infinite)	G where	cascade	capacity	>	½

¡ Proof	idea:
§ Suppose	such	G exists:	q>½,	
finite	S causes	cascade

§ Show	contradiction: Argue	that	
nodes	stop	switching	after	a	
finite	#	of	steps
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S



¡ Fact: There	is	no	G where	cascade	capacity	>	½
¡ Proof	sketch:

§ Suppose	such	G exists:	q>½,	finite	S causes	cascade
§ Contradiction: Switching	stops	after	a	finite	#	of	steps

§ Define “potential	energy”
§ Argue	that	it	starts	finite	(non-negative)	
and	strictly	decreases	at	every	step

§ “Energy”:	=	|dout(X)|
§ |dout(X)| :=	#	of	outgoing	edges	of	active	set	X

§ The	only	nodes	that	switch	have	a	
strict	majority	of	its	neighbors	in	S

§ |dout(X)| strictly	decreases
§ It	can	do	so	only	for	a	finite	number	of	steps
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¡ What	prevents	cascades	from	spreading?
¡ Def: Cluster	of	density	ρ is	a	set	of	nodes	C
where	each	node	in	the	set	has	at	least	ρ
fraction	of	edges	in	C
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ρ=3/5 ρ=2/3



¡ Let	S	be	an	initial	set	of	
adopters	of	A

¡ All	nodes	apply	threshold	
q to	decide	whether	
to	switch	to	A

¡ Two	facts:
§ 1)	If	G\S contains	a	cluster	of	density	>(1-q)
then	S cannot	cause	a	cascade

§ 2)	If S fails	to	create	a	cascade,	then	
there	is	a	cluster	of	density	>(1-q) in	G\S
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Sρ=3/5

No cascade if q>2/5 





¡ So	far:	
§ Behaviors	A and	B compete
§ Can	only	get	utility	from	neighbors	of	same	behavior:	A-A
get	a,	B-B get	b,	A-B get	0

¡ Let’s	add	an	extra	strategy	“AB”
§ AB-A	: gets a
§ AB-B : gets b
§ AB-AB	: getsmax(a, b)
§ Also: Some cost	c for	the	effort	of	maintaining	
both	strategies	(summed	over	all	interactions)
§ Note:	a	given	node	can	receive	a from	one	neighbor	and	b from	
another	by	playing	AB,	which	is	why	it	could	be	worth	the	cost	c
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¡ Every	node	in	an	infinite	network	starts	with	B
¡ Then	a	finite	set	S initially	adopts	A
¡ Run	the	model	for	t=1,2,3,…
§ Each	node	selects	behavior	that	will	optimize	
payoff	(given	what	its	neighbors	did	in	at	time	t-1)

¡ How	will	nodes	switch	from	B to	A or	AB?

10/16/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 45

BA A ABa a max(a,b) AB
b

Payoff

-c -c

Hard-wired to adopt A



¡ Path	graph: Start	with	Bs,	a >	b (A is	better)	
¡ One	node	switches	to	A	– what	happens?
§ With	just	A,	B:	A spreads	if	a >	b
§ With	A,	B,	AB: Does	A spread?	

¡ Example:	a=3,	b=2,	c=1
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BAA
a=3

B B
0 b=2 b=2

BAA
a=3

B B
a=3 b=2 b=2

AB

-1

Cascade stops

a=3

Hard-wired to adopt A



¡ Example:	a=5,	b=3,	c=1
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BAA
a=5

B B
0 b=3 b=3

BAA
a=5

B B
a=5 b=3 b=3

AB

-1

BAA
a=5

B B
a=5 a=5 b=3

AB

-1

AB

-1

AAA
a=5

B B
a=5 a=5 b=3

AB

-1

AB

-1
Cascade never stops!

Hard-wired to adopt A



¡ Let’s	solve	the	model	in	a	general	case:
§ Infinite	path,	start	with	all	Bs
§ Payoffs	for	w: A:a,	B:1,	AB:a+1-c

¡ For	what	pairs	(c,a)	does	A	spread?
§ We	need	to	analyze	two	cases	for	node	w:	Based	
on	the	values	of	a	and	c,	what	would	w	do?
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wA B

wAB B



¡ Infinite	path,	start	with	Bs
¡ Payoffs	for	w: A:a,	B:1,	AB:a+1-c
¡ What	does	node	w in	A-w-B do?
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1

B vs A

AB vs A

wA B

AB vs B

B

B
AB AB

A

A
a+1-c=1

a+1-c=a



¡ Infinite	path,	start	with	Bs
¡ Payoffs	for	w: A:a,	B:1,	AB:a+1-c
¡ What	does	node	w in	A-w-B do?
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a

c

1

1

B vs A

AB vs A

wA B

AB vs B

B

B
AB AB

A

A
a+1-c=1

a+1-c=a

Since 
a<1, c>1

a is big
c is big

a is high
c <1, AB is optimal for w



¡ Same	reward	structure	as	before	but	now	payoffs	
for	w change: A:a,	B:1+1,	AB:a+1-c

¡ Notice:	Now	also	AB	spreads
¡ What	does	node	w in	AB-w-B do?
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wAB B
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¡ Same	reward	structure	as	before	but	now	payoffs	
for	w change: A:a,	B:1+1,	AB:a+1-c

¡ Notice:	Now	also	AB	spreads
¡ What	does	node	w in	AB-w-B do?
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wAB B

a

c

1

1

B vs A

AB vs A

AB vs B

B

B
AB AB

A

A

2

a<2, c>1
then 2b > 2a

a is big
c >1

c <1, then
a+1-c > a

AB is optimal for w



¡ Joining	the	two	pictures:
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a

c

1

1

B

AB B→AB → A

A

2



¡ B is	the	default	throughout	the	
network	until	new/better	A
comes	along.	What	happens?
§ Infiltration: If	B is	too	
compatible then	people	
will	take	on	both	and	then	
drop	the	worse	one	(B)

§ Direct	conquest: If	Amakes	
itself	not	compatible	– people
on	the	border	must	choose.	
They	pick	the	better	one	(A)

§ Buffer	zone: If	you	choose	an	
optimal	level	then	you	keep	
a	static	“buffer”	between	A and	B
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a

c

B
stays

B→AB B→AB→A

A spreads
B → A


