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¡ Real	networks:	low	diameter,	high	clustering
¡ But	Gnp is	low	dimeter,	no	clustering
¡ How	can	we	at	the	same	time	have	
high	clustering	and	small	diameter?

§ Clustering	implies	edge	“locality”
§ Randomness	enables	“shortcuts”
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Small-World	Model [Watts-Strogatz ‘98]
Two	components	to	the	model:
¡ (1) Start	with	a	low-dimensional	regular	lattice
§ (In	our	case	we	are	using	a	ring	as	a	lattice)
§ Has	high	clustering	coefficient

¡ Now	introduce	randomness	(“shortcuts”)

¡ (2)	Rewire:	
§ Add/remove	edges	to	create	
shortcuts	to	join	remote	parts	
of	the	lattice

§ For	each	edge	with	prob.	p move	
the	other	end	to	a	random	node
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[Watts-Strogatz, ‘98]
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¡ Could	a	network	with	high	clustering	be	
at	the	same	time	a	small	world?
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¡ Alternative	formulation	of	the	model:
§ Start	with	a	square	grid
§ Each	node	has	1	random	long-range	edge

§ Each	node	has	1	spoke.	Then	randomly	connect	them.
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There are already 12 triangles in the grid and 
the long-range edge can only close more.

What’s the diameter?
It is O(log(n))
Why?

Ci =
2 ⋅ei

ki (ki −1)
=
2 ⋅12
9 ⋅8

≥ 0.33≥



¡ Proof:
§ Consider	a	graph	where	we	contract	
2x2	subgraphs into	supernodes

§ Now	we	have	4	long-range	edges	
sticking	out	of	each	supernode
§ 4-regular	random	graph!

§ Thm.	about	Gnp tell	us	we	have	short	
paths	between	super	nodes.

§ We	can	turn	this	into	a	path	in	the	
original	graph	by	adding	at	most	2	
steps	per	long	range	edge	(by	having	to	
traverse	internal	nodes)

Þ Diameter	of	the	model	is	
O(2 log n)
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4-regular random
graph

Note that this analysis ignores edges between neighbors of super-nodes, but this does not 
matter since those edges would make the diameter only go further down.



¡ Could	a	network	with	high	clustering	be	at	the	
same	time	a	small	world?
§ Yes!	You	don’t	need	more	than	a	few	random	links

¡ The	Watts	Strogatz Model:
§ Provides	insight	on	the	interplay	between	clustering	
and	the	small-world	

§ Captures	the	structure	of	many	realistic	networks
§ Accounts	for	the	high	clustering	of	real	networks
§ Does	not	lead	to	the	correct	degree	distribution
§ Does	not	enable	navigation (next)
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¡ (1)	What	is	the	structure	of	a	social	network?
¡ (Today)	What	strategies	do	people	use	
to	route	and	find	the	target?
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How	would	you	go	about	finding	the	path?



The	setting:
¡ s only	knows	locations of	its	friends	
and	location	of	the target	t

¡ s does	not	know	links	of	anyone	else	but	itself
¡ Geographic	Navigation: s “navigates”	to	
a	node	geographically	closest	to	t

¡ Search	time	T: Number	of	steps	to	reach	t
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Note: We know these graphs have diameter O(log n).
So in Kleinberg’s model search time is polynomial in log n, 
while in Watts-Strogatz it is exponential (in log n).



¡ Model: 2-dim	grid	where	
each	node	has	1	random	edge
§ This	is	a	small-world!

§ (Small-world	=	diameter	O(log	n))

¡ Fact: A	decentralized	search	algorithm	in	
Watts-Strogatz model	needs	n2/3 steps	to	
reach	t in	expectation	
§ Note: Even	though	paths	of	O(log n) steps	exist

¡ Note: All	our	calculations	are	asymptotic,	i.e.,	we	are	interested	in	what	happens	
as	n®∞

10/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 12



¡ Let’s	do	the	proof	for	1-dimensional	case	
¡ Want	to	show	Watts-Strogatz
is	NOT	searchable
§ Bound	the	search	time	from	below

¡ About	the	proof:
§ Setting: n nodes	on	a	ring	
plus	one	random	directed	
edge	per	node.	

§ Search	time	is	T  ≥
§ For	d-dim.	lattice:	T ≥ O(nd/(d+1))

§ Proof	strategy: Principle	of	deferred	decision
§ Doesn’t	matter	when	a	random	decision	is	made	if	you	
haven’t	seen	it	yet

§ Assume	random	long	range	link	is	only	created	once	you	get	
to	the	node
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How	long	we	have	to	walk	before
we	jump? Overview	of	the	proof:
¡ Reason	about	event	E 

§ E = event		that	any	of	the	
first	k nodes	visited	by	the	alg.	
has	a	link	to	I of	width
2·x nodes	(for	some	x)	around	
target	t

¡ We	obtain:	𝑷 𝑬 ≤ 𝟐𝒌𝒙
𝒏

¡ If	E	does	not	occur,	then	we	walked	at	least	k	steps
¡ E[Search	time]	≥	𝑃 𝑛𝑜𝑡	𝐸 ∗ 𝑘
¡ So	let’s	pick then	P(E)	≤	1

2
¡ E[Search	time]	≥ 1

2
∗ 𝑘 = 1

2
∗ 1
2
𝑛� = 𝑂( 𝑛� )

10/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 14

t

s i

I
x

x

k

nxk 2
1==

(next 4 slides give a detailed proof)



¡ We	reason	about	the	time
needed	to	get	into	interval	I

¡ Let: Ei= event	that	long	link	
out	of	node	i points	to	some	
node	in	interval	I of	width
2·x nodes	(for	some	x)	
around	target	t

¡ Then: 𝑃 𝐸8 = 29
:;1

≈ 29
:

(in	the	limit	of	large	𝑛)

(haven’t	seen	node	i yet,	but	can	
assume	random	edge	generation)
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¡ E = event	that	any	of	the	first	k nodes	
search	algorithm	visits	has	a	link	to	I

¡ Then:

¡ Let’s	choose

Then:
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P(E)	=	P(in	1
2
𝑛� steps	we	jump	inside	1

2
𝑛� of	𝑡)	≤	1

2
¡ Suppose initial	s is	outside	I and	event	E does	not	
happen	(first	𝑘 visited	nodes	don’t	point	to	I)

¡ Then the	search	algorithm	must	
take	T ≥ min(k, x) steps	to	get	to	t
§ (1) Right	after	we	visit	k nodes
a	good	long-range	link	may	occur

§ (2) x and	k “overlap”,	due	to	E not
happening	we	have	to	walk	at	least
x steps
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¡ Claim: Getting	from	s to	t takes	≥       steps	
¡ Search	time	≥	P(E)*(#steps)	+	P(not	E)*min(x,k)
¡ Proof:	We	just	need	to	put	together	the	facts

§ We	already	showed	that	for 𝑥 = 𝑘 = 1
2
𝑛�

§ E does	not	happen	with	prob.	½
§ If	E does	not	happen,	
we	must	traverse	≥ 1

2 𝑛� steps	to	get	to	t

§ The	expected	time	to	get	to	t is	then
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¡ Watts-Strogatz graphs
are	not	searchable

¡ How	do	we	make	a	
searchable	small-world
graph?

¡ Intuition:
§ Our	long	range	links	
are	not	random

§ They	follow	geography!
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Saul Steinberg, “View of the World from 9th Avenue”



¡ Model [Kleinberg,	Nature	‘01]
§ Nodes	still	on	a	grid
§ Node	has	one	long	range	link
§ Prob.	of	long	link	to	node	v:	

§ d(u,v) …	grid	distance	between	u and	v
§ α …	parameter	≥	0
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We	analyze	1-dim	case:
¡ Claim: For	α = 1 we	can	get	from	

s to	t in	O(log(n)2) steps	in	expectation
¡ Assume:	For	some	node	v: d(v, t) = d
¡ Set	interval: I = d
¡ Fact: (next	two	slides	give	a	proof	of	this	fact)
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¡ First	we	need:	P(v points to w) =

¡ What		is	the	normalizing	const?
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20.7. ADVANCED MATERIAL: ANALYSIS OF DECENTRALIZED SEARCH 635

Figure 20.17: Determining the normalizing constant for the probability of links involves
evaluating the sum of the first n/2 reciprocals. An upper bound on the value of this sum
can be determined from the area under the curve y = 1/x.

Intermediate Step: The Normalizing Constant In implementing this high-level strat-

egy, the first thing we need to work out is in fact something very basic: we’ve been saying

all along that v forms its long-range link to w with probability proportional to d(v, w)�1, but

what is the constant of proportionality? As in any case when we know a set of probabilities

up to a missing constant of proportionality 1/Z, the value of Z is here simply the sum of

d(v, u)�1 over all nodes u ⌃= v on the ring. Dividing everything down by this normalizing

constant Z, the probability of v linking to w is then equal to 1
Z d(v, w)�1.

To work out the value of Z, we note that there are two nodes at distance 1 from v, two

at distance 2, and more generally two at each distance d up to n/2. Assuming n is even,

there is also a single node at distance n/2 from v — the node diametrically opposite it on

the ring. Therefore, we have

Z ⌅ 2

⇤
1 +

1

2
+

1

3
+

1

4
+ · · · +

1

n/2

⌅
. (20.1)

The quantity inside parentheses on the right is a common expression in probabilistic calcu-

lations: the sum of the first k reciprocals, for some k, in this case n/2. To put an upper

bound on its size, we can compare it to the area under the curve y = 1/x, as shown in

Figure 20.17. As that figure indicates, a sequence of rectangles of unit widths and heights

1/2, 1/3, 1/4, . . . , 1/k fits under the curve y = 1/x as x ranges from 1 to k. Combined with

a single rectangle of height and width 1, we see that

1 +
1

2
+

1

3
+

1

4
+ · · · +

1

k
⌅ 1 +

⇧ k

1

1

x
dx = 1 + ln k.

Details

At every distance d there are 2 nodes.
Prob. of linking to one is 1/d.



¡ Next	we	need:	P(v points to I) =
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¡ So,	we	have:
§ I ...	interval	of	d/2 around	t (where	d =d(v,t))
§ P(long link of v points to I) =1/ln(n)

¡ In	expected	#	of	steps	£ ln(n) you	get	
into	I,	and	thus	you	halve	the	distance	to	t

¡ How	many	times	do	we	have	to	
walk	ln(n)	steps?
§ Distance	can	be	halved	at	most	log2(n) times
§ So	expected	time	to	reach	t:

O(log2(n)2)
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Note: We know these graphs have diameter O(log n).
So in Kleinberg’s model search time is polynomial in log n, 
while in Watts-Strogatz it is exponential (in log n).



¡ We	know:
§ α = 0 (i.e.,	Watts-Strogatz):	We	need	 steps
§ α = 1: We	need	O(log(n)2) steps

10/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 27

Exponent α

Se
ar

ch
 ti

m
e

)( nO
620 CHAPTER 20. THE SMALL-WORLD PHENOMENON

7.0

6.0

5.0

0.0 1.0 2.0

ln T

exponent q

Figure 20.6: Simulation of decentralized search in the grid-based model with clustering
exponent q. Each point is the average of 1000 runs on (a slight variant of) a grid with 400
million nodes. The delivery time is best in the vicinity of exponent q = 2, as expected; but
even with this number of nodes, the delivery time is comparable over the range between 1.5
and 2 [248].

large network size — than with any other exponent. But even without the full details of the

proof, there’s a short calculation that suggests why the number 2 is important. We describe

this now.

In the real world where the Milgram experiment was conducted, we mentally organize

distances into di�erent “scales of resolution”: something can be around the world, across

the country, across the state, across town, or down the block. A reasonable way to think

about these scales of resolution in a network model — from the perspective of a particular

node v — is to consider the groups of all nodes at increasingly large ranges of distance from

v: nodes at distance 2-4, 4-8, 8-16, and so forth. The connection of this organizational

scheme to decentralized search is suggested by Figure 20.4: e�ective decentralized search

“funnels inward” through these di�erent scales of resolution, as we see from the way the

letter depicted in this figure reduces its distance to the target by approximately a factor of

two with each step.

So now let’s look at how the inverse-square exponent q = 2 interacts with these scales of

resolution. We can work concretely with a single scale by taking a node v in the network,

and a fixed distance d, and considering the group of nodes lying at distances between d and

2d from v, as shown in Figure 20.7.

Now, what is the probability that v forms a link to some node inside this group? Since

area in the plane grows like the square of the radius, the total number of nodes in this group

is proportional to d2. On the other hand, the probability that v links to any one node in

the group varies depending on exactly how far out it is, but each individual probability

is proportional to d�2. These two terms — the number of nodes in the group, and the



Small  α: too many long links Big α: too many short links

10/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 28



¡ How	does	the	argument	change	for	2-d	grid:
§ P(u points to I) >1/Z   × #nodes(I)  × P(u ® v)

¡ Why	P(u®v) ~ d(u,v)-dim works?
§ Approx	uniform	over	all
“scales	of	resolution”

§ #	nodes	at	distance	d grows	
as	ddim,	prob.	d-dim of	each	edge	
à const.	prob.	of	a	link,
independent	of	d
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¡ Nodes	are	in	the	leaves	of	a	tree:
§ Departments,	topics,	…

¡ Create	k edges	out	of	every	node	v
§ Create	each edge	out	of	v by	choosing	

v® w with	prob.	~b-h(v,w)

§ h(u,v) = tree-distance	(height of the least common ancestor)

¡ Start	at	s,	want	to	go	to	t
§ Only	see	out	links	of	the	current	node
§ But	you	know	the	hierarchy

¡ Claim	1:	
§ For	any	direct	subtree T’ one	of	v’s	links	

points	to	T’
¡ Claim	2:	

§ Claim	1	guarantees	efficient	search
¡ You	will	prove	C1	&	C2	in	HW1!
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¡ Extension:
§ Multiple	hierarchies	– geography,	profession,	…
§ Generate	separate	random	graph	in	each	hierarchy
§ Superimpose	the	graphs
§ Search	algorithm:	

§ Choose	a	link	that	gets	closest in	any	hierarchy
¡ Q:	How	to	analyze	the	model?
§ Simulations:

§ Search	works	for	a	range	of	alphas
§ Biggest	range	of	searchable	
alphas	for	2	or	3	hierarchies
§ Too	many	hierarchies	hurts
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[Watts-Dodds-Newman ‘02]
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Algorithmic	consequence	of	
small-world:	

How	to	find	files	in	
Peer-to-Peer	networks?
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¡ Napster	existed	from
June	‘99	and	July	‘01

¡ Hybrid between	P2P	
and	a	centralized	
network

¡ Once	lawyers	got	the	
central	server	to	shut	
down,	the	network	
fell	apart

10/4/17 Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu 36



¡ Protocol	Chord	maps	key	(filename)	to	a	
node:
§ Keys are	files	we	are	searching	for
§ Computer	that	keeps	the	key can	then	point	to	the	
true	location	of	the	file

¡ Keys	and	nodes	have m-bit IDs	assigned	to	
them:
§ Node	ID	is	a	hash-code	of	the IP	address	(32-bit)
§ Key	ID	is	a	hash-code	of	the	file
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¡ Cycle	with	node	ids
0 to 2m-1

¡ File	(key) k is	
assigned	to	a	node
a(k) with	ID	³ k
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¡ Assume	we	have N nodes and K keys	(files)
¡ How	many	keys	does	each	node	have?

¡ When	a	node	joins/leaves	the	system	it	only	
needs	to	talk	to	its	immediate	neighbors
§ When	node	N+1 joins	or	leaves,	then	only	
O(K/N) keys	need	to	be	rearranged

¡ Each	node	knows	the	IP	address	of	its	
immediate	neighbors
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¡ If	every	node	knows	
its	immediate	
neighbor	then	use	
sequential	search

¡ Search	time
is	O(N)!
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Faster	Search:
¡ A	node	maintains	a	table	of	m=log(N) entries
¡ i-th entry	of	a	node	n contains	the	address	of	

(2i)-th neighbor
§ i-th entry	points	to	first	node	with	ID	≥ n+2i

§ Problem:When	a	node	joins	we	violate	long	range	
pointers	of	all	other	nodes
§ Many	papers	about	how	to	make	this	work

Search	algorithm:
¡ Take	the	longest	link	that	does	not	overshoot
§ With	each	step	we	halve the	distance	to	the	target!
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¡ Claim: Search	for	any	key	in	the	network	of	 N
nodes visits	O(log	N) nodes

¡ Assume	that	node	n queries	for	key	k
¡ Let	the	key	k reside	at	node	t
¡ How	many	steps	do	we	need	to	reach	t?
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¡ We	start	the	search	at	node	n
¡ Let	i be	a	number	such	that	t is	contained	in	
interval	[n+2i-1, n+2i] (for	some	i)

¡ Then	the	table	at	node	n contains	a	pointer	to	
node	x that	is	the	first	node	past	node	id	n+2i-1

¡ Claim: Node	x is	closer	to	t than	n

¡ So,	in	one	step	we	halved	the	distance	to	t
¡ We	can	do	this	at	most	log2 N times
¡ Thus,	we	find	t in	O(log2 N) steps
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¡ Adamic-Adar	2005:
§ HP	Labs	email	logs	(436	people)
§ Link	if	u,v exchanged	>5	emails	each	way
§ Map	of	the	organization	hierarchy

§ How	many	edges	cross	groups?
§ Finding:

P(u®v) ~ 1 / (size of the 
smallest group containing u,v)

¡ Differences	from	the	
hierarchical	model:
§ Weighted	edges
§ People	on	non-leaf	nodes
§ Not	b-ary or	uniform	depth
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Liben-Nowell et	al.	’05:
¡ LiveJournal data	
§ Bloggers	+	zip	codes

¡ Link	prob.:	P(u,v)=d -a

¡ a =	?

¡ Problem:
§ Non-uniform	population	density

¡ Solution: Rank	based	friendship
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Link length in a network of bloggers 
(0.5 million bloggers, 4 million links)

[Liben-Nowell et al. ‘05]



¡ P(u®v) = ranku(v)-a

¡ What	is	best a?
§ For	equally	spaced	pairs:	a = dim.	of	the	space
§ In	this	special	case	a =	1 is	best	for	search
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¡ Close	to	
theoretical	
optimum	
of	a = -1
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[Liben-Nowell et al. ‘05]
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¡ Decentralized	search	in	a	LiveJournal network
§ 12%	searches	finish,	average	4.12	hops
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¡ Why	is	rank	exponent	close	to	-1?
§ Why	in	any	network?	Why	online?
§ How	robust/reproducible?

¡ Mechanisms	that	get	a =	1	purely	through	local	
“rearrangements”	of	links	

¡ Conjecture [Sandbeng-Clark]
§ Nodes	on	a	ring	with	random	edges
§ Process	of	morphing	links:

§ Update	step:	Randomly	choose	s, t,	run	decentr.	search	alg.
§ Path	compression: each	node	on	path	updates	long	range	link	
to	go	directly	to	t with	some	small	prob.

§ Conjecture	from	simulation: P(u®v) ~ dist -1 
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Observations

Small	diameter,	
Edge	clustering

Patterns	of	signed
edge	creation

Viral	Marketing,	Blogosphere,	
Memetracking

Scale-Free

Densification	power	law,
Shrinking	diameters

Strength	of	weak	ties,	
Core-periphery

Models

Erdös-Renyi model,
Small-world	model

Structural	balance,	
Theory	of	status

Independent	cascade	model,	
Game	theoretic	model

Preferential	attachment,	
Copying	model

Microscopic	model	of	
evolving	networks

Kronecker Graphs

Algorithms

Decentralized	search

Models	for	predicting	
edge	signs

Influence	maximization,	
Outbreak	detection,	LIM

PageRank,	Hubs	and	
authorities

Link	prediction,
Supervised	random	walks

Community	detection:	
Girvan-Newman,	Modularity


