Small-World Phenomena and
Decentralized Search



Recap: Small-World:

Real networks: low diameter, high clustering
But G, is low dimeter, no clustering

How can we at the same time have

high clustering and small diameter?

High clustering Low clustering
High diameter Low diameter

Clustering implies edge “locality”
Randomness enables “shortcuts”
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[Watts-Strogatz, ‘98]

Solution: The Small-World Model

Small-World Model [Watts-Strogatz ‘98]
Two components to the model:

(1) Start with a low-dimensional regular lattice

(In our case we are using a ring as a lattice)
Has high clustering coefficient

Now introduce randomness (“shortcuts”)

(2) Rewire:

Add/remove edges to create
shortcuts to join remote parts
of the lattice

For each edge with prob. p move
the other end to a random node
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Small-World - How?

Could a network with high clustering be
at the same time a small world?

REGULAR HETUWORK SMALL WORLD HETLWWORK RANDOM HETWORK

P=0 INCRERSING RAHDOMHESS P=1
High clustering High clustering Low clustering
High diameter Low diameter Low diameter

N 3 _

h=—  C==>
2k 4 p=l08N ok
loga N
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The Small-World Model
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Diameter of the Watts-Strogatz

Alternative formulation of the model:
Start with a square grid

Each node has 1 random long-range edge
Each node has 1 spoke. Then randomly connect them.

C 2-e 212
k. (k. —1) 9-8

There are already 12 triangles in the grid and
the long-range edge can only close more.

What's the diameter?

It is O(log(n))
Why?
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Diameter of the Watts-Strogatz

Proof:

Consider a graph where we contract
2x2 subgraphs into supernodes

Now we have 4 long-range edges
sticking out of each supernode
4-regular random graph!

Thm. about G,, tell us we have short
paths between super nodes.

We can turn this into a path in the
original graph by adding at most 2
steps per long range edge (by having to
traverse internal nodes)

—> Diameter of the model is

4-regular random
02 log n) graph
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Note that this analysis ignores edges between neighbors of super-nodes, but this does not

matter since those edges would make the diameter only go further down.
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Small-World: Summary

Could a network with high clustering be at the
same time a small world?

Yes! You don’t need more than a few random links
The Watts Strogatz Model:

Provides insight on the interplay between clustering
and the small-world

Captures the structure of many realistic networks
Accounts for the high clustering of real networks
Does not lead to the correct degree distribution
Does not enable navigation (next)
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How to Navigate the Network?

(1) What is the structure of a social network?
(Today) What strategies do people use
to route and find the target?

The chains progress from the starting
position (Omaha) to the target area
(Boston) with each remove. Dlagram
shows the number of miles from the
target area, with the distance of each
femove averaged over completed
and uncompleted chains.

How would you go about finding the path?
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Decentralized Search

The setting:
s only knows locations of its friends
and location of the target ¢
s does not know links of anyone else but itself
Geographic Navigation: s “navigates” to
a node geographically closest to ¢
Search time T: Number of steps to reach ¢

S
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Overview of the Results

Searchable Not searchable
Search time T: Search time T:

O((logn)”) O(n”)

Kleinberg’s model Watts-Strogatz
) 2
O((logn)™) O(n*)
Erdos—Rényi
Note: We know these graphs have diameter O(log n). O(n)

So in Kleinberg’s model search time is polynomial in log n,
while in Watts-Strogatz it is exponential (in /og n).
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N

10/4/17

avigation in Watts-Strogatz

O—O0—0©—0—0

Model: 2-dim grid where ¢—o—6 00
each node has 1 random edge N E
o 'O—O0—0—0—<9—0O
This is a small-world! O— 0201020
o0 0490

(Small-world = diameter O(log n))

Fact: A decentralized search algorithm in
Watts-Strogatz model needs n?> steps to
reach ¢ in expectation

Note: Even though paths of O(log n) steps exist

Note: All our calculations are asymptotic, i.e., we are interested in what happens
as N—»o
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Navigation in Watts-Strogatz

Let’s do the proof for 1-dimensional case
Want to show Watts-Strogatz ‘
is NOT searchable

Bound the search time from below
About the proof:

Setting: n nodes on aring
plus one random directed
edge per node.

Search timeis T > O(+/n) ‘
For d-dim. lattice: T > O(n¥@*D)
Proof strategy: Principle of deferred decision

Doesn’t matter when a random decision is made if you
haven’t seen it yet

Assume random long range link is only created once you get
to the node
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Proof Sketch: Search time is > 0O(n*/?)

How long we have to walk before
we jump? Overview of the proof:
Reason about event E
E = event that any of the
first k nodes visited by the alg.
has a link to I of width

2-x nodes (for some x) around
target t
2kx

We obtain: P(E) < — :

n

If E does not occur, then we walked at least k steps
E[Search time] > P(not E)*k

So let’s pick £ = x—lf thenP(E)<—
E[Search t/me] > —* k = —*—\/ﬁ = 0(\/—)

(next 4 slides give a detailed Proof
10/4/17 Jure Leskovec, Stanfo dC5224WA alysis of Networks, htt p// s224w.stanford.edu



Proof: Search time is >O(n*/?) | Details

10/4/17

We reason about the time
needed to get into interval /
Let: E= event that long link
out of node i points to some
node in interval I of width
2-x nodes (for some x)
around target t

2X 2X

Then: P(El) — —— = — (in the limit of large n)
n-—1 n

(haven’t seen node i yet, but can

assume random edge generation)
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15




Proof: Search time is >O(n*/?) | Details

E = event that any of the first k nodes
search algorithm visits has a link to 1

then: ey~ ()| < 50842

n

Let’s choose = x = % \/;

Then:

Note: Our alg. is deterministic and will

2
% \V 1 1 choose to travel via a long- or short-range
links using some deterministic rule.
P(E)<? —

2 The principle of deferred decision tells us
that it does not really matter how we
reached node i.
lts prob. of linking to interval 7 is: 2x/n.
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Proof: Search time is >O(n*/?) | Details

P(E) = P(in %\/ﬁ steps we jump inside %\/ﬁ of t) s%
Suppose initial s is outside I and event E does not
happen (first k visited nodes don’t point to )
Then the search algorithm must
take T > min(k, x) steps to getto ¢

(1) Right after we visit k nodes \k S\
a good long-range link may occur

(2) x and & “overlap”, due to E not
happening we have to walk at least X X/j/
5
4

Case 1: Case 2:

x steps

10/4/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 17



Proof: Search time is >O(n*/?) Details

Claim: Getting from s to ¢ takes > - Vu steps
Search time > P(E)*(#steps) + P(not E)*min(x,k)
Proof: we just need to put together the facts

1
We already showed that for x = k = E\/ﬁ L

E does not happen with prob. % §
If E does not happen,
we must traverse = %\/ﬁ stepsto gettot

The expected time to get to 7 is then

> P(E doesn't occur) -min{x,k} =

f—f 1n
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avigable Small-World Graph?

Watts-Strogatz graphs

are not searchable i, prine g oam
How do we make a i S
searchable small-world -~~~ =" ==
araph? A i

.1 / Yx )
y 16 e || |
e —JLE 00 3§ e | et
° Al :
I n I I n e .= 4
[} = I %
> I 7/4
; : {

Our long range links AR 41| AT
are not random et e

They follow geography!

Saul Steinberg, “View of the World from 9th Avenue”
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Variation of the Model

Model [Kleinberg, Nature ‘01] o o o o
Nodes still on a grid o o o o

O O
O O
. O O O

Node has one long range link \
_ oo o o0 o X9 O
Prob. of long link to node v: o 0 “0- Ud %0
O O O O

O
- dé
P(u— v) ~d(u,v)“ 0 o
u,Vv
d(u,v) ... grid distance between u and v Plu—v)= Zd(u,w)'“
o ... parameter 20 Wi
A A
o=20
R 0 =l a>>1
T T 0
[« o = L
> >
d d
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Why Does It Work?
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Kleinberg’s Model in 2-Dimension

We analyze 1-dim case: )

Claim: Fora = I we

can get from

s to tin O(log(n)?) steps in expectation

Assume: For some node v: d(v, 1) =d d

Set interval: / = d

Fact: (next two slides give a proof of this fact)

(Long range )
link from v [
=0

points to a

\nodein /7 )

Why is this cool? As d gets bigger,

d/2

: j
t
In »n "

| gets wider, but the prob. is independent of d.

10/4/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 22



Kleinberg’s Model in 1-D Details

First we need: P(v points to w) =

P(v—> w)= 1
> d(v,u)
U#V
What is the normalizing const?
n/2
Zd(u,v) Z 2——22 <2Inn ¢
uzv lposivls
from 1—>n/2
At every distance d there are 2 nodes.
Prob. of linking to one is 1/d. t
" Note: d/2
| <31 " dx (nj
A R — <l+ | —=1+1In =Inn
: : ?:d 1 X 2
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Kleinberg’s Model in 1-D Details

Next we need: P(v points to I) =

-1 d
P(vpointsto [) = ZP(V S w)> Z d(v,w)
wel wel 2lnn
- 2 Lo, 2 1
2Inn we]\d(va W)J 2Inn  3d 3nn »
e, _ O(;j /
All terms ln n t
= 2/(3d) p
Note:

d(v, x)=3d/2 X
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Kleinberg’s Model in 1-D

So, we have:

I ... interval of d/2 around ¢ (where d =d(v,?)) d
P(long link of v points to I) =1/In(n)
In expected # of steps < In(n) you get
into I, and thus you halve the distance to ¢
How many times do we have to M/

walk In(n) steps?
Distance can be halved at most log,(n) times

A
So expected time to reach t: d/2

O(log,(n)*)
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Overview of the Results

Searchable Not searchable
Search time T: Search time T:

O((logn)”) O(n”)

Kleinberg’s model Watts-Strogatz
) 2
O((logn)™) O(n*)
Erdos—Rényi
Note: We know these graphs have diameter O(log n). O(n)

So in Kleinberg’s model search time is polynomial in log n,
while in Watts-Strogatz it is exponential (in /og n).
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Kleinberg’s Model: Search Time

We know:
a = 0 (i.e., Watts-Strogatz): We need OR/n) steps
a = 1: We need O(log(n)?) steps

7.0 |-

o
(N fo)
2 [
= 6.0 - ooo o
S %
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@ — Oo
& o °
° o
50 0050
/
~
-
| | | ] |
0.0 1.0 2.0

Exponent O
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Intuition: Why Search Takes Long

Small a: too many long links Big a: too many short links




Why Does It Work?

How does the argument change for 2-d grid:
P(u pointsto I) >1/Z - #nodes(l) - P(u—>v)
Inn d’ d? = oa=2

Why P(u—v) ~ d(u,v)“*" works?

Approx uniform over all
“scales of resolution” 0

# nodes at distance d grows ‘

as d?m prob. d-4m of each edge

—> const. prob. of a link, Number of oo 1 o 2
independent of d Prob. of linking each is o d 2
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Different Model: Hierarchies

Nodes are in the leaves of a tree:

Departments, topics, ... £
g 18
Create k edges out of every node v K I
: T
Create each edge out of v by choosing 5
v— w with prob. ~b7"w) g
h(u, V) = tree‘dista NCEe (height of the least common ancestor) v |:
Start at s, wanttogoto¢
’ 8 Nodes/Edges of the network

Only see out links of the current node
But you know the hierarchy

Claim 1:
For any direct subtree 7’ one of V's links

points to 7~
Claim 2:

Claim 1 guarantees efficient search

You will prove C1 & C2 in HW1! ,
Node has 1 link to each

direct subtree

10/4/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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[Watts-Dodds-Newman ‘'02]

Different Model: Hierarchies

Extension:

Multiple hierarchies — geography, profession, ...
Generate separate random graph in each hierarchy
Superimpose the graphs

Search algorithm:

Choose a link that gets closest in any hierarchy
Q: How to analyze the model?

Simulations:
Search works for a range of alphas

Biggest range of searchable
alphas for 2 or 3 hierarchies
Too many hierarchies hurts o

>

Search Time
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Search in P2P Networks



Algorithmic consequence of
small-world:

How to find files in
Peer-to-Peer networks?
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Client — Server




P2P: Only Clients




10/4/17

Napster existed from
June ‘99 and July ‘01

Hybrid between P2P
and a centralized
network

Once lawyers got the
central server to shut
down, the network
fell apart

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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P2P Protocol Chord

Protocol Chord maps key (filename) to a
node:
Keys are files we are searching for

Computer that keeps the key can then point to the
true location of the file

Keys and nodes have m-bit IDs assigned to
them:

Node ID is a hash-code of the IP address (32-bit)
Key ID is a hash-code of the file
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Example: Chord on a Cycle

Cycle with node ids
0 to 27!

File (key) k is
assigned to a node N48
a(k) with ID > k
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Chord: Basics

10/4/17

Assume we have N nodes and K keys (files)
How many keys does each node have?

When a node joins/leaves the system it only
needs to talk to its immediate neighbors

When node N+1 joins or leaves, then only
O(K/N) keys need to be rearranged

Each node knows the IP address of its
immediate neighbors

ure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



Searching the Network

1

Kg8 \N
If every node knows N6

its immediate
neighbor then use  N52

N8

K10

sequential search 14
N48

Search time

is O(N)! N4z N2f
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Faster Search

Faster Search:
A node maintains a table of m=log(N) entries
i-th entry of a node n contains the address of
(2!)-th neighbor
i-th entry points to first node with ID > n+2!

Problem: When a node joins we violate long range
pointers of all other nodes
Many papers about how to make this work
Search algorithm:

Take the longest link that does not overshoot
With each step we halve the distance to the target!
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I-th entry of N has the address of

N+2)-th node

N1

/ N8+1 =Ni4
N56 NS N8+2 =Niy4
N8+4 =Ni4
N51 N8+8 =N21
N1i4 |N8+16 = N32
N48 N8+32 = N42

N42 N21

N38 N32

10/4/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 42



Start at N8, find key with ID 54

N56
N51

N48
Ng2+1 =Ng48 \
Ng2+2 =Ngz8 | Ng2
N42+4 =N48
N42+8 =Nga N38
N42+16 = N1
N4g2+32 =N1g

10/4/17

ure Leskovec, Sta

nfor

d CS22

4W: Ana

N1

/N8+1 = N14

N3

Nig

N21

N32

ysis of Networks, http://cs224w.stanford.edu

N8+2 =Niy4
N8+4 =Ni4
N8+8 =N21
N8+16 = N32
N8+32 = N42




How Long Does It Take to Find a Key?

10/4/17

Claim: Search for any key in the network of N
nodes visits O(log V) nodes

Assume that node n queries for key &k
Let the key k reside at node ¢
How many steps do we need to reach 7?



O(log N) steps. Proof:

We start the search at node n

Let i be a number such that ¢ is contained in

interval [n+2"1, n+2'] (for some i)

Then the table at node n contains a pointer to

node x that is the first node past node id n+2"1

Claim: Node x is closer to t than n
— Sy 5

>i-1
So, in one step we halved the distance to ¢
We can do this at most log, NV times

- 2+, 2]




Empirical Studies of
Navigation in Small-World
Networks



[Adamic-Adar 2005]

Small-World in HP Labs

Adamic-Adar 2005:

CEO
HP Labs email logs (436 people) VPs
Link if u,v exchanged >5 emails each way
Map of the organization hierarchy

How many edges cross groups?

Finding:

Pu—v) ~ 1 /(size of the - -
smallest group containing + E gg gzlhgt

Differences from the = —

. . / Search strategies
hierarchical model: ozt || using degree,

hierarchy, geo
distance between
the cubicles

Weighted edges
People on non-leaf nodes
Not b-ary or uniform depth

0.15F

fraction of pairs

o
-

0.05F
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[Liben-Nowell et al. ‘o5]

Small-World in LiveJournal

Liben-Nowell et al. ’05;  1e03 [T

. 1e-04
LiveJournal data ¥ 1e05
, = 1e-06
Bloggers + zip codes 16-07
1e-08 T BT R TTT! .
] 100 1000
Link prob.: P(u,v)=0 -“ distance 3 (km)
_ " Link length in a network of bloggers
a=: (0.5 million bloggers, 4 million links)

Problem:

Non-uniform population density
Solution: Rank based friendship
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[Liben-Nowell et al. ‘o5]

Improved Model

5

rank,(v): = Hw::d(l/\t‘,W),< d(u, v)}|

Pu—v) = rank, (v)*
What is best o.?

For equally spaced pairs: a = dim. of the space

In this special case a =1 is best for search
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[Liben-Nowell et al. ‘o5]

Rank Based Friendships

18-06 - | YJ:IIII' 1 | lllllll | | lllll!l 1 TRNany

- P(r) e 1/r10% == ]

Close to 16-07 | West Coast +

. 2 ~. & .'-. EastCoast = 7
theoretical = " ‘oo $5%%00, P(F) e AU ==

® E 18-08 :_ ™ ., ..l‘. ..’. —::

optimum ! : !

1e-09 | ~

Of a = '1 | 4

18'10 B8 8 llllll p-N 11111114 Ry 111111[- NTEE BRI

102 10° 10 10° 10°

rank r
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[Liben-Nowell et al. ‘o5]

Geographic Navigation

0.04 F
0.03 |-
< 0.02 |
0.01 | |
& I I I sl | |
0 5 10 15 20

path length k

Decentralized search in a LiveJournal network

12% searches finish, average 4.12 hops
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Q: Why do searchable networks arise?

Why is rank exponent close to -1?

Why in any network? Why online?

How robust/reproducible?
Mechanisms that get o = 1 purely through local
“rearrangements” of links
Conjecture [Sandbeng-Clark]

Nodes on a ring with random edges
Process of morphing links:

Update step: Randomly choose s, ¢, run decentr. search alg.
Path compression: each node on path updates long range link
to go directly to # with some small prob.

Conjecture from simulation: P(u—v) ~ dist !
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How the Class Fits Together

Observations

Small diameter,
Edge clustering

Patterns of signed
edge creation

Erdos-Renyi model,
Small-world model

Viral Marketing, Blogosphere,
Memetracking

Structural balance,
Theory of status

Algorithms

Decentralized search

Independent cascade model,
Game theoretic model

Models for predicting
edge signs

Scale-Free

Influence maximization,
Outbreak detection, LIM

Preferential attachment,
Copying model

Densification power law,
Shrinking diameters

PageRank, Hubs and
authorities

Strength of weak ties,
Core-periphery

10/4/17

Microscopic model of
evolving networks

Kronecker Graphs

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Link prediction,
Supervised random walks

Community detection:
Girvan-Newman, Modularity




