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How	to	characterize	networks?
§ Connectivity
§ Degree	distribution	P(k)
§ Clustering	Coefficient	C
§ Diameter	(shortest	path	length)	h

How	to	model	networks?
¡ Erdös-Renyi Random	Graph [Erdös-Renyi,	‘60]
§ Gn,p:	undirected	graph	on	n nodes	where	each	
edge	(u,v) appears	independently	with	prob.	p
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¡ How	likely	is	a	graph	on	E edges?
¡ P(E):	the	probability	that	a	given	Gnp
generates	a	graph	on	exactly	E edges:

where	Emax=n(n-1)/2 is	the	maximum	possible	number	of	edges	
in	an	undirected	graph	of	n nodes
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P(E)	is	exactly	the
Binomial	distribution >>>
Number	of	successes	in	a	sequence	of	
Emax independent	yes/no	experiments



What	is	expected	degree	of	a	node?
§ Let	Xv be	a	rnd.	var.	measuring	the	degree	of	node	v
§ We	want	to	know	E[Xv]:
Approach:
§ Decompose	Xv to	Xv= Xv,1+Xv,2+…+Xv,n-1

§ where	Xv,u is	a	{0,1}-random	var.	which	tells	if	edge	(v,u) exists	or	not

§ For	the	calculation	we	will	need:	Linearity	of	expectation
§ For	any	random	variables	Y1,Y2,…,Yk

§ If	Y=Y1+Y2+…Yk ,	then	E[Y]= åi E[Yi]
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How to think about this?
• Prob. of node u linking to node v is p
• u can link (flips a coin) to all other (n-1) nodes
• Thus, the expected degree of node u is: p(n-1)

E[Xv ]= E[Xvu ]= (n−1)p
u=1

n−1

∑
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Degree	distribution:	 P(k)

Path	length:	 h

Clustering	coefficient:	 C

What are the values of 
these properties for Gnp?



¡ Fact: Degree	distribution	of	Gnp is	binomial.
¡ Let	P(k) denote	the	fraction	of	nodes	with	
degree	k:
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Select k nodes 
out of n-1

Probability of 
having k edges

Probability of 
missing the rest of 
the n-1-k edges 
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¡ Remember:

¡ Edges	in	Gnp appear	i.i.d.	with	prob.	p

¡ So:

¡ Then	(expected):
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Clustering coefficient of a random graph is small.
If we generate bigger and bigger graphs with fixed avg. degree k
(that is we set 𝑝 = 𝑘 ⋅ 1/𝑛), then C decreases with the graph size n.
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neighbors of node i of degree kiEach pair is connected 
with prob. p

Where ei is the number 
of edges between i’s 
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Degree	distribution:	

Clustering	coefficient:	 C=p=k/n

Path	length:	 next!
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¡ We	need	to	define	two	concepts
¡ 1)	Define: Random	k-Regular	graph
§ Assume	each	node	has	k spokes	(half-edges)
§ Randomly	pair	them	up!

¡ 2)	Define: Expansion
§ Graph	G(V, E) has	expansion	α:
if" S Í V: #edges leaving S 
³ α× min(|S|,|V\S|)
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¡ To	prove	the	diameter	of	a	Gnp we	define	a	few	concepts
¡ Define: Random	k-Regular	graph

§ Assume	each	node	has	k spokes	(half-edges)
§ k=1:

§ k=2:

§ k=3:

§ Randomly	pair	them	up!
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Graph	is	a	set	of	pairs

Graph	is	a	set	of	cycles

Arbitrarily	complicated
graphs
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S nodes ≥ α·S edges

S’ nodes ≥ α·S’ edges

(A	big)	graph	with	“good”	expansion
|)\||,min(|

#min SVS
Sleavingedges

VSÍ
=a



¡ Expansion	is	measure	of	robustness:
§ To	disconnect	l nodes,	we	need	to	cut	³ α× l edges

¡ Low	expansion:

¡ High	expansion:

¡ Social	networks:
§ “Communities”
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¡ k-regular	graph:
§ Expansion	is	at	most	k (when	S is	a	single	node)

¡ Is	there	a	graph	on	n nodes	(n®¥),	of	fixed	max	
deg.	k,	so	that	expansion	α remains	const?

Examples:
§ n´n grid: k=4: α =2n/(n2/4)®0

(S=n/2 ´ n/2 square	in	the	center)

¡ Fact: For	a	random	3-regular	graph	on	n nodes,	
there	is	some	const α (α >0,	independent.	of	n)	
such	that	with	high	prob.	(prob®1	as	n®∞)	the	
expansion	of	the	graph	is	³ α.
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In fact, α=Θ(k/2) as n→∞



¡ We	will	prove	the	diameter	of	a	k-regular	
random	graph	(k=3)
§ Note	that	k-regular	random	graph	are	essentially	
the	same	as	random	graphs
§ In	a	random	graph	variance/mean	degree	goes	to	0	as	
graph	size	increases,	which	means	that	intuitively	all	
nodes	have	about	the	same	degree.
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Fact: In	a	k-regular	random	graph	on	n nodes	with	
expansion	α, for	all	pairs	of	nodes	s and	t there	is	a	
path	of	O((log n) / α) edges	connecting	them.
¡ Proof:
§ Proof	strategy:	

§ We	want	to	show	that	from	any	
node	s there	is	a	path	of	length	
O((log n)/α) to	any	other	node	t

§ Let	Sj be	a	set	of	all	nodes	
found	within	j steps	of	BFS	from	s.	

§ How	does	Sj increase	as	a	function	of	j?
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¡ Proof	(continued):
§ Let	Sj be	a	set	of	all	nodes	found	
within	j steps	of	BFS	from	s.	

§ We	want	to	relate	Sj and	Sj+1
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¡ Proof	(continued):
§ In	how	many	steps	of	BFS	
do	we	reach	>n/2 nodes?

§ Need	j so	that:

§ Let’s	set:
§ Then:

§ In	2k/α·log n steps	|Sj| grows	to Θ(n).	
So,	the	diameter	of	G is	O(log(n)/ α)
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¡ Erdös-Renyi networks	can	grow	to	be	very	
large	but	nodes	will	be	just	a	few	hops	apart
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¡ Remember,	expected	degree:
¡ To	have	const.	degree	we	want	E[Xv] be	
independent	of	n: So	let:	p=k/(n-1)

¡ Observation: If	we	build	random	graph	Gnp
with	p=k/(n-1) we	have	many	isolated	nodes

¡ Why?
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In other words: In the limit of 
n→∞ Poisson distribution is a 
good approximation of a Binomial 
distribution and we computed 
P(x=0) for the Poisson PMF.

Why?

Extra



¡ How	big	do	we	have	to	make	p before	
we	are	likely	to	have	no	isolated	nodes?	

¡ We	know: P[v has degree 0] = e-k

¡ Event	we	are	asking	about	is:
§ I =	some	node	is	isolated
§ where	Iv is	the	event	that	v is	isolated

¡ We	have:
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¡ We	just	learned:	P(I) ≤ n e-k

¡ Let’s	try:
§ k = ln n then:		n e-k = n e-ln n = n×1/n= 1
§ k = 2 ln n then:		n e-2 ln n = n×1/n2 = 1/n

¡ So	if:	
§ k = ln n then: P(I) ≤ 1
§ k = 2 ln n then:		P(I) ≤ 1/n ® 0   as n®¥
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So, for p=2ln(n) we get no isolated nodes
(as n®¥)

Extra



¡ Graph	structure	of	Gnp as	p changes:

¡ Emergence	of	a	giant	component:
avg.	degree k=2E/n or	p=k/(n-1)
§ k=1-ε: all	components	are	of	size	Ω(log n)
§ k=1+ε: 1	component	of	size	Ω(n), others	have	size	Ω(log n)
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¡ Emergence	of	a	giant	component:
avg.	degree k=2E/n or	p=k/(n-1)
§ k=1-ε: all	components	are	of	size	Ω(log n)
§ k=1+ε: 1	component	of	size	Ω(n), others	have	size	Ω(log n)
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Fraction of nodes in the 
largest component

p*(n-1)=1

Gnp, n=100,000, 
k=p(n-1) = 0.5 … 3
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Degree	distribution:	

Path	length:	 O(log n)

Clustering	coefficient:	 C = p = k / n
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Paul Erdos
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Paul Erdös
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Degree	distribution:	

Path	length:	 6.6						O(log n)

Clustering	coefficient:	 0.11        k / n

Connected	component:		99%
C ≈ 8·10-8

h  ≈ 8.2

MSN        Gnp

GCC exists
when k>1.

k ≈ 14.

n=180M

ý

þ

ý

þ



¡ Are	real	networks	like	random	graphs?
§ Average	path	length:	J
§ Giant	connected	component:	J
§ Clustering	Coefficient:	L
§ Degree	Distribution:	L

¡ Problems	with	the	random	network	model:
§ Degree	distribution	differs	from	that	of	real	networks
§ Giant	component	in	most	real	networks	
does	NOT	emerge	through	a	phase	transition

§ No	“local”	structure	– clustering	coefficient	is	too	low
¡ Most	important:	Are	real	networks	random?

§ The	answer	is	simply:	NO!
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¡ If	Gnp is	wrong,	why	did	we	spend	time	on	it?
§ It	is	the	reference	model	for	the	rest	of	the	class
§ It	will	help	us	calculate	many	quantities,	that	can	
then	be	compared	to	the	real	data

§ It	will	help	us	understand	to	what	degree	is	a	
particular	property	the	result	of	some	random	
process
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So,	while	Gnp is	WRONG,	it	will	turn	out	
to	be	extremly USEFUL	NULL	MODEL!



¡ Goal:	Generate	a	random	graph	with	a	
given	degree	sequence	k1, k2, … kN

¡ Configuration	model:

¡ Useful	as	a	“null”	model	of	networks:
§ We	can	compare	the	real	network	G and	a	“random”	

G’ which	has	the	same	degree	sequence	as	G
Jure	Leskovec,	Stanford	CS224W:	Analysis	of	Networks,	http://cs224w.stanford.edu
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Can	we	have	high	clustering	while	also	having	short	paths?

Vs.

High clustering coefficient, 
High diameter

Low clustering coefficient
Low diameter



Origins	of	a	small-world	idea:
¡ The	Bacon	number:
§ Create	a	network	of	Hollywood	actors
§ Connect	two	actors	if	they	
co-appeared	in	the	movie

§ Bacon	number: number	of	steps	to	
Kevin	Bacon

¡ As	of	Dec	2007,	the	highest	(finite)	
Bacon	number	reported	is	8

¡ Only	approx.	12%	of	all	actors	
cannot	be	linked	to	Bacon
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Erdös numbers are small!
(Jure’s number is 3.)

Find out your Erdos number: http://www.ams.org/mathscinet/collaborationDistance.html
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Time for a joke (via XKCD): What do 
you do when dead start walking the 
earth?



¡ What	is	the	typical	shortest	path	
length	between	any	two	people?
§ Experiment	on	the	global	friendship	
network
§ Can’t	measure,	need	to	probe	explicitly	

¡ Small-world	experiment [Milgram ’67]
§ Picked	300	people	in	Omaha,	Nebraska	
and	Wichita,	Kansas

§ Ask	them	to	get	a	letter	to	a	
stock-broker	in	Boston	by	passing	
it	through	friends

¡ How	many	steps	did	it	take?
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¡ 64	chains	completed:
(i.e.,	64	letters	reached	the	target)

§ It	took	6.2	steps	on	the	
average,	thus	
“6	degrees	of	separation”

¡ Further	observations:
§ People	who	owned	stock
had	shorter	paths	to	the	stockbroker	
than	random	people:	5.4	vs.	6.7

§ People	from	the	Boston	area	have	even	
closer	paths:	4.4
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Milgram’s small world experiment

[Milgram, ’67]



¡ Boston	vs.	occupation	networks:
¡ Criticism:

§ Funneling:
§ 31	of	64	chains	passed	through	1	of	3	people	
as	their	final	step	à Not	all	links/nodes	are	equal

§ Starting	points	and	the	target	were	non-random
§ There	are	not	many	samples	(only	64)
§ People	refused	to	participate	(25%	for	Milgram)

§ Not	all	searches	finished	(only	64	out	of	300)
§ Some	sort	of	social	search: People	in	the	experiment	
follow	some	strategy	instead	of	forwarding	the	letter	to	
everyone.	They	are	not	finding	the	shortest	path!

§ People	might	have	used	extra	information	resources
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¡ In	2003	Dodds,	Muhamad and	Watts	
performed	the	experiment	using	e-mail:
§ 18	targets	of	various	backgrounds
§ 24,000	first	steps	(~1,500	per	target)
§ 65%	dropout	per	step
§ 384	chains	completed	(1.5%)
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[Dodds-Muhamad-Watts, ’03]

Avg. chain length = 4.01
Problem: People stop participating
Correction factor:

Path length, h
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¡ After	the	correction:
§ Typical	path	length	h	=	7

¡ Some	not	well	understood	
phenomena	in	social	networks:
§ Funneling	effect: Some	target’s	friends	
are	more	likely	to	be	the	final	step
§ Conjecture: High	reputation/authority

§ Effects	of	target’s	characteristics:	
Structurally,	why	are	high-status	targets	easier	to	find?
§ Conjecture: Core-periphery	network	structure
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Path length, h

n* (
h)

[Dodds-Muhamad-Watts, ’03]



¡ (Today) What	is	the	structure	of	a	social	
network?

¡ (Next	class) What	kind	of	mechanisms	do	
people	use	to	route	and	find	the	target?
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¡ Assume	each	human	is	connected	to	100	other	people
Then:
§ Step	1:	reach 100	people
§ Step	2:	reach 100*100	=	10,000	people
§ Step	3:	reach 100*100*100	=	1,000,000	people
§ Step	4:	reach 100*100*100*100	=	100M people
§ In 5 steps	we	can	reach	10	billion	people

¡ What’s	wrong	here?
§ 92%	of	new	FB	friendships	are	to	a	friend-of-a-friend	

[Backstom-Leskovec	‘11]
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¡ MSN	network	has	7	orders	of	magnitude	
larger	clustering	than	the	corresponding	Gnp!

¡ Other	examples:
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h ... Average shortest path length
C ... Average clustering coefficient
“actual” … real network
“random” … random graph with same avg. degree

Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree k = 61
Electrical power grid: N = 4,941 nodes, k = 2.67
Network of neurons: N = 282 nodes, k = 14

Network hactual hrandom Crandom

Film actors 3.65 2.99 0.00027
Power Grid 18.70 12.40 0.005
C. elegans 2.65 2.25 0.05
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¡ Consequence	of	expansion:
§ Short	paths:	O(log n)

§ This	is	the	smallest	diameter	we	can	
get	if	we	have	a	constant	degree.

§ But	clustering	is	low!
¡ But	networks	have	
“local”	structure:
§ Triadic	closure:
Friend	of	a	friend	is	my	friend

§ High	clustering	but	
diameter	is	also	high

¡ How	can	we	have	both?

Low diameter
Low clustering coefficient

High clustering coefficient
High diameter



¡ Could	a	network	with	high	clustering	be	
at	the	same	time	a	small	world?
§ How	can	we	at	the	same	time	have	
high	clustering	and	small	diameter?

§ Clustering	implies	edge	“locality”
§ Randomness	enables	“shortcuts”
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High clustering
High diameter

Low clustering
Low diameter



Small-World	Model [Watts-Strogatz ‘98]
Two	components	to	the	model:
¡ (1) Start	with	a	low-dimensional	regular	lattice
§ (In	our	case	we	are	using	a	ring	as	a	lattice)
§ Has	high	clustering	coefficient

¡ Now	introduce	randomness	(“shortcuts”)

¡ (2)	Rewire:	
§ Add/remove	edges	to	create	
shortcuts	to	join	remote	parts	
of	the	lattice

§ For	each	edge	with	prob.	p move	
the	other	end	to	a	random	node
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[Watts-Strogatz, ‘98]
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High clustering
High diameter

High clustering
Low diameter

Low clustering
Low diameter

4
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Rewiring allows us to “interpolate” between 
a regular lattice and a random graph

[Watts-Strogatz, ‘98]
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Prob. of rewiring, p

Parameter region of high 
clustering and low path length

Intuition: It takes a 
lot of randomness to 
ruin the clustering, 
but a very small 
amount to create 
shortcuts.



¡ Alternative	formulation	of	the	model:
§ Start	with	a	square	grid
§ Each	node	has	1	random	long-range	edge

§ Each	node	has	1	spoke.	Then	randomly	connect	them.
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There are already 12 triangles in the grid and 
the long-range edge can only close more.

What’s the diameter?
It is O(log(n))
Why?

Ci =
2 ⋅ei

ki (ki −1)
=
2 ⋅12
9 ⋅8

≥ 0.33



¡ Proof:
§ Consider	a	graph	where	we	contract	
2x2	subgraphs into	supernodes

§ Now	we	have	4	edges	sticking	out	of	
each	supernode
§ 4-regular	random	graph!

§ From	Thm.	we	have	short	paths	
between	super	nodes

§ We	can	turn	this	into	a	path	in	a	real	
graph	by	adding	at	most	2	steps	per	
long	range	edge	(by	having	to	
traverse	internal	nodes)

Þ Diameter	of	the	model	is	
O(2 log n)
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4-regular random
graph



¡ Could	a	network	with	high	clustering	be	at	the	
same	time	a	small	world?
§ Yes!	You	don’t	need	more	than	a	few	random	links

¡ The	Watts	Strogatz Model:
§ Provides	insight	on	the	interplay	between	clustering	
and	the	small-world	

§ Captures	the	structure	of	many	realistic	networks
§ Accounts	for	the	high	clustering	of	real	networks
§ Does	not	lead	to	the	correct	degree	distribution
§ Does	not	enable	navigation (next)
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¡ What	mechanisms	do	people	use	to	
navigate	networks	and	find	the	target?
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The	setting:
¡ s only	knows	locations of	its	friends	
and	location	of	the target	t

¡ s does	not	know	links	of	anyone	else	but	itself
¡ Geographic	Navigation: s “navigates”	to	
a	node	geographically	closest	to	t

¡ Search	time	T: Number	of	steps	to	reach	t
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)( anO))((log bnO

)(nO

)( 3
2

nO

Searchable
Search	time	T:

Not	searchable
Search	time	T:

Erdős–Rényi	

Watts-Strogatz

))((log 2nO
Kleinberg’s	model

Note: We know these graphs have diameter O(log n).
So in Kleinberg’s model search time is polynomial in log n, 
while in Watts-Strogatz it is exponential (in log n).



¡ Model: 2-dim	grid	where	
each	node	has	1	random	edge
§ This	is	a	small-world!

§ (Small-world	=	diameter	O(log	n))

¡ Fact: A	decentralized	search	algorithm	in	
Watts-Strogatz model	needs	n2/3 steps	to	
reach	t in	expectation	
§ Note: Even	though	paths	of	O(log n) steps	exist

¡ Note: All	our	calculations	are	asymptotic,	i.e.,	we	are	interested	in	what	happens	as	n®∞
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¡ Let’s	do	the	proof	for	1-dimensional	case	
¡ Want	to	show	Watts-Strogatz
is	NOT	searchable
§ Bound	the	search	time	from	below

¡ About	the	proof:
§ Setting: n nodes	on	a	ring	
plus	one	random	directed	
edge	per	node.	

§ Search	time	is	T  ≥
§ For	d-dim.	case:	T ≥ O(nd/(d+1))

§ Proof	strategy: Principle	of	deferred	decision
§ Doesn’t	matter	when	a	random	decision	is	made	
if	you	haven’t	seen	it	yet

§ Assume	random	long	range	links	are	only	created	
once	you	get	to	them
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¡ Claim:
§ Expected	search	time	is		³

¡ Let: Ei= event	that	long	link	
out	of	node	i points	to	some	
node	in	interval	I of	width
2·x nodes	(for	some	x)	
around	target	t

¡ Then: 𝑃 𝐸* = +,
-./

≈ +,
-

(in	the	limit	of	large	𝑛)

(haven’t	seen	node	i yet,	but	can	
assume	random	edge	generation)
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¡ E = event	that	any	of	the	first	k nodes	
search	algorithm	visits	has	a	link	to	I

¡ Then:

¡ Let’s	choose

Then:
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Note: Our alg. is deterministic and will 
choose to travel via a long- or short-range 
links using some deterministic rule.

The principle of deferred decision tells us 
that it does not really matter how we 
reached node i. 
Its prob. of linking to interval I is: 2x/n.
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P(E)	=	P(in	/
+
𝑛� steps	we	jump	inside	/

+
𝑛� of	𝑡)	≤	/

+
¡ Suppose initial	s is	outside	I and	event	E does	not	
happen	(i.e.,	first	𝑘 visited	nodes	don’t	point	to	I)

¡ Then the	search	algorithm	must	
take	T ≥ min(k, x) steps	to	get	to	t
§ (1) Right	after	we	visit	k nodes
a	good	long-range	link	may	occur

§ (2) x and	k “overlap”,	due	to	E not
happening	we	have	to	walk	at	least
x steps
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¡ Claim: Getting	from	s to	t takes	≥       steps	
¡ Search	time	≥	P(E)(#steps)	+	P(not	E)	min(x,k)
¡ Proof:	We	just	need	to	put	together	the	facts

§ We	already	showed	that	for 𝑥 = 𝑘 = /
+
𝑛�

§ E does	not	happen	with	prob.	½
§ If	E does	not	happen,	
we	must	traverse	≥ /

+ 𝑛� steps	to	get	to	t

§ The	expected	time	to	get	to	t is	then
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¡ Watts-Strogatz graphs
are	not	searchable

¡ How	do	we	make	a	
searchable	small-world
graph?

¡ Intuition:
§ Our	long	range	links	
are	not	random

§ They	follow	geography!
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Saul Steinberg, “View of the World from 9th Avenue”


