Diameter of G_{np} and the Small-World Phenomenon

CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Network Properties & Gng

How to characterize networks?

- Connectivity
- Degree distribution P(k)
- Clustering Coefficient C
- Diameter (shortest path length) h
- How to model networks?
- Erdös-Renyi Random Graph [Erdös-Renyi, '60]
 - G_{n,p}: undirected graph on n nodes where each edge (u,v) appears independently with prob. p

Random Graph Model: Edges

- How likely is a graph on E edges?
- P(E): the probability that a given G_{np} generates a graph on exactly E edges:

$$P(E) = \begin{pmatrix} E_{\max} \\ E \end{pmatrix} p^{E} (1-p)^{E_{\max}-E}$$

where $E_{max} = n(n-1)/2$ is the maximum possible number of edges in an undirected graph of *n* nodes

Normal p.d.f.

Node Degrees in a Random Graph

What is expected degree of a node?

- Let X_v be a rnd. var. measuring the degree of node v
- We want to know E[X_v]:

Approach:

- Decompose X_v to $X_v = X_{v,1} + X_{v,2} + ... + X_{v,n-1}$
 - where $X_{v,u}$ is a $\{0,1\}$ -random var. which tells if edge (v,u) exists or not
 - For the calculation we will need: Linearity of expectation
 - For any random variables *Y*₁, *Y*₂, ..., *Y*_k
 - If $Y = Y_1 + Y_2 + ... Y_k$, then $E[Y] = \sum_i E[Y_i]$

$$E[X_{v}] = \sum_{u=1}^{n-1} E[X_{vu}] = (n-1)p$$

How to think about this?

- Prob. of node *u* linking to node *v* is *p*
- *u* can link (flips a coin) to all other (*n*-1) nodes
- Thus, the expected degree of node u is: p(n-1)

Properties of G_{np}

Degree distribution:P(k)Path length:hClustering coefficient:C

What are the values of these properties for G_{np} ?

Degree Distribution

Fact: Degree distribution of G_{np} is binomial.
Let P(k) denote the fraction of nodes with degree k:

Mean, variance of a binomial distribution

$$\overline{k} = p(n-1)$$

$$\sigma^2 = p(1-p)(n-1)$$

$$\frac{\sigma}{\bar{k}} = \left[\frac{1-p}{p}\frac{1}{(n-1)}\right]^{1/2} \approx \frac{1}{(n-1)^{1/2}}$$

By the law of large numbers, as the network size increases, the distribution becomes increasingly narrow—we are increasingly confident that the degree of a node is in the vicinity of k.

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Clustering Coefficient of G_{np}

• Remember:
$$C_i = \frac{2e_i}{k_i(k_i-1)}$$

Where e_i is the number of edges between i's neighbors

• Edges in G_{np} appear i.i.d. with prob. p

Each pair is connected with prob. *p*

So: $e_i = p \frac{k_i(k_i - 1)}{2}$

Number of distinct pairs of neighbors of node i of degree k_i

• Then (expected):
$$C = \frac{p \cdot k_i (k_i - 1)}{k_i (k_i - 1)} = p = \frac{k}{n-1} \approx \frac{k}{n}$$

Clustering coefficient of a random graph is small. If we generate bigger and bigger graphs with fixed avg. degree k (that is we set $p = k \cdot 1/n$), then C decreases with the graph size n.

Network Properties of G_{np}

Degree distribution:

Clustering coefficient:

Path length:

$$P(k) = \binom{n-1}{k} p^{k} (1-p)^{n-1-k}$$
$$C = p = \overline{k}/n$$

next!

Two Definitions

- We need to define two concepts
- 1) Define: Random k-Regular graph
 - Assume each node has k spokes (half-edges)
 - Randomly pair them up!

2) Define: Expansion

Graph G(V, E) has expansion α:
 if ∀ S ⊆ V: #edges leaving S
 ≥ α · min(|S|, |V\S|)

Def 1 : Random k-Regular Graphs

- To prove the diameter of a G_{np} we define a few concepts
- Define: Random k-Regular graph
 - Assume each node has k spokes (half-edges)

• k=1:

Graph is a set of pairs

Graph is a set of cycles

Arbitrarily complicated graphs

• k=2:

Def 2: Expansion: Intuition

$\alpha = \min_{S \subseteq V} \frac{\# edges \ leaving \ S}{\min(|S|, |V \setminus S|)}$

(A big) graph with "good" expansion

Expansion: Measures Robustness

 $\alpha = \min_{S \subseteq V} \frac{\# edges \ leaving \ S}{\min(|S|, |V \setminus S|)}$

- Expansion is measure of robustness:
 - To disconnect l nodes, we need to cut $\geq \alpha \cdot l$ edges
- Low expansion:

High expansion:

- Social networks:
 - "Communities"

Def 2: Expansion of k-Regular Graphs

k-regular graph:

$$\alpha = \min_{S \subseteq V} \frac{\# edges \ leaving \ S}{\min(|S|, |V \setminus S|)}$$

- Expansion is at most k (when S is a single node)
- Is there a graph on *n* nodes $(n \rightarrow \infty)$, of fixed max deg. k, so that expansion α remains const?

Examples:

n×n grid: $k=4: \alpha = 2n/(n^2/4) \rightarrow 0$ $(S=n/2 \times n/2 \text{ square in the center})$

Fact: For a random 3-regular graph on n nodes, there is some const α ($\alpha > 0$, independent. of n) such that with high prob. (prob $\rightarrow 1$ as $n \rightarrow \infty$) the expansion of the graph is $\geq \alpha$. Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu In fact, $\alpha = \Theta(k/2)$ as $n \rightarrow \infty$

We will prove the diameter of a k-regular random graph (k=3)

- Note that k-regular random graph are essentially the same as random graphs
 - In a random graph variance/mean degree goes to 0 as graph size increases, which means that intuitively all nodes have about the same degree.

Fact: In a *k*-regular random graph on *n* nodes with expansion α , for all pairs of nodes *s* and *t* there is a path of $O((\log n) / \alpha)$ edges connecting them.

- Proof:
 - Proof strategy:
 - We want to show that from any node s there is a path of length O((log n)/α) to any other node t

Let S_j be a set of all nodes found within j steps of BFS from s.

How does S_i increase as a function of j?

Proof (continued):

Let S_j be a set of all nodes found within j steps of BFS from s.

Expansion

At most k edges

"collide" at a node

We want to relate S_j and S_{j+1}

 $\left|S_{j+1}\right| \geq \left|S_{j}\right| + \frac{\alpha \left|S_{j}\right|}{l_{z}} =$

where $S_0 = 1$

Proof (continued):

- In how many steps of BFS do we reach >n/2 nodes?
- Need j so that: $S_j = \left(1 + \frac{\alpha}{k}\right)^j \ge \frac{n}{2}$

• Let's set:
$$j = \frac{k \log_2 n}{\alpha}$$

Then:

$$\left(1+\frac{\alpha}{k}\right)^{\frac{k\log_2 n}{\alpha}} \ge 2^{\log_2 n} = n > \frac{n}{2}$$

In 2k/α·log n steps |S_j| grows to Θ(n).
 So, the diameter of G is O(log(n)/α)

Claim:
$$\left(1 + \frac{\alpha}{k}\right)^{\frac{k \log_2 n}{\alpha}} \ge 2^{\log_2 n}$$

 $e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$

Remember n > 0, $\alpha \le k$ then: if $\alpha = k : (1+1)^{\frac{1}{1}\log_2 n} = 2^{\log_2 n}$ if $\alpha \to 0$ then $\frac{k}{\alpha} = x \to \infty$: and $\left(1 + \frac{1}{x}\right)^{x\log_2 n} = e^{\log_2 n} > 2^{\log_2 n}$

Erdös-Renyi avg. shortest path

Erdös-Renyi networks can grow to be very large but nodes will be just a few hops apart

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Back to Node Degrees of G_{nr} Extra

 $e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x}$

- Remember, expected degree: $E[X_n] = (n-1)p$
- To have const. degree we want $E[X_{v}]$ be independent of *n*: So let: *p=k/(n-1)*
- Observation: If we build random graph G_{np} with p=k/(n-1) we have many isolated nodes Why?

$$P[v \text{ has degree } 0] = (1-p)^{n-1} = \left(1 - \frac{k}{n-1}\right)^{n-1} \xrightarrow[n \to \infty]{} e^{-k}$$
Why?
$$\lim_{n \to \infty} \left(1 - \frac{k}{n-1}\right)^{n-1} = \left(1 - \frac{1}{x}\right)^{x \cdot k} = \left[\lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^{-x}\right]^{-k} = e^{-k}$$
Use substitution $\frac{1}{x} = \frac{k}{n-1}$

$$\lim_{x \to \infty} e^{-k} = e^{-k}$$
In other words: In the limit of notice words: In the limit of a Binomial distribution and we computed P(x=0) for the Poisson PMF.

- How big do we have to make p before we are likely to have no isolated nodes?
- We know: $P[v \text{ has degree } 0] = e^{-k}$
- Event we are asking about is:
 - I = some node is isolated
 - $I = \bigcup_{v \in N} I_v$ where I_v is the event that v is isolated

We have:

$$P(I) = P\left(\bigcup_{v \in N} I_v\right) \le \sum_{v \in N} P(I_v) = ne^{-k}$$

No Isolated Nodes

Extra

- We just learned: $P(I) \le n e^{-k}$
- Let's try:
 - $k = \ln n$ then: $n e^{-k} = n e^{-\ln n} = n \cdot 1/n = 1$
 - $k = 2 \ln n$ then: $n e^{-2 \ln n} = n \cdot 1/n^2 = 1/n$

So if:

 $k = \ln n$ then: $P(I) \le 1$ $k = 2 \ln n$ then: $P(I) \le 1/n \to 0$ as $n \to \infty$ So, for p=2ln(n) we get no isolated nodes (as $n \to \infty$)

"Evolution" of a Random Graph Extra

Graph structure of G_{np} as p changes:

Emergence of a giant component: avg. degree k=2E/n or p=k/(n-1)

- $k=1-\varepsilon$: all components are of size $\Omega(\log n)$
- $k=1+\varepsilon$: 1 component of size $\Omega(n)$, others have size $\Omega(\log n)$

G_{np} Simulation Experiment

Fraction of nodes in the largest component

- Emergence of a giant component: avg. degree k=2E/n or p=k/(n-1)
 - $k=1-\varepsilon$: all components are of size $\Omega(\log n)$
 - $k=1+\varepsilon$: 1 component of size $\Omega(n)$, others have size $\Omega(\log n)$

Network Properties of G_{np}

Degree distribution:

Path length:

$$P(k) = \binom{n-1}{k} p^{k} (1-p)^{n-1-k}$$

$$O(\log n)$$

Clustering coefficient: $C = p = \overline{k} / n$

Paul Erdös

G_{np} is so cool! Let's compare it to real networks.

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Back to MSN vs. G_{np}

Real Networks vs. G_{np}

Are real networks like random graphs?

- Average path length: ③
- Giant connected component: [©]
- Clustering Coefficient: Strain Coefficient: Coefficient: Strain Coefficient: Coe

Problems with the random network model:

- Degree distribution differs from that of real networks
- Giant component in most real networks does NOT emerge through a phase transition
- No "local" structure clustering coefficient is too low

Most important: Are real networks random?

The answer is simply: NO!

Real Networks vs. G_{np}

If G_{np} is wrong, why did we spend time on it?

- It is the reference model for the rest of the class
- It will help us calculate many quantities, that can then be compared to the real data
- It will help us understand to what degree is a particular property the result of some random process

So, while G_{np} is WRONG, it will turn out to be extremly USEFUL NULL MODEL!

Intermezzo: Configuration Model

Goal: Generate a random graph with a given degree sequence k₁, k₂, ... k_N
 Configuration model:

Useful as a "null" model of networks:

We can compare the real network G and a "random" G' which has the same degree sequence as G

The Small-World Model

Can we have high clustering while also having short paths?

Six Degrees of Kevin Bacon

Origins of a small-world idea:The Bacon number:

- Create a network of Hollywood actors
- Connect two actors if they co-appeared in the movie
- Bacon number: number of steps to Kevin Bacon
- As of Dec 2007, the highest (finite) Bacon number reported is 8
- Only approx. 12% of all actors cannot be linked to Bacon

Elvis Presley has a Bacon number of 2.

Find out your Erdos number: http://www.ams.org/mathscinet/collaborationDistance.html

Time for a joke (via XKCD): What do you do when dead start walking the earth?

The Small-World Experiment

- What is the typical shortest path length between any two people?
 - Experiment on the global friendship network
 - Can't measure, need to probe explicitly
- Small-world experiment [Milgram '67]
 - Picked 300 people in Omaha, Nebraska and Wichita, Kansas
 - Ask them to get a letter to a stock-broker in Boston by passing it through friends
- How many steps did it take?

The Small-World Experiment

64 chains completed:

(i.e., 64 letters reached the target)

It took 6.2 steps on the average, thus
 "6 degrees of separation"

Further observations:

- People who owned stock had shorter paths to the stockbroker than random people: 5.4 vs. 6.7
- People from the Boston area have even closer paths: 4.4

Milgram: Further Observations

- Boston vs. occupation networks:Criticism:
 - Funneling:
 - 31 of 64 chains passed through 1 of 3 people as their final step → Not all links/nodes are equal
 - Starting points and the target were non-random
 - There are not many samples (only 64)
 - People refused to participate (25% for Milgram)
 - Not all searches finished (only 64 out of 300)
 - Some sort of social search: People in the experiment follow some strategy instead of forwarding the letter to everyone. They are not finding the shortest path!
 - People might have used extra information resources

[Dodds-Muhamad-Watts, '03]

Columbia Small-World Study

- In 2003 Dodds, Muhamad and Watts performed the experiment using e-mail:
 - 18 targets of various backgrounds
 - 24,000 first steps (~1,500 per target)
 - 65% dropout per step
 - 384 chains completed (1.5%)

Avg. chain length = 4.01 Problem: People stop participating Correction factor: $n^*(h) = \frac{n(h)}{\prod_{i=0}^{h-1} (1-r_i)}$ $r_i \dots$ drop-out rate at hop *i*

[Dodds-Muhamad-Watts, '03]

Small-World in Email Study

- After the correction:
 - Typical path length h = 7

- Some not well understood phenomena in social networks:
 - Funneling effect: Some target's friends are more likely to be the final step
 - <u>Conjecture</u>: High reputation/authority
 - Effects of target's characteristics: Structurally, why are high-status targets easier to find?
 - <u>Conjecture</u>: Core-periphery network structure

Two Questions

(Today) What is the structure of a social network?

(Next class) What kind of mechanisms do people use to route and find the target?

6-Degrees: Should We Be Surprised?

- Assume each human is connected to 100 other people Then:
 - Step 1: reach 100 people
 - Step 2: reach 100*100 = 10,000 people
 - Step 3: reach 100*100*100 = 1,000,000 people
 - Step 4: reach 100*100*100*100 = 100M people
 - In 5 steps we can reach 10 billion people
- What's wrong here?
 - 92% of new FB friendships are to a friend-of-a-friend [Backstom-Leskovec '11]

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Clustering Implies Edge Locality

 MSN network has 7 orders of magnitude larger clustering than the corresponding G_{np}!
 Other examples:

Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree $\overline{k} = 61$ Electrical power grid: N = 4,941 nodes, $\overline{k} = 2.67$ Network of neurons: N = 282 nodes, $\overline{k} = 14$

Network	\mathbf{h}_{actual}	\mathbf{h}_{random}	C_{actual}	C _{random}
Film actors	3.65	2.99	0.79	0.00027
Power Grid	18.70	12.40	0.080	0.005
C. elegans	2.65	2.25	0.28	0.05

- h ... Average shortest path length
- C ... Average clustering coefficient
- "actual" ... real network
- "random" ... random graph with same avg. degree

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

The "Controversy"

Consequence of expansion:

Short paths: O(log n)

- This is the smallest diameter we can get if we have a constant degree.
- But clustering is low!
- But networks have "local" structure:
 - Triadic closure:

Friend of a friend is my friend

 High clustering but diameter is also high

How can we have both?

Low diameter Low clustering coefficient

High clustering coefficient High diameter

Small-World: How?

- Could a network with high clustering be at the same time a small world?
 - How can we at the same time have high clustering and small diameter?

- Clustering implies edge "locality"
- Randomness enables "shortcuts"

[Watts-Strogatz, '98]

Solution: The Small-World Model

Small-World Model [Watts-Strogatz '98] Two components to the model:

- (1) Start with a low-dimensional regular lattice
 - (In our case we are using a ring as a lattice)
 - Has high clustering coefficient
- Now introduce randomness ("shortcuts")

(2) Rewire:

- Add/remove edges to create shortcuts to join remote parts of the lattice
- For each edge with prob. p move the other end to a random node

[Watts-Strogatz, '98]

The Small-World Model

Rewiring allows us to "interpolate" between a regular lattice and a random graph

The Small-World Model

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Diameter of the Watts-Strogatz

Alternative formulation of the model:

- Start with a square grid
- Each node has 1 random long-range edge
 - Each node has 1 spoke. Then randomly connect them.

$$C_i = \frac{2 \cdot e_i}{k_i (k_i - 1)} = \frac{2 \cdot 12}{9 \cdot 8} \ge 0.33$$

There are already 12 triangles in the grid and the long-range edge can only close more.

What's the diameter? It is *O(log(n))* Why?

Diameter of the Watts-Strogatz

Proof:

- Consider a graph where we contract 2x2 subgraphs into supernodes
- Now we have 4 edges sticking out of each supernode
 - 4-regular random graph!
- From Thm. we have short paths between super nodes
- We can turn this into a path in a real graph by adding at most 2 steps per long range edge (by having to traverse internal nodes)
- $\Rightarrow Diameter of the model is$ $<math>O(2 \log n)$

4-regular random graph

Small-World: Summary

- Could a network with high clustering be at the same time a small world?
 - Yes! You don't need more than a few random links
- The Watts Strogatz Model:
 - Provides insight on the interplay between clustering and the small-world
 - Captures the structure of many realistic networks
 - Accounts for the high clustering of real networks
 - Does not lead to the correct degree distribution
 - Does not enable navigation (next)

How to Navigate a Network?

What mechanisms do people use to navigate networks and find the target?

Decentralized Search

The setting:

- s only knows locations of its friends and location of the target t
- s does not know links of anyone else but itself
- Geographic Navigation: s "navigates" to a node geographically closest to t
- Search time T: Number of steps to reach t

Overview of the Results

Searchable

Search time T:

$$O((\log n)^{\beta})$$

Kleinberg's model $O((\log n)^2)$

Note: We know these graphs have diameter $O(\log n)$. So in Kleinberg's model search time is <u>polynomial</u> in $\log n$, while in Watts-Strogatz it is <u>exponential</u> (in $\log n$).

Not searchable

Search time T:

 $O(n^{\alpha})$

Watts-Strogatz $O(n^{\frac{2}{3}})$

Erdős–RényiO(n)

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Navigation in Watts-Strogatz

- Model: 2-dim grid where each node has 1 random edge
 - This is a small-world!
 - (Small-world = diameter O(log n))

- Fact: A decentralized search algorithm in Watts-Strogatz model needs n^{2/3} steps to reach t in expectation
 - Note: Even though paths of O(log n) steps exist
- Note: All our calculations are asymptotic, i.e., we are interested in what happens as $n \rightarrow \infty$

Navigation in Watts-Strogatz

- Let's do the proof for 1-dimensional case
- Want to show Watts-Strogatz is NOT searchable
 - Bound the search time from below
- About the proof:
 - Setting: n nodes on a ring plus one random directed edge per node.
 - Search time is $T \ge O(\sqrt{n})$
 - For **d**-dim. case: $T \ge O(n^{d/(d+1)})$
 - Proof strategy: Principle of deferred decision
 - Doesn't matter when a random decision is made if you haven't seen it yet
 - Assume random long range links are only created once you get to them

Claim:

- Expected search time is $\geq_{\frac{1}{4}} \sqrt{n}$
- Let: E_i = event that long link out of node *i* points to some node in interval *I* of width 2·x nodes (for some x) around target *t*

• Then: $P(E_i) = \frac{2x}{n-1} \approx \frac{2x}{n}$ (in the limit of large *n*) (haven't seen node *i* yet, but can assume random edge generation)

- *E* = event that any of the first *k* nodes search algorithm visits has a link to *I* Then: P(E) = P(\bigcup_{i}^{k} E_{i}) \le \sum_{i}^{k} P(E_{i}) = k \frac{2x}{n}
- Let's choose $k = x = \frac{1}{2}\sqrt{n}$

Then:

Note: Our alg. is deterministic and will choose to travel via a long- or short-range links using some deterministic rule.

The principle of deferred decision tells us that it does not really matter how we reached node *i*.

Its prob. of linking to interval *I* is: 2x/n.

- **P(E)** = P(in $\frac{1}{2}\sqrt{n}$ steps we jump inside $\frac{1}{2}\sqrt{n}$ of t) $\leq \frac{1}{2}$
- Suppose initial s is outside I and event E does not happen (i.e., first k visited nodes don't point to I)
- Then the search algorithm must take $T \ge min(k, x)$ steps to get to t
 - (1) Right after we visit k nodes a good long-range link may occur
 - (2) x and k "overlap", due to E not happening we have to walk at least x steps

- Claim: Getting from s to t takes $\geq \frac{1}{4}\sqrt{n}$ steps
- Search time ≥ P(E)(#steps) + P(not E) min(x,k)
- **Proof:** We just need to put together the facts
 - We already showed that for $x = k = \frac{1}{2}\sqrt{n}$
 - E does not happen with prob. ½
 - If *E* does not happen, we must traverse $\geq \frac{1}{2}\sqrt{n}$ steps to get to *t*
 - The expected time to get to t is then

$$\geq P(E \ doesn't \ occur) \cdot \min\{x,k\} =$$

Navigable Small-World Graph?

- Watts-Strogatz graphs are not searchable
- How do we make a searchable small-world graph?
- Intuition:
 - Our long range links are not random
 - They follow geography!

Saul Steinberg, "View of the World from 9th Avenue"