Diameter of G, and the
Small-World Phenomenon



Recap: Network Properties & G,

iy
How to characterize networks? 45
0.2
0

Connectivity 1 2 3 4

Degree distribution P(k) m%a
Clustering Coefficient C o

Diameter (shortest path length) h
How to model networks?
Erdos-Renyi Random Graph [Erdds-Renyi, ‘60]

G, - undirected graph on n nodes where each

edge (u,v) appears independently with prob. p
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Random Graph Model: Edges

How likely is a graph on E edges?
P(E): the probability that a given G,
generates a graph on exactly E edges:

Emax —
PEY=| p (1-p)=*

where E,,,,=n(n-1)/2 is the maximum possible number of edges
in an undirected graph of n nodes

P(E) is exactly the
Binomial distribution >>>

Number of successes in a sequence of
E,...x independent yes/no experiments

PIX=k]
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Node Degrees in a Random Graph

What is expected degree of a node?

Let X, be a rnd. var. measuring the degree of node v
We want to know E[X,]:

Approach:
Decompose X, to X = X, ;+X ,+..tX,,,

where X, , is a {0,1}-random var. which tells if edge (v,u) exists or not

For the calculation we will need: Linearity of expectation

For any random variables Y, Y,,.... Y,
If Y=Y,+Y,+...Y,,then E[Y]= 2 E[Y,]

n-1
How to think about this?
E[Xv ] - E E[Xvu ] - (n - l)p « Prob. qf node  linking to node v is p
» u can link (flips a coin) to all other (n-1) nodes
u=1

» Thus, the expected degree of node u is: p(n-1)
10/2/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 4



Properties of G,

Degree distribution: P(k)
Path length: h

Clustering coefficient: C

What are the values of

these properties for G, ,?
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Degree Distribution

Fact: Degree distribution of G, , is binomial.

Let P(k) denote the fraction of nodes with
degree k:

b7
P k . n k 1 n—l1-k —
(k) = p (-p) =
k \ A :
- ] Probability of gl ittt e,
Select k nodes Probability of missing the rest of 0 it » Kk @ ‘
out of n-1 having k edges the n-1-k edges
1/2
Mean, variance of a binomial distribution o _ l-p 1 - 1
— 1, 1/2
I — (l’l 1) k p (n-1) (n-1)
o p By the law of large numbers, as the network size
5 increases, the distribution becomes increasingly
O = p(l - p)(n - 1) narrow—we are increasingly confident that the degree

of a node is in the vicinity of k.
Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



Clustering Coefficient of G,,,

281- Where g; is the number
C. of edges between i's

Remember: C,; =
ki (kl — 1) neighbors

Edges in G, appear i.i.d. with prob. p
k. (k. —1)
2 \ Number of distinct pairs of

neighbors of node i of degree k;

So: ¢, =p

Each pair is connected
with prob. p

k. (k. —1
Then (expected): C = p-ki(k; 1) =p= k = k
k.(k. —1) n—-1 n

Clustering coefficient of a random graph is small.
If we generate bigger and bigger graphs with fixed avg. degree k
(that is we set p = k - 1/n), then C decreases with the graph size n.
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Network Properties of G,

Degree distribution:

Clustering coefficient:

Path length:

10/2/17
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Two Definitions

We need to define two concepts
1) Define: Random k-Regular graph

Assume each node has k spokes (half-edges)
Randomly pair them up!

2) Define: Expansion

o
Graph G(V, E) has expansion a: o ® .
if VS c V: #edges leaving S ° '# “ °
= a-min(|S],|V\S)) o o ®
o o
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Def 1 : Random k-Regular Graphs

To prove the diameter of a G, we define a few concepts
Define: Random k-Regular graph

Assume each node has k spokes (half-edges)

k=1: .\4 /e Graph is a set of pairs

k=2: @ (/./Q Graph is a set of cycles

Arbitrarily complicated
k=3: graphs

Randomly pair them up!
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Def 2: Expansion: Intuition

Jo

==

S nodes = a-S edges

Y

S’ nodes > a-S’ edges

<k

= #edges leaving S
T A

(A big) graph with “good” expansion
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Expansion: Measures Robustness

. tedgesleaving S

a:
N in( s 117\ S )

Expansion is measure of robustness:

To disconnect / nodes, we need to cut > a- / edges

Low expansion: M
High expansion: @

Social networks:

“Communities”

10/2/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 12



Def 2: Expansion of k-Regular Graphs

. #edges leaving S

o=
k-regular graph: T ming ST\ )

Expansion is at most k£ (when S is a single node)

Is there a graph on n nodes (rn—x), of fixed max
deg. k, so that expansion a remains const?

Examples:
nxn grid: k=4: a =2n/(n’/4)—0 S

(S=n/2 x n/2 square in the center)

Fact: For a random 3-regular graph on n nodes,
there is some const a (a >0, independent. of n)

such that with high prob. (prob—1 as n—e<) the
expansion of the graph is > a. infact, a=O(k/2) as n—sw
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Diameter of k-Regular Rnd. Graph

We will prove the diameter of a k-regular
random graph (k=3)
Note that k-regular random graph are essentially
the same as random graphs

In a random graph variance/mean degree goes to O as
graph size increases, which means that intuitively all

nodes have about the same degree.
p—n

08—

Jo

’

10/2/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanf
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Diameter of k-Regular Rnd. Graph

Fact: In a k-regular random graph on n nodes with

expansion a, for all pairs of nodes s and ¢ there is a

path of O((log n) / a) edges connecting them.
Proof:

Proof strategy: ~
A)
We want to show that from any
node s there is a path of length Sp +—s
O((log n)/a) to any other node ¢ S —
~
Let §; be a set of all nodes S5« .

found within j steps of BFS from s.
How does §; increase as a function of ;?

10/2/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 15



Diameter of k-Regular Rnd. Graph

Proof (continued):

Let S] be a set of all nodes found
within j steps of BFS from s.

We want to relate S;and S,

\S.

At most k edges
“collide” at a node

+1
> \Sj\(n%) _ SO(1+%jJ

where §),=1

j+1

\S

10/2/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Diameter of k-Regular Rnd. Graph

Proof (continued):

In j steps, we

In how many steps of BFS

do we reach >n/2 nodes? /é
- g —[144) 52 <
Need so that.Sj_(ij 2> s\./.E
s

In j steps, we

reach >n/2 nodes reach >n/2 nodes

. 1

Diameter = 2+

t
) .. klog,n
Let’s set: j=
(04 In log(n) steps, we  In Jog(n) steps, we Diameter
. reach >n/2nodes  reach >n/2 nodes =2 log(n
Then: o
klogz n Claim: klog, n

(Hg S L L
k 2
In 2k/a-log n steps |S;| grows to O(n).

So, the diameter of G is O(log(n)/ a)

10/2/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Remember n>0, a < k then:
1
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ifa—)OthenE:x—mo:

and (1 +

X
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17
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Erdos-Renyi avg. shortest path

Erdds-Renyi networks can grow to be very
large but nodes will be just a few hops apart

QS o)
N ___’ﬂ__—————-O'—“‘——'——_——_——_——_——_——_—
o

L‘) .
= o

average shortest path
10

[ [ [ [ I
200000 400000 600000 800000 1000000

(@) —OOOOOOOOOOOOOOO

num nodes
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Back to Node Degrees of an Extra

~lim{1+7]
Remember, expected degree: E[X |=(n—1)p
To have const. degree we want E/X |/ be
independent of n. So let: p=k/(n-1)
Observation: If we build random graph G,,,
with p=k/(n-1) we have many isolated nodes

Why?

10/2/17

Why?
k n—1
P[vhasdegree 0]=(1—p)""' = (1 — j —> e "

n—1 n—>o0

-k
k n—1 1 x-k 1 —X )
il 1-—— | ={1-=] =|lim|1-— —e
lnl—];oIol( n-— 1) ( )C) |:1}_I)}ol( Xj :| In other words: In the limit of
N\ J

i n— Poisson distribution is a
L 1 Y good approximation of a Binomial
Use substitution —= n—1 e distribution and we computed

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu P(X:O) for the Poisson PMF.
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No Isolated Nodes

How big do we have to make p before
we are likely to have no isolated nodes?
We know: P/v has degree 0] = e™*
Event we are asking about is:
I = some node is isolated
I = U]v where I, is the event that v is isolated

velN Union bound
We have: 4
P(I)= P(U[Vj <Y P(I,)=ne™™  Ual=xi

veN veN

10/2/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 20



No Isolated Nodes

We just learned: P(I) <n e*

Let’s try:
k=Inn then: ne*=nelhn =n-l/n=1
k=2Inn then: ne?nn=pn.1/m? =1/m

So if:

k=Inn then: P(l) <1
k=2Inn then: P()<Il/n —> 0 asn—>w

So, for p=2In(n) we get no isolated nodes
(as n—»o0)

10/2/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 21



“Evolution” of a Random Graph/ Extra

Graph structure of G, , as p changes:
| . . . . |

T T T T
p | 1/(n-1) c/(n-1) log(n)/(n-1) 2*log(n)/(n-1) |
0 Giant component  Avg. deg const. Fewer isolated  No isolated nodes.
appears Lots of isolated nodes.
Em pty nodes. Com plete
graph graph

Emergence of a giant component:
avg. degree k=2E/n or p=k/(n-1)
k=I-¢&: all components are of size Q(log n)
k=I+¢&: 1 component of size Q(n), others have size Q(log n)
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G,, Simulation Experiment

Grp, 7=100,000,

k=p-1)=05 .;. 3 - Fraction of nodes in the
i . , largest component
0.5 1 1.5 2 2.5 ]
pk(n=-1)

Emergence of a giant component:
avg. degree k=2E/n or p=k/(n-1)
k=I-¢: all components are of size Q(log n)
k=I+¢&: 1 component of size 2(n), others have size Q(log n)
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Network Properties of G,

Degree distribution: P(k)z(
Path length: O(log n)

Clustering coefficient: C=p =k /n

10/2/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



Paul Erdos

G, Is so cool!
Let's compare it to real networks.



10/2/17

DIRECT FROM

A RINGSIDE!X
THE FIGHT EVERYONE WANTS T0 SEE..

=7
- )

(2 o 8 o T 8

o
S224W: Analysis of Networks, http://cs224w.stantord

tord C k:

S ————
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Backto MSN vs. G,

M S N G n=180M

Degree distribution:

Path length: 6.6 O(logn) M

h =8.2
Clustering coefficient: 0./ k/n
C =8-10¢

GCC exists

Connected component: 99% whenk1. [V]
k = 14.
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Real Networks vs. G,

Are real networks like random graphs?
Average path length: ©
Giant connected component: ©
Clustering Coefficient: ®

Degree Distribution: ®
Problems with the random network model:

Degree distribution differs from that of real networks

Giant component in most real networks
does NOT emerge through a phase transition

No “local” structure — clustering coefficient is too low
Most important: Are real networks random?

The answer is simply: NO!
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Real Networks vs. G,

If G,,, is wrong, why did we spend time on it?
It is the reference model for the rest of the class

It will help us calculate many quantities, that can
then be compared to the real data

It will help us understand to what degree is a
particular property the result of some random
process

So, while G, , is WRONG, it will turn out
to be extremly USEFUL NULL MODEL!
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Intermezzo: Configuration Model

Goal: Generate a random graph with a

given degree sequence k,, k,, ... ky
Configuration model:

| _+—©

=N SR o

o
A B C D

Randomly pair up

“smini”-nodes Resulting graph

Nodes with spokes

Useful as a “null” model of networks:

We can compare the real network G and a “random”
G’ which has the same degree sequence as G
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The Small-World Model

Can we have high clustering while also having short paths?




Six Degrees of Kevin Bacon

Origins of a small-world idea:
The Bacon number:

Create a network of Hollywood actors
Connect two actors if they

co-appeared in the movie ;vrz.gn?o.;nm

Bacon number: number of steps to ek

Kevin Bacon Ehis Presley has & Bacon nuber of 2.
As of Dec 2007, the highest (finite) L
Bacon number reported is 8 e St (6|
Only approx. 12% of all actors Suzame Coingor
cannot be linked to Bacon ey Shop 2005

with

Kevin Bacon |
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Erdds numbers are small! ,{-:g“‘“m
(Jure's number is 3.) =
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Topics in Graph Theory (v demv of Sciences (1979).

Find out your Erdos number: http: //www ams. orq/mathscnnet/collaboratlonDlstance html

33



Time for a joke (via XKCD): What do
you do when dead start walking the
earth?

THE APOCALYPSE! THE SKIES
BURN, THE SEAS TURN TO BLOOD,
AND THE DEAD WALK THE EARTH!

l

T

THE DEAD WHAT?

I HAVE

MATH ON HERE!

i

TO GO. .
WALK THE AU
EARTH! \ "m £ BUE
W 3 %ﬁo IS
AD RETURN!
THE DEAD ] RN T HoPE
EVERYONE, QUICK, AT LAST! THERES
GET YOUR NAMES TME!

H\RKG" wr
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The Small-World Experiment

What is the typical shortest path
length between any two people?
Experiment on the global friendship

network
Can’t measure, need to probe explicitly

Small-world experiment [vilgram '67]

Picked 300 people in Omaha, Nebraska
and Wichita, Kansas

Ask them to get a letter to a
stock-broker in Boston by passing
it through friends

How many steps did it take?
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[Milgram, '67]

The Small-World Experiment

64 chains completed:
(i.e., 64 letters reached the target) 15

It took 6.2 steps on the
average, thus
“6 degrees of separation”

Further observations: o
People who owned stock

had shorter paths to the stockbroker
than random people: 5.4 vs. 6.7

NUMBER OF CHAINS
o

Ll o B it B 2 34 gL N
I 2 3 4 5 6 7 8 9 10 I 12
OF INTERMEDIARIES

People from the Boston area have even
closer paths: 4.4
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Milgram: Further Observations

. ,MW‘W&
Boston vs. occupation networks: | /".\i/.,..{ poston.
Criticism: 177 7= %
Funneling: s ¢ q

31 of 64 chains passed through 1 of 3 people
as their final step = Not all links/nodes are equal

Starting points and the target were non-random
There are not many samples (only 64)

People refused to participate (25% for Milgram)
Not all searches finished (only 64 out of 300)

Some sort of social search: People in the experiment
follow some strategy instead of forwarding the letter to
everyone. They are not finding the shortest path!

People might have used extra information resources
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[Dodds-Muhamad-Watts, ‘03]

Columbia Small-World Study

In 2003 Dodds, Muhamad and Watts
performed the experiment using e-mail:

18 targets of various backgrounds
24,000 first steps (~1,500 per target)
65% dropout per step

384 chains completed (1.5%)

150
Avg. chain length = 4.01
= 100} .
= Problem: People stop part|C|p?}tl|)ng
a0 b ] I . * n
50 Correction factor: (h)=—
oLe= e H(l_’;)

1 2 3 4 5 6 7 8 9 10 i
Path length, h r;.... drop-out rate at hop i
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[Dodds-Muhamad-Watts, ‘03]

Small-World in Email Study

After the correction: 190007 = -7
= 10000} S A -
Typical pathlengthh=7 = _ | ]j

5000

o X |

o llolloh
i 2 3456 7 8 910
Path length, h

Some not well understood
phenomena in social networks:

Funneling effect: Some target’s friends
are more likely to be the final step

Conjecture: High reputation/authority

Effects of target’s characteristics:
Structurally, why are high-status targets easier to find?
Conjecture: Core-periphery network structure
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Two Questions

(Today) What is the structure of a social
network?

(Next class) What kind of mechanisms do
people use to route and find the target?

The chains progress from the starting
position (Omaha) to the target area
(Boston) with each remove. Dlagram

shows the number of miles from the
target area, with the distance of each
femove averaged over completed
and uncompleted chains.

STARTING
POSITION
a1 R pepenpa————— L
4305 1.

A‘__-
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6-Degrees: Should We Be Surprised?

Assume each human is connected to 100 other people
Then:

Step 1: reach 100 people

Step 2: reach 100*100 = 10,000 people

Step 3: reach 100*100*100 = 1,000,000 people
Step 4: reach 100*100*100*100 = 100M people

In 5 steps we can reach 10 billion people
What’s wrong here?

92% of new FB friendships are to a friend-of-a-friend
[Backstom-Leskovec ‘11]
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Clustering Implies Edge Locality

MSN network has 7 orders of magnitude

larger clustering than the corresponding G, !
Other examples:

Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree k =61
Electrical power grid: N = 4,941 nodes, k = 2.67
Network of neurons: N = 282 nodes, k = 14

Network hactual hrandom  Cactual Crandom
Film actors 3.65 299 | 0.79 0.00027
Power Grid 18.70 1240 | 0.080 0.005
C. elegans 2.65 225| 0.28 0.05

h ... Average shortest path length

C ... Average clustering coefficient

“actual” ... real network

‘random” ... random graph with same avg. degree
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The “Controversy”

Consequence of expansion:
Short paths: O(log n)

This is the smallest diameter we can
get if we have a constant degree.

But clustering is low! Cowd
ow diameter
BUt nEtWOrkS ha\le Low clustering coefficient
“local” structure:
Triadic closure:
Friend of a friend is my friend
High clustering but

diameter is also hlgh High clustering coefficient
High di
How can we have both? 'gh diameter

Jure
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Small-World: How?

Could a network with high clustering be
at the same time a small world?

How can we at the same time have
high clustering and small diameter?

High clustering Low clustering
High diameter Low diameter

Clustering implies edge “locality”
Randomness enables “shortcuts”
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[Watts-Strogatz, ‘98]

Solution: The Small-World Model

Small-World Model [Watts-Strogatz ‘98]
Two components to the model:

(1) Start with a low-dimensional regular lattice

(In our case we are using a ring as a lattice)
Has high clustering coefficient

Now introduce randomness (“shortcuts”)

(2) Rewire:

Add/remove edges to create
shortcuts to join remote parts
of the lattice

For each edge with prob. p move
the other end to a random node
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[Watts-Strogatz, ‘98]

The Small-World Model

REGULAR HETUWORK SMALL WORLD HETLWWORK RANDOM HETWORK

=\ qs\\"’

“ ".\Q‘\ Y

SIS
//' YW,

P=0 INCRERSING RAHDOMHESS P=1
High clustering High clustering Low clustering
High diameter Low diameter Low diameter

N 3 —

h=—  C==>
2k 4 p=l08N ok
loga N

Rewiring allows us to “interpolate” between
a regular lattice and a random graph
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The Small-World Model

] I I T I_|—| == J T T ‘—“——_____I ] I T TTT I I T TTT |
i NG Intuition: It takes a
&) Y lot of randomness to
N —— mean vertex-vertex distance ruin the clustering,
- DU S \ but a very small
= ——— clustering coefficient \
— N amount to create
I \ shortcuts.
O \ .
- \
= \
L5 \ —
o N
] . |
S \
& \
= ) Parameter region of high N
E i clustering and low path length |
2 Y
O - i
—
O 1 ||||||| 1 ||||||‘ I___T__I—_]_T—I’ﬂ—'—l—— L TR N N I
0.001 0.01 0.1 1

Prob. of rewiring, p
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Diameter of the Watts-Strogatz

Alternative formulation of the model:
Start with a square grid

Each node has 1 random long-range edge
Each node has 1 spoke. Then randomly connect them.

c__2¢ _2:12
" k(k-1) 9-8

There are already 12 triangles in the grid and
the long-range edge can only close more.

What's the diameter?

It is O(log(n))
Why?

10/2/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Diameter of the Watts-Strogatz

10/2/17

Proof:

Consider a graph where we contract
2x2 subgraphs into supernodes

Now we have 4 edges sticking out of
each supernode
4-regular random graph!

From Thm. we have short paths
between super nodes

We can turn this into a path in a real
graph by adding at most 2 steps per
long range edge (by having to
traverse internal nodes)

—> Diameter of the model is
O log n)

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

0g® | °90 | °9° (®
o

>
0w | = | *=® |

.

.‘t‘.‘:ﬂ::::?,’:;r?,;
\>4 aP an
HTTHT P

L/ N1 N L/ N vy N
N\ 1 S P -

SSTHTOATRRCTE
ETIRG

Y s Y w7 s

e~
NZANVN § NVZANN | YV uy

4-regular random
graph

49



Small-World: Summary

Could a network with high clustering be at the
same time a small world?

Yes! You don’t need more than a few random links
The Watts Strogatz Model:

Provides insight on the interplay between clustering
and the small-world

Captures the structure of many realistic networks
Accounts for the high clustering of real networks
Does not lead to the correct degree distribution
Does not enable navigation (next)
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How to Navigate a Network?

What mechanisms do people use to
navigate networks and find the target?

The chains progress from the starting
position (Omaha) to the target area
(Boston) with each remove. Dlagram
shows the number of miles from the
target area, with the distance of each
remove averaged over completed
and uncompleted chains.
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Decentralized Search

The setting:
s only knows locations of its friends
and location of the target ¢
s does not know links of anyone else but itself
Geographic Navigation: s “navigates” to
a node geographically closest to ¢
Search time T: Number of steps to reach ¢

S
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Overview of the Results

Searchable Not searchable
Search time T: Search time T:

O((logn)”) O(n”)

Kleinberg’s model Watts-Strogatz
) 2
O((logn)™) O(n*)
Erdos—Rényi
Note: We know these graphs have diameter O(log n). O(n)

So in Kleinberg’s model search time is polynomial in log n,
while in Watts-Strogatz it is exponential (in /og n).
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Navigation in Watts-Strogatz

O—O0—0©—0—0

Model: 2-dim grid where ¢—o—6 00
each node has 1 random edge N E
o 'O—O0—0—0—<9—0O
This is a small-world! O— 0201020
o0 0490

(Small-world = diameter O(log n))

Fact: A decentralized search algorithm in
Watts-Strogatz model needs n?> steps to
reach ¢ in expectation

Note: Even though paths of O(log n) steps exist

Note: All our calculations are asymptotic, i.e., we are interested in what happens as n—
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Navigation in Watts-Strogatz

Let’s do the proof for 1-dimensional case
Want to show Watts-Strogatz ‘
is NOT searchable

Bound the search time from below
About the proof:

Setting: n nodes on aring
plus one random directed
edge per node.

Search timeis T > O(+/n) t
For d-dim. case: T > O(n¥(@tD)
Proof strategy: Principle of deferred decision

Doesn’t matter when a random decision is made
if you haven’t seen it yet

Assume random long range links are only created
once you get to them
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Proof: Search time is > O(n*/?)

Claim:
Expected search time is 21/,

Let: £,= event that long link
out of node i points to some
node in interval I of width

2-x nodes (for some x)
around target t

2X 2X
Then: P(El) = E ~ 7 (in the limit of large n)
(haven’t seen node i yet, but can

assume random edge generation)
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Proof: Search time is > O(n*/?)

E = event that any of the first k nodes
search algorithm visits has a link to 1

Then: p(E) = P(UE j < ZP(E )=k — 2X

n

Let’schoose F = x =1 \/;

2

Then:

Note: Our alg. is deterministic and will

2
% \/ n 1 choose to trav.el via a long- or short-range
links using some deterministic rule.
P(E)<? — ¢

2 The principle of deferred decision tells us
that it does not really matter how we

reached node i.
lts prob. of linking to interval 7 is: 2x/n.

10/2/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 57




Proof: Search time is > O(n*/?)

P(E) = P(in %\/ﬁ steps we jump inside %\/ﬁ of t) S%
Suppose initial s is outside I and event E does not
happen (i.e., first k visited nodes don’t point to /)
Then the search algorithm must
take T > min(k, x) steps to getto ¢

(1) Right after we visit k nodes \k S\
a good long-range link may occur

(2) x and & “overlap”, due to E not
happening we have to walk at least X X/j/
5
4

Case 1: Case 2:

x steps
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Proof: Search time is >0O(n*/?)

Claim: Getting from s to ¢ takes > - Vu steps
Search time > P(E)(#steps) + P(not E) min(x,k)
Proof: we just need to put together the facts

We already showed that for x = k = %\/ﬁ

N |~
=~

E does not happen with prob. % §
If E does not happen,

1
we must traverse = E\/ﬁ stepsto gettot

The expected time to get to 7 is then

> P(E doesn't occur) -min{x,k} =

f—f 1n
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avigable Small-World Graph?

Watts-Strogatz graphs

are not searchable i, prine g oam
How do we make a i S
searchable small-world -~~~ =" ==
araph? A i

.1 / Yx )
y 16 e || |
e —JLE 00 3§ e | et
° Al :
I n I I n e .= 4
[} = I %
> I 7/4
; : {

Our long range links AR 41| AT
are not random et e

They follow geography!

Saul Steinberg, “View of the World from 9th Avenue”
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