CS224W: Analysis of Networks

CS224W: Analysis of Network Jure Leskovec, Stanford University http://cs224w.stanford.edu

Why Networks? Networks are a general language for describing complex systems

Interactions!

Networks & Complex Systems

Complex systems are all around us:

- Society is a collection of six billion individuals
- Communication systems link electronic devices
- Information and knowledge is organized and linked
- Interactions between thousands of genes/proteins regulate life
- Our thoughts are hidden in the connections between billions of neurons in our brain

What do these systems have in common? How can we represent them?

The Network!

Behind many systems there is an intricate wiring diagram, a network, that defines the interactions between the components

We will never understand these systems unless we understand the networks behind them!

But Jure, why should I care about networks?

Why Networks? Why Now?

- Universal language for describing complex data
 - Networks from science, nature, and technology are more similar than one would expect
- Shared vocabulary between fields
 - Computer Science, Social science, Physics, Economics, Statistics, Biology
- Data availability (/computational challenges)
 - Web/mobile, bio, health, and medical
- Impact!
 - Social networking, Social media, Drug design

Networks: Why Now?

Web – The Lab for Humanity

Networks and Applications

(1) Networks: Social

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Application: Social Circle Detection

Jure Leskovec, Stanford CS224W: Analysis of Networks

(2) Networks: Infrastructure

Water supply distribution networks

Airline networks

Application: Modeling Epidemics

Infrastructure networks are crucial for modeling epidemics

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040961

(3) Networks: Online Media

Connections between political blogs Polarization of the network [Adamic-Glance, 2005]

Jure Leskovec, Stanford CS224W: Analysis of Networks

Application: Polarization on Twitter

Retweet networks:

Polarized (left), Unpolarized (rigth)

Conover, M., Ratkiewicz, J., Francisco, M. R., Gonçalves, B., Menczer, F., & Flammini, A. "Political Polarization on Twitter." (2011)

9/25/17

Application: Information Diffusion

Information cascade in a social network

Facebook Information Cascades

Can cascades be predicted? Cheng et al., WWW '14.

Jure Leskovec, Stanford CS224W: Analysis of Networks

Application: Product Adoption

60-90% of LinkedIn users signed up due to an invitation from another user. <u>Global Diffusion via Cascading Invitations: Structure, Growth, and Homophily</u>. Anderson et al., WWW '15.

(4) Networks: Information, Knowledge

[Börner et al., 2012]

Application: Misinformation

Q: Is a given Wikipedia article a hoax?

Real articles link more coherently:

Hoax article detection performance:

50% 66% 86% Random Human WWW '16

Disinformation on the Web: Impact, Characteristics, and Detection of

Wikipedia Hoaxes. Kumar et al. WWW '16. Jure Leskovec. Stanford CS224W: Analysis of Networks

(5) Networks: Biology

Protein-protein interaction (PPI) networks:

Nodes: Proteins Edges: 'Physical' interactions

Metabolic networks:

Nodes: Metabolites and enzymes Edges: Chemical reactions

Application: Drug Repurposing

 Q: Can we predict therapeutic uses of a drug?
 Insight: Proteins are worker molecules in a cell. Protein interaction networks capture how the cell works.

(6) Networks: Organizations

Who are the central nodes in the organization?

[Krebs, 2002]

Jure Leskovec, Stanford CS224W: Analysis of Networks

Application: Employee Success

Structural Holes provide ego with access to novel information, power, freedom

Jure Leskovec, Stanford CS224W: Analysis of Networks

Networks: Economic Networks

Bio-tech companies: Why companies succeed?

[Powell-White-Koput, 2002]

Networks: Transactions

Detecting fraud and money laundering

Networks: Brain

Human brain has between 10-100 billion neurons

[Sporns, 2011]

Networks Really Matter

- If you want to understand the spread of diseases, you need to figure out who will be in contact with whom
- If you want to understand the structure of the Web, you have to analyze the 'links'.
- If you want to understand dissemination of news or evolution of science, you have to follow the flow.

About CS224W

Reasoning about Networks

What do we hope to achieve from studying networks?

- Patterns and statistical properties of network data
- Design principles and models
- Understand why networks are organized the way they are
 - Predict behavior of networked systems

Reasoning about Networks

- How do we reason about networks?
 - Empirical: Study network data to find organizational principles
 - How do we measure and quantify networks?
 - Mathematical models: Graph theory and statistical models
 - Models allow us to understand behaviors and distinguish surprising from expected phenomena
 - Algorithms for analyzing graphs
 - Hard computational challenges

Networks: Structure & Process

What do we study in networks?Structure and evolution:

- What is the structure of a network?
- Why and how did it come to have such structure?

Processes and dynamics:

- Networks provide "skeleton" for spreading of information, behavior, diseases
- How do information and diseases spread?

Jure Leskovec, Stanford CS224W: Analysis of Networks

How It All Fits Together

Small diameter, Edge clustering

Scale-free

Strength of weak ties, Core-periphery

Densification power law, Shrinking diameters

Patterns of signed edge creation

Information virality, Memetracking

Models

Small-world model, Erdös-Renyi model

Preferential attachment, Copying model

Kronecker Graphs

Microscopic model of evolving networks

Structural balance, Theory of status

Independent cascade model, Game theoretic model

Algorithms

Decentralized search

PageRank, Hubs and authorities

Community detection: Girvan-Newman, Modularity

Link prediction, Supervised random walks

Models for predicting edge signs

Influence maximization, Outbreak detection, LIM

Jure Leskovec, Stanford CS224W: Analysis of Networks

Logistics: Course Assistants

Anthony Kim (Head TA)

Ziyi Yang

Anunay Kulshrestha

Silviana Ilcus

Praty Sharma

Logistics: Website

http://cs224w.stanford.edu

Slides posted the night before the class

Readings:

- Chapters from Easley&Kleinberg
- Papers
- Optional readings:
 - Papers and pointers to additional literature
 - This will be very useful for project proposals

Logistics: Communication

Piazza Q&A website:

- http://piazza.com/stanford/fall2017/cs224w
 - Use access code "snap"
- Please participate and help each other!
 (2% of the grade)
- For e-mailing course staff, always use:
 - <u>cs224w-aut1718-staff@lists.stanford.edu</u>
- We will post course announcements to Piazza (make sure you check it regularly)

Homework, Write-ups

- Assignments are long and take time (10-20h) Start early!
 - A combination of data analysis, algorithm design, and math
- How to submit?
 - Upload via Gradescope (<u>http://gradescope.com</u>)
 - To register use the code MRW7PY
 - Use your Stanford email (if non-SCPD) and include your Stanford ID # (everyone)
 - IMPORTANT: One answer per page!
 - Code and project write-ups (proposal, milestone, final report) have to also be uploaded at <u>http://snap.stanford.edu/submit/</u>
- Total of 2 late periods for the quarter:
 - Late period expires on Monday at 23:59 Pacific Time
 - You can use at most 1 late period per assignment
 - No late periods for submissions related to final project

Course Projects

Substantial course project:

- Experimental evaluation of algorithms and models on an interesting network dataset
- A theoretical project that considers a model, an algorithm and derives a rigorous result about it
- Develop scalable algorithms for massive graphs
- Performed in groups of up to 3 students
 - Fine to have groups of 1 or 2. The team size will be taken under consideration when evaluating the scope of the project in breadth and depth. But 3 person teams can be more efficient.
 - Project is the main work for the class
 - We will help with ideas, data and mentoring
 - Start thinking about this now!
 - Ok to combine projects. Clearly indicate, which part of the project is done for CS224W and which part is done for the other class.
- Poster session with many external visitors
- Read: <u>http://cs224w.stanford.edu/info.html#proj</u>

Course Schedule

Week	Assignment	Due on (23:59 PST)
2	Homework o	October 5
3	Homework 1	October 12
4	Project proposal	October 19 (no late periods!)
5	Homework 2	October 26
6	Work on the project	
7	Homework 3	November 9
8	Project milestone	November 16 (no late periods!)
9	Thanksgiving break	
10	Homework 4	November 30
11	Project report	Sun December 10 (no late periods!)
	Poster session	Mon, December 11 12:15-3:15pm

Work for the Course & Grading

Final grade will be composed of:

Homework: 48%

Homework 1,2,3,4: 11.75% each, HWO: 1%

Substantial class project: 50%

- Proposal: 20%
- Project milestone: 20%
- Final report: 50%
- Poster presentation: 10%

Piazza participation, snap code contribution: 2%

 Students between grades get extra credit for Piazza participation

Prerequisites

- No single topic in the course is too hard by itself
 But we will cover and touch upon many topics and this is what makes the course hard
 - Good background in:
 - Algorithms and graph theory
 - Probability and statistics
 - Linear algebra
 - Programming:
 - You should be able to write non-trivial programs (in Python)
 - 2 recitation sessions:
 - Review of Probability, Linear Algebra, and Proof Techniques: Thursday, 9/28 (4:30-5:20pm, Gates B03)
 - SNAP.PY review and installation party: Friday, 9/29 (4:30-5:20pm, Gates B03)

Network Analysis Tools

We highly recommend SNAP:

- SNAP.PY: Python ease of use, most of C++ scalability
 - HWO asks you to do some very basic network analysis with snap.py
 - If you find HWO difficult, this class is probably not for you
- SNAP C++: more challenging but more scalable
- Other tools include NetworkX, iGraph

SNAP.PY review and installation party: Friday, 9/29 (4:30-5:20pm, Gates Bo3)

Starter Topic: Structure of Graphs

Structure of Networks?

A network is a collection of objects where some pairs of objects are connected by links What is the structure of the network?

Components of a Network

Objects: nodes, vertices
Interactions: links, edges
System: network, graph

N E G(N,E)

Networks or Graphs?

- Network often refers to real systems
 Web, Social network, Metabolic network
 Language: Network, node, link
- Graph is a mathematical representation of a network
 - Web graph, Social graph (a Facebook term)
 Language: Graph, vertex, edge

We will try to make this distinction whenever it is appropriate, but in most cases we will use the two terms interchangeably

Networks: Common Language

Choosing Proper Representations

- If you connect individuals that work with each other, you will explore a professional network
- If you connect those that have a sexual relationship, you will be exploring sexual networks
- If you connect scientific papers that cite each other, you will be studying the citation network

If you connect all papers with the same word in the title, you will be exploring what? It is a network, nevertheless

How do you define a network?

- How to build a graph:
 - What are nodes?
 - What are edges?
- Choice of the proper network representation of a given domain/problem determines our ability to use networks successfully:
 - In some cases there is a unique, unambiguous representation
 - In other cases, the representation is by no means unique
 - The way you assign links will determine the nature of the question you can study

Choice of Network Representation

Directed vs. Undirected Graphs

Undirected

 Links: undirected (symmetrical, reciprocal)

- Examples:
 - Collaborations
 - Friendship on Facebook

Directed

 Links: directed (arcs)

• Examples:

- Phone calls
- Following on Twitter

Node Degrees

Sink: Node with $k^{out} = 0$

Node degree, k_i: the number of edges adjacent to node *i* $k_{A} = 4$ Avg. degree: $\overline{k} = \langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2E}{N}$ In directed networks we define an in-degree and out-degree. The (total) degree of a node is the sum of in- and out-degrees.

$$k_C^{in} = 2 \qquad k_C^{out} = 1 \qquad k_C = 3$$

 $\overline{k^{^{in}}}$

 $k^{in} = k^{out}$

Jure Leskovec, Stanford CS224W: Analysis of Networks

Complete Graph

The maximum number of edges in an undirected graph on N nodes is

$$E_{\max} = \binom{N}{2} = \frac{N(N-1)}{2}$$

An undirected graph with the number of edges $E = E_{max}$ is called a **complete graph**, and its average degree is *N-1*

Bipartite Graph

Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets

Examples:

- Authors-to-papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)
 "Folded" networks:
- Author collaboration networks
- Movie co-rating networks

Representing Graphs: Adjacency Matrix

Note that for a directed graph (right) the matrix is not symmetric.

Jure Leskovec, Stanford CS224W: Analysis of Networks

Representing Graphs: Edge list

- Represent graph as a set of edges:
 - **(2, 3)**
 - **(2, 4)**
 - **(**3*,* 2)
 - **(**3*,* 4)
 - **(**4*,* 5)
 - (5, 2)
 - **(5, 1)**

Representing Graphs: Adjacency list

Adjacency list:

- Easier to work with if network is
 - Large
 - Sparse
- Allows us to quickly retrieve all neighbors of a given node
 - **1**:
 - 2:3,4
 - **3**: 2, 4
 - 4:5
 - **5**: 1, 2

Networks are Sparse Graphs

Most real-world networks are sparse

 $\mathbf{E} \ll \mathbf{E}_{\max}$ (or $\mathbf{\overline{k}} \ll \mathbf{N-1}$)

WWW (Stanford-Berkeley):	N=319,717	⟨k⟩=9.65
Social networks (LinkedIn):	N=6,946,668	⟨k⟩=8.87
Communication (MSN IM):	N=242,720,596	⟨k⟩=11.1
Coauthorships (DBLP):	N=317,080	⟨k⟩=6.62
Internet (AS-Skitter):	N=1,719,037	⟨k⟩=14.91
Roads (California):	N=1,957,027	⟨k⟩=2.82
Proteins (S. Cerevisiae):	N=1,870	⟨k⟩=2.39

(Source: Leskovec et al., Internet Mathematics, 2009)

Consequence: Adjacency matrix is filled with zeros!

(Density of the matrix (*E*/N²): WWW= 1.51×10^{-5} , MSN IM = 2.27×10^{-8})

Edge Attributes

Possible options:

- Weight (e.g. frequency of communication)
- Ranking (best friend, second best friend...)
- Type (friend, relative, co-worker)
- Sign: Friend vs. Foe, Trust vs. Distrust
- Properties depending on the structure of the rest of the graph: number of common friends

Positive and Negative Weights

One person trusting/distrusting another

Research challenge: How does one 'propagate' negative feelings in a social network? Is my enemy's enemy my friend?

sample of positive & negative ratings from Epinions network

More Types of Graphs

Examples: Friendship, Hyperlink

Weighted

Examples: Collaboration, Internet, Roads

More Types of Graphs

Examples: Proteins, Hyperlinks

$A_{ij} = \begin{pmatrix} 0 & 2 & 1 & 0 \\ 2 & 0 & 1 & 3 \\ 1 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{pmatrix}$ $A_{ii} = 0 \qquad A_{ij} = A_{ji}$ $E = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij}) \quad \overline{k} = \frac{2E}{N}$ Examples: Communication, Collaboration

Connectivity of Undirected Graphs

Connected (undirected) graph:

- Any two vertices can be joined by a path
- A disconnected graph is made up by two or more connected components

Largest Component: Giant Component

Isolated node (node H)

Bridge <u>edge</u>: If we erase the edge, the graph becomes disconnected. Articulation <u>node</u>: If we erase the **node**, the graph becomes disconnected

Connectivity of Directed Graphs

Strongly connected directed graph

- has a path from each node to every other node and vice versa (e.g., A-B path and B-A path)
- Weakly connected directed graph
 - is connected if we disregard the edge directions

Graph on the left is connected but not strongly connected (e.g., there is no way to get from F to G by following the edge directions). Email network >> directed multigraph with self-edges

Facebook friendships >> undirected, unweighted

Citation networks >> unweighted, directed, acyclic

Collaboration networks >> undirected multigraph or weighted graph

Mobile phone calls >> directed, (weighted?) multigraph

Protein Interactions >> undirected, unweighted with self-interactions