Alisha Adam (aadam)
Matthew Pick (mpick)
Rohit Talreja (rtalreja)

CS 224W Final Report: Network-Based Product Recommendation Systems
0. Abstract

We developed a hybrid model for recommending products to customers (also called users) based on both
similarity between products and similarity between users. Existing recommendation systems have a
number of limitations; some systems, for example, treat user-user similarity as a binary relationship,
ignoring the magnitude of similarity between users, while other systems assume that common opinions
among users only matter if their reviews are positive. We designed an algorithm to address both of these
flaws. Using a dataset of Amazon products and associated customer reviews, we built both a user graph
(weighted edges represent the magnitude of similarity between users based on positive and negative
reviews) and a product graph (edges represent products that have been purchased together). To create
customized recommendations for a given user, our algorithm considered candidate products purchased by
similar users, then scored candidates based on distance in the product graph. Our results showed that
although co-purchases are far less relevant than we had hypothesized, we effectively captured similarity
between users to predict user purchases with 50% accuracy.

1. Problem Definition

Today, the inventories of online retailers such as Amazon and Netflix far exceed those of traditional
bricks-and-mortar retailers. Products that aren’t popular enough to earn shelf space in physical stores
account for a significant portion of online revenue; in the case of Amazon, more than 50% of book sales
are generated by titles that aren’t even available in most bookstores.' These products, collectively known
as the Long Tail, represent a huge revenue opportunity. However, while media and marketing tend to
expose consumers to more popular products, products in the Long Tail receive far less exposure. As a
result, product recommender systems are instrumental in helping consumers find, among the millions of
products in the tail, a select number of products that match their tastes. Research into recommendation
systems is valuable for companies seeking to maximize revenue because new algorithms can improve
relevance and/or novelty, thereby generating recommendations that consumers are more likely to
purchase.

Current recommendation systems have two main drawbacks. Firstly, they tend to consider user-user

similarity as a binary relationship without considering the magnitude of similarity between each pair of
users. Secondly, they tend to ignore negative reviews, modeling similarity only by considering positive
co-reviews. Our approach is to recommend products based not only on similarity between products but

' Anderson, C.

also the magnitude of similarity between users’ reviews, factoring in both positive and negative
sentiment.

2. Literature Review
2.1 Related Work

Existing recommendation systems fall into two main categories: collaborative filtering models, which
leverage similarities between users, and content-based filtering, which relies on similarities between
items. The former is used, for example, by Amazon and iTunes, while the latter is used by services such
as Pandora.” Hybrid models have also been explored, which seek to provide more accurate
recommendations by combining the two formulations. We examined the literature for these three types of
systems to understand their implementations and tradeoffs.

There are two main approaches to collaborative filtering: memory-based and model-based filtering.
Memory-based filtering approaches cluster users with common interests, then make predictions for a
given user by averaging the preferences of other users in that cluster. On the other hand, model-based
filtering uses past data about a single user to compute the expected value of a user’s rating on unseen
items, given the user’s rating of other items.’

Rather than measuring similarity between users, content-based filtering approaches construct a product
graph where weighted edges between product nodes represent the strength of an association between two
products.* In the approach described by Zhou et al., recommendations were generated for a given user u
by constructing a candidate set of products that have been co-purchased with items that u already owns.
The top r items with the highest edge weights are then returned as recommendations. This approach is
simple, but it was shown to generate effective recommendations in a dense product graph.

Finally, hybrid systems combine these two approaches with the goal of optimizing the tradeoff between
accuracy and novelty of recommendations. One such system is GraphRec, described by Lee and Lee.
Starting with a user-item ratings matrix (N users x M items), the authors created a weighted M x M
adjacency matrix of positively co-rated items, then recommended products that were repeatedly co-rated
with items the user had purchased. Compared to other recommender systems, GraphRec was shown to
generate more novel recommendations without a significant tradeoff in accuracy, particularly for users
with sufficiently complete profiles.

2 Zahra, S.

3 Sarwar et al.
4 Zhou et al.
5Lee and Lee

2.2 Opportunities for Improvement

As seen from this discussion, existing algorithms focus primarily on positive signals. Zhou et al. assume
that purchasing or acquiring an item is synonymous with liking that item. Lee and Lee use only positive
ratings to identify similar users. In both cases, incorporating negative information would allow us to
develop a more nuanced model. In particular, we improve upon the systems discussed above in two key
ways:

Firstly, we extend Zhou et al.’s approach by adding a dimension for product satisfaction. Zhou et al.
naively assume that users are unequivocally satisfied with all products they purchase. In reality, of course,
this is not the case. People frequently regret or dislike items after making a purchase, as evident from
negative reviews on Amazon. Incorporating the sentiment of a review (e.g. # of stars, positive or
negative) allows us to model a more nuanced relationship between users and the products they purchase.

Secondly, we extend Lee and Lee’s approach of modeling similarity between users by using the full
spectrum of reviews, rather than focusing exclusively on positive reviews. When forming the adjacency
matrix A, Lee and Lee discard negative reviews, implicitly assuming that negative reviews contain no
information about user-user similarity. However, we contend that negative ratings can also provide
important information about user-user similarity. Consider users a, b, and ¢ who all highly review item x.
Suppose ¢ highly reviews item y, while a and b both negatively review y. According to Lee and Lee’s
GraphRec formulation, a, b, and c are all equally similar, while in reality @ and b are probably more
similar because they have the same positive and negative tastes. Thus, when constructing a graph of users,
we link each user m to a set of other users, U, based on the similarity of the positive and negative reviews
that they have in common. In addition to capturing a new dimension of similarity, this approach allows us
to create connections between more users, thereby giving us a larger subgraph from which to generate
recommendations for each user.

3. Dataset
3.1 Overview

We decided to work on a subset of the Amazon dataset curated by Leskovec, Adamic and Adamic® since
it contains the most complete information about products and associated reviews. The dataset identifies
products that are frequently purchased together, as well as reviews for each product associated with the ID
of the user who wrote them.

The products come from four major categories - books, DVDs, music CDs, and videos. Note that these
product categories lend themselves to co-purchasing more so than others categories like appliances,
furniture, and household items. For example, when purchasing books, customers might choose to

¢ Leskovec, Adamic and Adamic

purchase an entire series (e.g. Harry Potter books 1 - 7). In other categories, this is less likely to occur; for
instance, customers purchasing kitchen appliances probably don’t buy more than one toaster.

Product Graph User Graph
Nodes 35,852 Nodes 90,370
Edges 65,547 Edges 42,400,000
Avg. Degree 2 Avg. Degree 464

Fig. 1 Dataset Statistics

As seen in Figure 1, the user graph was extremely dense; each node had, on average, more than 400
neighbors. In contrast, the product graph was extremely sparse, with an average degree of just 2. This was
largely due to the nature of our dataset, which created a hub-and-spokes graph structure. In the dataset,
product entries were generally associated with 5 co-purchased products (it was possible to have fewer
co-purchased products, but most entries had exactly 5). In general, however, the co-purchased products
did not appear as independent entries in the dataset. Thus, while products that were independently listed
in the dataset had approximately 5 neighbors, products that were listed only as co-purchases tended to
have only 1 edge. This resulted in a hub-and-spokes structure, visualized in Figure 2 below, with a low
average degree.

3.2 Data Parsing

The data file lists products in the following format:
ASIN: [Amazon identification string of the product]
title: [product name]
Salesrank: [Amazon Salesrank metric]
similar: [ASIN of up to 5 products that are co-purchased with the current product]
categories: [several categorizations of the product, eg. books->subjects->fantasy]|
reviews:
[list of reviews including customer ID, rating, and publish date]

The data parser, along with the rest of the program, was written in Python to optimize error handling and
ease of programming. For each product in the data file, we extracted the list of similar products and
customer reviews in order to construct our graphs (discussed in detail in section 5.2).

4. Baseline Model

To benchmark the accuracy of our extended recommendation algorithm, we first implemented the
recommendation algorithm described in the Zhou et al. paper. Specifically, we generated a network of
products in which the weight of a directed edge from product j to product i represented the strength of
recommending product i to a user who purchased product j. To calculate these recommendation weights,

we constructed an adjacency matrix 4, where 4, = 1 when object i is owned by user /. The weight w; is
assigned to the edge from product to i as follows:

1 & agaj
Wi =)
7 k(o) ; k(ur)
where k(o;) =", a;; and k(w)=31", aq

To generate recommendations for user u, we construct a candidate set of products that have been
co-purchased with items that u already owns. The top 7 items with the highest edge weights are then
returned as recommendations. Since the Zhou et al. paper did not provide a single value for r (the size of
the recommendation set), we evaluated the baseline accuracy on a range of r-values using the test
methodology described in section 6 below (results are displayed in Figure 4).

5. Our Hybrid Recommendation Model

In this section, we will discuss our recommendation system, a hybrid model using both collaborative
filtering and content-based filtering (i.e. taking into account both product similarity and user similarity).

5.1 Assumptions

When generating recommendations, we make three key assumptions. Firstly, we assume that users’
reviews are indicative of their actual preferences. Obviously, users don’t leave a review for every item
that they purchase; however, we assume that the reviews they do write will accurately reflect their tastes.
This assumption is necessary because our goal is to recommend items that users will actually want to
purchase, not just to recommend items that are most consistent with their past reviews. Secondly, we
assume that similarity between two users’ reviews is an accurate measure of similarity between the two
users’ preferences. This assumption follows from the previous one: if reviews are an accurate indication
of preferences, then similar reviews should indicate similar preferences. Finally, we assume that user-user
similarity among the sample of reviews that we’ve seen (i.e. the data used to create the graph) will
generalize to capture similarity among users in the test set. We make this assumption because we believe
that our test set follows the same distribution as our training data.

5.2 Constructing the graphs
5.2.1 Co-purchased Product Graph
We constructed a graph of co-purchased products, G,, where each product from our dataset is a node in

the graph. For each node u, edges exist between u and the top five products with which u is most
commonly co-purchased. This resulted in a hub-and-spokes structure, as seen in Figure 2.

Fig. 2 Subset of the Product Graph, which exhibits a hub-and-spokes structure

5.2.2 User Graph
Next, we constructed a graph of users, G, where each user from our dataset is a node in the graph,
according to the following procedure:
1. Add edges between all nodes @ and b who reviewed one or more of the same products
2. For edge (a, b), define the weight w , as:
1if [R, — R,| <2
wan = {—1if IR, — Ryl = 2

all co—reviewed
products (p)

where R is a’s rating for p and R, is b’s rating for p

This means that each review on which a and b agree (either both positive or both negative)
contributes +1 to the edge weight, and each review on which a and b disagree contributes -1.
Note that under this measure, agreement and disagreement “cancel out”: if @ and b agree on 3
products and disagree on 2, then w,, = 1 (i.e. we weight the edge as one similar product review)

3. Remove all edges with weight < 0, since we only want to consider users who agree on their
reviews.

Thus, in the final graph, edges exist between users who are similar based on common positive and/or
negative reviews. The weight of each edge corresponds to the degree of similarity between the two nodes.

5.3 Generating Recommendations

Our algorithm to generate recommendations for a given user, u, is as follows:
1) Define the purchased set P as the set of products that u has purchased.
2) Define the candidate set C as user-product pairs, (v, x), where v is a neighbor of u and x is a
product that v has purchased but u has not purchased

3) Score each candidate (v, x) in C, as follows:

similarity(u, v)
score(v,x) =

distance(x, P)

where similarity(u, v) is the weight of the edge between u and v in the user graph and distance(x,
P) is the length of the shortest path between x and any product in the purchased set.

4) Return a recommendation set, R, consisting of the top r candidates (see Figure 4 for the effect of
varying r on prediction accuracy).

We also implemented a modified score function that re-weighted the contribution of path length (distance
between two products) to the score. From the candidate set C, consider all products x purchased by a
given neighbor v. Instead of computing the full set of paths for each new x’, we kept track of the length /
of the shortest path so far between any product x that we already scored and P (/ is initialized to an
arbitrary large number). When scoring additional candidates, we cut off the graph search at distance / (so
products that are more than / hops away from P are assigned distance /). Keeping track of the best / so far
for each neighbor ensures that we accurately score top candidates (i.e. those that are close to the
purchased set P) while optimizing runtime by avoiding unnecessarily long path searches (for products that
are far from P and thus unlikely to be good recommendations). Furthermore, we hypothesized that after a
certain distance, the association between products becomes effectively random. If no products exist within
[hops of the purchase set, we decided that recommendations should be based purely on user-user
similarity. Since products outside the cutoff are assigned the same distance, the algorithm would return a
random product purchased by v.

6. Evaluation

From the dataset, we created evaluation sets of 100 test purchases as follows:
1) Pick a user, u, at random and choose one of their purchases, p
2) Remove that purchase from both the user and product graphs

For each user-purchase pair in the evaluation set, we generate a recommendation set S consisting of »
products. We define accuracy as the fraction of recommendation sets S that contain the corresponding test
purchase p. For each algorithm, we ran this evaluation metric several times to get the average accuracy.

Since running our algorithm on the full dataset (~500,000 products) would require immense
computational resources, we also had to select a subset of the data on which to evaluate our approach. We
ran the baseline algorithm and our algorithm (with the original score function and the cutoff score
function) on different sized datasets with » = 10, as shown in Figure 3, to identify trends in performance
as we increase dataset size.

Varying Number of Products
with 10 Recommended Products

\/\./

w
o

I
o

[l
o

Percentage Accuracy
w
o

[
(=)

-_

1000 2500 5000 7500 10000 15000 20000

o

Number of Products

m—Raseline = Original Scoring === Cytoff Scoring

Fig 3. Accuracy on varying sized datasets
The resulting plot shows that the accuracy of all three methods becomes fairly constant for datasets
greater than 5,000 products. Thus, we chose to evaluate our results on a dataset containing 10,000
products because we felt it optimized the tradeoff between model accuracy and runtime. Based on the

trend in Figure 3, we expect our results on this subset of the data to scale to larger datasets without a
significant tradeoff in accuracy.

7. Results

The results of running each algorithm on the 10,000 product dataset are shown below.

Varying Number of Recomendations with 10000 Products

=

1 5 10 15

@
o

w
o

»
o

o
o

Percentage Accuracy
w
o

=
o

o

Number of Recomendations

s Baseline Original Scoring === Cutoff Scoring

Fig 4. Performance of the algorithms

As seen in Figure 4, regardless of the size of the recommendation set, both versions of our algorithm
perform significantly better than the baseline approach. Our original score function achieves between 10

and 15% accuracy, while the cutoff function converges at approximately 50% when making 5 or more
product recommendations . This is a dramatic improvement over the baseline, which consistently achieves
accuracy of 1 —3%.

At first glance, this performance seems unexpectedly poor, particularly for the baseline; however, the
Amazon dataset forces all three algorithms to model behavior that is inconsistent with true purchasing
patterns. Since we have limited knowledge of product equivalence, the algorithm is evaluated on its
ability to find the exact purchase made by the test user (ex. KitchenAid KMT222 2-slice toaster) rather
than a close enough recommendation (ex. toaster). The success of real world product recommendations
would instead evaluate the suggestive power of a recommendation, namely if a purchase of a similar
product was made after viewing the recommendation. Furthermore, Zhou’s algorithm performs well on
dense graphs but our data file is missing a significant portion of the co-purchased product nodes; thus,
many products were left with few edges. Finally, many users in this file purchased few products and thus
did not provide enough information on prior purchases to yield accurate recommendations. Thus, when
run in a real world situation, we believe that all three algorithms would generate more accurate
recommendations than these results might imply. Rather than viewing the accuracy scores as standalone
percentages, these values should be evaluated relative to each other, since all three algorithms are all
impacted to the same degree. Therefore, we believe that the improvement of our method over the
baseline algorithm reflects a true gain in accuracy.

There are two conclusions that can be drawn from these results. Firstly, the accuracy of our algorithm
levels off as the size of the recommendation set increases. This demonstrates that both of our score
functions generate fairly good rankings; if the test purchase is in our candidate set, it is consistently
ranked in the top 5. Furthermore, these results imply that the optimal number of recommendations for our
algorithm is 5. This is important because providing too many recommendations in real world applications
may lead to oversaturation, reducing the ability of each recommendation to influence purchasing
behavior. Thus, it is significant that our algorithm can achieve nearly 50% accuracy by recommending
just 5 products.

Secondly, we observe that the cutoff score function generated significantly better recommendations than
the original score function. This reveals that one of our initial hypotheses is incorrect. We initially
believed that proximity between products x and y in the product graph would imply that y is a good
recommendation for users who purchased x (and vice versa); however, the cutoff algorithm reduces the
weight of distance in the scoring function, particularly for larger distances, which resulted in significantly
higher accuracy. Furthermore, initializing the cutoff to very small values yields almost the same accuracy,
which shows that distance is far less important than user-user similarity when generating
recommendations. Possible explanations for this observation are discussed in the next section.

In summary, our results show that although our initial hypothesis about product co-purchases was
incorrect, we were able to achieve remarkable accuracy by modeling similarity between users. Using the
cutoff score function, we could predict test purchases with 30% accuracy by generating just a single
recommendation. By increasing the number of recommendations generated to 5, we could correctly
predict the test purchase 50% of the time. Recall that our accuracy metric was, in fact, more strict than

most real-world applications, since it measured our ability to find exact purchases made by the test user
rather than close recommendations. These results show that our model of user similarity, which measured
the magnitude of similarity between users based on common positive and negative reviews, is a promising
development for future recommendation systems based on collaborative filtering.

8. Further work

As noted above, the cutoff score function generated significantly higher accuracy than our original score
function. There are three possible explanations for this observation. Firstly, as noted in section 3.1, the
product graph is extremely sparse (average degree is approximately 2). Thus, we may not have enough
information about relationships between products to effectively use product similarity when generating
recommendations. To test this, we could either run the algorithm on a dense subgraph of the current
dataset or find a different dataset with more product similarity data. Secondly, “similar” products in the
Amazon dataset are products that are commonly co-purchased. If co-purchased items are those that are
purchased in the same transaction, then these relationships may not be a good source of recommendations.
Recommendations should capture users’ preferences across transactions, not within one particular
transaction. To test this, we could use a different measure of product similarity, such as purchase history
(i.e. users who buy x have bought y in the past), and see if proximity in the new product graph improves
recommendations. Finally, it’s possible that product-product similarity, as used in our algorithm, simply
isn’t relevant when making recommendations. Before jumping to this conclusion, however, we would like
to be able to test the first two options with a more dense product graph and a different measure of product
similarity.

It’s also possible that the cutoff function generated better results because our original score function was
suboptimal. Another area of future research could be to test our algorithm with different score functions,
such as:
linear penalty for increasing path length so that user similarity and distance are equally weighted
exponential penalty for increasing path length to penalize far away items even more
logarithmic scaling of the similarity score between users so that similarity scores are
underemphasized compared to the current model
e ignore distance entirely, as the results of the cutoff algorithm suggest that distance is less relevant
than we thought
Given the results with the cutoff scoring function, we would start with the last option since we were able
to boost accuracy by decreasing the importance of distance.

Another area for further work is evaluation. Since we tested the algorithm from Zhou et al. using our
evaluation methodology, we would also like to test our algorithm on their methodology. It would be
important to assess how similar the problems actually are and whether the 1-3% accuracy of their
algorithm was due to mismatch between fundamental assumptions in algorithm design. Furthermore, it’s
possible that the scarcity of the product graph negatively impacted the Zhou et al. algorithm. We would
like to compare our method to other systems that emphasize user similarity, since our user graph is much
more dense.

Lastly, we would have liked to be able to run our algorithm on the full 550,000 product dataset; however,
this would have taken multiple days on an extremely high-powered computer. It would be ideal to find
ways of partitioning the dataset so that processing could be parallelized. Alternatively, we could
incorporate heuristics to avoid computing the distance between hundreds of pairs of products.

References
Anderson, Chris. “The Long Tail.” Wired (2004).

Lee, K. and Lee, K. “Escaping your comfort zone: A graph-based recommender system for finding novel
recommendations among relevant items.” Expert Systems with Applications 42.10 (2015): 4851-4858.

J. Leskovec, L. Adamic and B. Adamic. “The Dynamics of Viral Marketing.” 4ACM Transactions on the
Web (ACM TWEB), 1.1 (2007).

Liben-Nowell, David, and Jon Kleinberg. "The link-prediction problem for social networks." Journal of
the American society for information science and technology 58.7 (2007): 1019-1031.

Sarwar, Badrul, George Karypis, Joseph Konstan, and John Riedl. "Item Based Collaborative Filtering
Recommendation Algorithms." 4CM: 285-95 (2001).

Zahra, S., et al. “Novel centroid selection approaches for KMeans-clustering based recommender
systems.” Information Sciences. 320 (2015): 156-189.

Zhou, Tao, et al. "Effect of initial configuration on network-based recommendation." EPL (Europhysics
Letters) 81.5 (2008): 58004.

