
Malicious Behavior on the Web: 

Characterization and Detection

Srijan Kumar (@srijankr)

Justin Cheng (@jcccf)

Jure Leskovec (@jure)

Slides are available at http://snap.stanford.edu/www2017tutorial/

http://snap.stanford.edu/www2017tutorial/


Trolling

Tutorial Outline

Sockpuppets Vandals

Fake reviews Hoaxes

Malicious users

Misinformation

http://snap.stanford.edu/www2017tutorial

http://snap.stanford.edu/www2017tutorial


Web: Source of information
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Web: Source of false information

4



Types of false information
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Misinformation

honest mistake

Disinformation

deliberate lie to mislead



Reviews
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Impact of Fake Reviews

7Makhija et al, 2016, Luca et al., 2011
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+1 increase in star rating 

increases revenue by 5-9%

Flipkart
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Characteristics of fake reviews 

and reviewers



9Ott et al., 2011, Yoo et al., 2009
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Fake reviewers are more opinionated

Genuine

Fake

Kumar et al., 2017
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Fake reviewers

Mukherjee et al., 2013
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fewer reviews

Fake reviewers write 

shorter reviews
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Fake reviewers are faster and have 

bimodal rating pattern 

Kumar et al., 2017, Li et al., 2017

Genuine

Fake



Fake reviewers collude
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Kumar et al., 2017
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Detecting fake reviewers
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Å User is suspicious if his behavior deviates

substantially from that of the global model

ÅGlobal Model:

Å Users belong to different cluster, each

representing a different behavior

Å Each cluster is associated with a

common Dirichlet prior, to model the

common behavior of users in the cluster

Å The property is drawn using a

multinomial derived from the clusterôs

Dirichlet prior

BIRDNEST

Hooi et al., SDM 2016



BIRDNEST
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Cluster 1

User 1 User 2

Cluster 2

User 3

1  2  3  4 5 1  2  3  4 5

1  2  3  4 5

1  2  3  4 5

1  2  3  4 5

Each user has a multinomial rating distribution vector, drawn from a 

cluster-specific Dirichlet prior

Hooi et al., SDM 2016



BIRDNEST
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Cluster 1 Cluster 2

Time difference 

distributions

Time difference 

distributions

Hooi et al., SDM 2016
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BIRDNEST Results

Hooi et al., SDM 2016



Intuition: Fair reviewers upvote and fake reviewers

downvote good products. Fair reviewers downvote

bad products and fake reviewers upvote bad

products.

Unsupervised Loopy Belief Propagation algorithm

Add behavior property: include a prior to indicate its

suspiciousness

Use cumulative distribution of the property over all

users
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Fake reviewers

Benign

SpEagle

Rayana et al., KDD 2015
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SpEagle Results

Rayana et al., KDD 2015

Behavior is more important than text, but it still helps



Iterative algorithm to compute 3 inter-

dependent measures:

Trustworthiness of reviewer which 

depends (non-linearly) on its reviewsô 

honesty scores;

Reliability of store depending on the 

trustworthiness of the reviewers 

writing reviews for it and the score; 

Honesty of review which is a function 

of reliability of the store and 

trustworthiness of store reviewers.
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Trustiness

Wang et al., ICDM 2011



Iteratively calculate three interdependent metrics:

Fairness of each user who writes a review: how fair is the user

in giving correct reviews?

Reliability of each review: how trustworthy is each review itself?

Goodness of each product: what is the quality of the product?
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FairJudge

Kumar et al., 2017



FairJudge
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Goodness

G(p)

[-1,1]

Fairness

F(u)

[0,1] Reliability

R(u,p)

[0,1]

Kumar et al., 2017


