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ABSTRACT

We consider the dynamics of rapid propagation of informa-
tion in complex social networks focusing on mobile phone
networks. We introduce two models for an information prop-
agation process. The first model describes the temporal
behavior of people which leads to the emergence of infor-
mation propagation events and is based on the existence
of two types of subscribers: regular subscribers and sub-
scribers that tend to spread information. The second model
describes the topology of paths in which the information
propagates from one subscriber to another. We further in-
troduce an efficient algorithm for identification of informa-
tion propagation events. We then apply our algorithm to a
large-scale mobile phone network and demonstrate the cor-
respondence between theoretical expectations and the actual
results.

Categories and Subject Descriptors

H.3.m [Information Storage and Retrieval]: Miscella-
neous

General Terms

Algorithms; Measurement; Theory

Keywords

Information cascades, Telecommunication Networks

1. INTRODUCTION

Until recently, studying social phenomena was limited by
the available information, which had to be collected through
laborious manual work and personal interviews. The pos-
sibility for studying social interactions through electronic
records such as web interactions and telephone call records
has, in the last few years, opened this field to the study
of much larger populations in different parts of the world.
Electronic records are also highly advantageous in that they
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overcome the need for self-reporting of interactions, which is
frequently biased, and caused an inherent problem in previ-
ous studies. In this paper we study social phenomena using
mobile phone operator data, which pertains to a population
of over two million people.

The accessibility of large-scale social data lead to an ex-
plosion of research in the field of complex networks in general
and in the field of social networks in particular [13, 9]. For
instance, using specially-designed smart phones, Eagle et.al.
[4] showed how social networks could be reconstructed from
the locations and interactions between their users. Golden-
berg et.al. [5] used web data to show how social structures
affect the adoption of new content. In [8] and [7] large—
scale telecommunication data were used to design a mar-
keting campaign and to build a fraud detection algorithm
correspondingly. Finally, recent work [10, 11] used call data
records (CDRs), which record the calling and called num-
bers of telecom subscribers, to show how social interactions
relate to churn in mobile telephone networks.

Identification of people who tend to initiate information
propagation events has so far received little attention. The
role of hubs in disseminating information and in adoption
patterns was investigated in [5], but as a static process, that
is, as the overall effect of well-connected people on their
peers, without regard to the interaction process itself. In
this paper, we investigate the dynamics of this process, i.e.,
the actual sequences of information-passing events, which
lead to a change in peoples’ behavior. Our analysis is thus
not limited to specific people who have an important role
in the network, but instead shows how interactions between
people leads to information dissemination.

Beyond the interest in the social phenomena, the identifi-
cation of information dissemination events has many useful
applications, ranging from deciding on which people should
be approached for more successful advertising campaigns to
identifying the sources of information of news items and web
content.

In this work we focus on rapid propagation of information
in the sense that once it is received, it is either transferred
to somebody else during a relatively short period of time or
will not be transferred to anyone. We refer to this mode
of information propagation as gossip. We emphasize that
usage of the term “gossip” does not imply any specific con-
tent of the propagating information but only that is spreads
rapidly. We present evidence that gossip propagation pro-
cesses transfer geographical information.

We take a machine learning perspective in this work and
try to learn “simple” parametric models that describe well



the information propagation processes. Our data are a col-
lection of millions of call records that we view as a large het-
erogenous network where random links form and dissipate.
The main challenge from a learning perspective is to explain
the dynamics from a statistical perspective in a meaningful
way without producing very complex models with many pa-
rameters.

We provide two generative models of gossip propagation in
mobile phone networks that have a relatively small number
of parameters. These models are local, namely, they describe
the behavior of a small number of subscribers rather than
of the entire mobile call graph. The first model generates
sequences of calls that yield an emergence of gossip propa-
gation event. Similar to [6] in this model we assume that
there exist two types of people, and these are reflected in
their behavior as mobile telephone subscribers: regular sub-
scribers and subscribers that tend to spread information.
We refer to the latter type as gossip—leaders and assume
that only these subscribers can initiate gossip propagation.
The second model generates information propagation paths,
namely, the ways in which the gossip propagates from one
subscriber to another.

We further introduce an algorithm for identification the
gossip propagation processes, and test this algorithm on
large—scale real-world data.

We analyze properties of our models and show that they
explain well the properties of gossip propagation processes
we identify. Specifically, the first model predicts well the
temporal structure of over 50 percent of gossip propagation
events. As the regular calls may be modeled by the stan-
dard methods (e.g., [9]) we note that our models explain
over 70 percent of daily calls. The second model predicts
well the topology of information paths in over 85 percent of
gossip propagation events. Of course, to explain additional
observed phenomena, we will have to create more complex
models. Our work is therefore only a first step in learn-
ing probabilistic models that describe the dynamics of large
scale cellular networks.

The rest of the paper is organized as follows. In Section 2
we present the two generative models for gossip-propagation
processes and discuss their properties. Section 3 introduces
an algorithm for identification of gossip-propagation pro-
cesses. In Section 4 we provide experimental results of this
algorithm to large—scale call data records. We show that
our models accurately predict properties of above 50 per-
cent of gossip-propagation processes found. We conclude
with a summary and discussion of future work in Section 5.

2. PROPAGATION MODELS

In this section we propose two generative models that ad-
dress two different aspects of the gossip propagation event.
The Day Generation Model describes the emergence of se-
quences of calls that capture the information propagation
phenomenon. The Information Flow Tree Model describes
the emergence of different topologies of an information flow.
Namely, it generates a directed graph that shows paths in
which the information propagates from one subscriber to an-
other. The question of a finding a unifying model that would
address both of the aspects above is beyond this paper.

Both of our generative models build on a well-known dis-
tribution - the Discrete Gaussian Exponential (DGX) - that
appears in many contexts of social research [2]. In Section
4 we show that this distribution also fits well the real-world

data available to us. For the benefit of the reader, we briefly
review their definitions and basic properties in [1].

Some notations: we use X ~ DG X (a,b) to denote that X
is drawn from the DGX distribution with parameters a and
b. We denote by Ppax{-|a,b} and Fpax{:|a,b} the corre-
sponding probability distribution and cumulative probabil-
ity function.

2.1 Day Generating Model

As mentioned, our first model introduces a stochastic pro-
cess for generating sequences of calls that capture the rapid
information propagation phenomenon. Specifically we focus
on a mode of propagation of information called an out—star
in which a single subscriber calls to the majority of the sub-
scribers involved in the specific gossip propagation event.
Heuristically we choose the threshold to be 80% of the sub-
scribers.

This mode of propagation may seem too simplistic, how-
ever, we show in Section 4 that it includes over 50% of the
gossip propagation events observed in the real-world data
available to us. Moreover, it has the following “physical”
model behind it. We assume the existence of two types
of subscribers: regular subscribers and gossip-leaders. The
first type includes most of the subscribers and exhibits a
“passive” behavior with respect to information propagation,
namely, the probability that a subscriber of this type will ini-
tiate a gossip or spread it further is very small. The second
type contains a small fraction of subscribers that tend to ini-
tiate gossip propagation events and spread this information
to other subscribers. This is inline with [5] who showed the
role of hubs in the information diffusion process. We further
assume homogeneity within types, namely, the behavior of
all subscribers of the same type can be described as different
realizations of a single stochastic process.

Under these assumptions, the most probable scenario of
gossip propagation is that it is initiated by a gossip—leader
who transfers the information to several regular subscribers.
The propagation process then stops since regular subscribers
do not tend to spread the information further, hence pro-
ducing an out-star. We require that the information propa-
gation will be rapid, namely, the time interval between two
calls consequent calls of the gossip—leader in the gossip prop-
agation event will be less than 7. We further focus only on
substantially large gossip propagation events, namely, we
require that such an event contains at least K calls.

We now proceed with definition of several notations and
introduction of the model. Let call ¢ be described by the
four—tuple (n1,n2,tst, tend), where ni is the number of the
caller, no is the number of the callee and ts; and tenq are
beginning and end times of the call, respectively.

We introduce a generative model of all calls made by a cer-
tain gossip—leader during the day. We expect some of these
calls to group to form a gossip—propagation event. Namely,
there may be a sequence of at least K calls so that each two
consecutive calls occur within less than 7" minutes from each
other.

We further make the following two approximations in this
model. First, we assumed that beginning time of the first
call. Second, we neglect the effect of the social circle, namely,
the gossip leader has a limited number of subscribers in his
phone book. We note that the first approximation do not
affect the structural properties of the information propaga-
tion processes we are interested in. However, the effect of



the social circle might be quite significant. These issues are
beyond the scope of this paper.

The inputs of the Day Generating Model are the following:
(1) The set R of regular subscribers and the set G of gossip—
leaders. (2) Parameters a, b, aq, ba, Qa, &b, Ba, Bb, Yo and vp
of the probability distributions involved in the model below.

The call sequence for each gossip—leader g € G is gener-
ated according to the following process:

1. Generate the number N of calls according to the dis-
tribution DGX (a, b).

2. Draw the identities {r;}/_; of N regular subscribers
according to a uniform distribution without repetitions
over the set R.

3. Generate the beginning time t1, of the first call accord-
ing to a uniform distribution over the day.

4. Fori=1,2,...,. N

o Generate the duration time tgqy, ~ DGX(a_d, ba)
o_f call ¢;. Let end time of the call ¢; be t;,q =
tét + tdur-

e Add a call ¢; = {(g,7i,t%,tL,4) to the generated
sequence.

o Generate time interval At; ~ DGX(aaN2 +Ba N+
Ya, s N? + By N + ) (in minutes) between calls
c; and ¢;it1.

° Let the beginning time of the next call be t7' =

end + At’b

The following proposition considers out—stars generated by a
single gossip—leader according to the Day Generation Model.
It assesses the first two moments of the number of out—stars
of a specific size and of the total number of out—stars.

ProposITION 1. Consider calls generated by a single gossip—
leader by the Day Generation Model with parameters as above.

Let Sk for k > K be the number of generated out—stars con-
taining exactly k calls and let S denote the total number
of out—stars. Further, let p(n) = FDGX{T|aaN2 + BuN +
’ya,osz2 + BN + 1} be the probability that an interval be-
tween two consequent calls in less than T minutes. Then:
(1) The expected value of Sk is given by

E{Sk} = Y Ppax{nla,b}As_1(n—1;p(n)),

n=K
where
—7) 2+ (m

and Iy is an indicator function.
(2) The second moment of Sk is given by

Ai(m,y) = v Tmeiy+' (1 —i—1)(1—

E{St} = > Poax{nla,b}Bx_1(n — 1;p(n)),

n=K
where
Bi(m, ) =7 Limeiy + 2(1 = )7 Timsa
+ (m —i— 1)(1 - 7)271H{m21+2} + 6(i7 m, 7)7

and the term e(i, m,y) is significantly smaller than the other
terms. The ezxact value of e(i, m,~y) may be found in [1].
(8) The expected value of S is given by

E{S} =Y Ppax{nla,b}C(n - 1;p(n)),

n=K

)} ]I{m>z}

where
C(m;v) =" = G(K = Ln = L)yl = V) fm>k -1
2+ (1 =7)(m=1) ( K =™ ) Lz iy,
and
b b b+1 a a+1
A i b+ 1) —bem — (a+ 1)e® + ae
G(a,b,e):;ze = e

(4) The second moment of S is given by

E {52} = Z Ppax{n|a,b}D(n — 1;p(n)),

n=K
where
D(m;v) = 71H{m>K—1}

Z 7" 1D =i = LY mzk -1y
> YT HmM =i = L) sy,
=K

and

H(m;p(n)) =p" " (n){m>k -1y + (1 — p(n))
> op () H(m — i — 15;p(n)gm> k13- (1)

=0

Proof: We begin by considering some fixed number N =n
of calls made by a gossip—leader. In what follows, we calcu-
late the values of E{Sx| N =n}, E { S,%‘ N =n},

E{S|N =n} and IE{52’ N =n}. Then Statements 1 to 4
will follow by the towering property of conditional expec-
tations. We further note that all conditional expectations
above equal 0 for n < K, thus we focus on n > K in the
rest of the proof.

This proof proceeds through the following steps. In Step 1
we introduce several auxiliary binary random variables and
investigate their properties. In Steps 2 to 4 we show that
Statements 1 to 3 follow almost trivially from the proper-
ties of the above variables. We conclude with the proof of
Statement 4 in Step 5.

Step 1: Let {c;}i-; denote the calls made by the gossip
leader indexed in the chronological order. We denote by
l; for i = 1,...,n — 1 the binary variables so that [; = 1
if the length of the time interval between calls ¢; and c¢;41
is smaller than 7" minutes and I; = 0 otherwise. We note
that the variables [; are i.i.d. and P{l; = 1| N =n} = p(n).
For notational convenience we extend our definition so that
l; = 0 almost surely for ¢ = 0 and i > n.

Consider n > k. Let FF for all i = 0,1,....,n — k be an
auxiliary binary variable equal to 1 if calls {cj}zflc form an
out-star of size k. It can be seen that F = 1 holds if
li+1 = li+2 = ... = li+k: =1 and ll = li+k+1 = 0. Hence,
E { Ff| N=n}= ]P{Fi}C =1|N=n}= P (n)(1 —p(n))?
forn > k+2andi =1,2,...,n—k—1. Here the equality holds
almost surely as in all equations below. Due to dependence
on lp and possibly l,41 the expression for E { F(ﬂ N = n} is
slightly different: E { Fé“! N =n} = p* ' (n)(1 — p(n)) for
n >k and E { Fé“‘ N =n} = p" ! (n) for n = k. Similarly,

due to dependence on [,,+1 we obtain that E { FT’f_k} N = n} =



P 1 (n)(1 - p(n)) for n >k + 1.

Step 2: We proceed to derive an expression for E { S| N = n}.

We note that E{Six| N =n} = 0 for n < k. For n
k it holds that Sy = S/ FF, hence, E{Sk| N =n}
Zf;ok E { Flk| N = n} Substituting the expressions for
E{ Ff| N = n} and rearranging the terms we obtain State-
ment 1.

Step 3: Similarly to Step 2, E { Sﬁ‘ N = n} =0 forn <
k. For n > k, it holds that

n} )

n—kn—k
E{SF|N=n} =3 S E{FF|N=
i=0 j=0
In order to conclude the proof of the statement we need to
calculate E { FikFﬂ N = n} for different values of i and j.
We note that E{ (F)?| N =n} = P{Ff=1|N=n} =
E{Ff|N=n} for all i = 0,1,..,n — k, hence was cal-
culated in the proof of Statement 1. For 0 < j —i <
k + 1, the events Ff =1 and FF = 1 cannot occur to-
gether as the former requires /;_1 = 0 and the latter re-
quires [;_; = 1, therefore, E{FikFﬂN:n} = 0. For
j —1 =k + 1 the events Ff = 1 and F} = 1 share the
requirement that l;_; = 0, hence, E{FikFﬂN:n} =
P{Ff=1N=n}P{F} =1|N =n}/(1-p(n)). For j—
i >k + 1, the events F]lC =1 and FF = 1 are independent,

hence
E{Fi’“Ff’N:n} :IEI{F,-’“ :n} -IEI{Ff‘N:n}.
Substituting to 2 yields Statement 2.
Step 4: We further note that E{S|N =n} =
E { dohek Sk| N = n} and obtain Statement 3 by substitut-
ing result of Statement 1 and rearranging the terms.
Step 5: The second moment of S can be calculated using

an argument similar to the proof of Statement 2. We note
that

v

We can obtain a closed—form expression for E { $*| N = n}
by calculating E { FikFﬂ N = n} for different values of k, o,
¢ and j and substituting these values to equation 3. How-
ever, the resulting expression contains a large number of
terms and virtually unusable, therefore we take a slightly
different approach.

Let H(m,p(n)) be the number of out—stars emerging among
calls {¢;}i—,,_ given that either n —m =1 or calls cp—m—1
and ¢,,—,, are distanced by more than 1" minutes, i.e., lp—m—1
=0. Let H(m,p(n)) = E{H(m,p(n))}.

It can be easily seen that E{S|N = n} = H(n—1,p(n))
and IE{SQ| —n} —IE{HQn—Lp } We note that
E{H(m;p(n))} =0 for all m < K — 1. For m = K — 1, the
only realization in which an out—star can emerge is that if
intervals between all calls are less than T', namely, I, = 1 for
alli =n —m,...,n — 1, hence E {H(m;p(n))} = p*~'(n).

Now consider m > K — 1. We define events FE; ., for
i =1,..,m+ 1 in the following way: F1,m = {ln—m = 0};
Eim = m; S = 13 {ln—mii—1 =0} fori=2,....m
and Epi1m = NjL,—m{l; = 1}. It can be easily seen
that P{E;m} = (1 —p(n))p*~'(n) for all i = 1,..,m and
P{Em+1,m} = p™(n). We note that these events partition

the sample space, namely, they are disjoint and their union
covers the sample space. Hence, by the complete probability
formula:

m—+1

N} =D E{H(m,p(n)| Eim} P{Eim}. (4)

i=1

For i < K it holds that E{H(m,p(n))| Eim} = H(m —
i,p(n)), for K <1 < m (if exist) it holds that
E{H(m,p(n))| Eim} = H(m —i—1,p(n)) +

finally, for ¢ = m+1 it holds that E { H(m, p(n))| E; m} =1
Substitution of these observations to (4) yields (1). We thus
obtained an additional formula for E {S}, namely,

E{H(m,p(n

E{S} = Ppax{nla,b}H(n — 1;p(n)).

n=K

We now apply the same argument to E{H?(m,p(n))}. Let

D(m,p(n)) =E {H2 m,p(n } By the the complete prob-
ability formula
m—1
D(m,p(n)) = > E{H*(m,p(n))| Eim} P{Eim}. (5)
i=1

Forz<K1tholdsthat]E{H2mp |Elm}— (m —

i,p(n)), forz—m+11th01dsthatE{H2mp ‘Elm}—
1, finally, for K <14 < m (if exist) it holds that
E{H2mp ‘Elm}f
E{(1+H(m—i—1,p(n))? Eim}
:1+2ﬁ(m717l,p(n))JrD(mfifl,p(n)).

Substitution of these observations to (5) concludes the proof
of Statement 4. [J

As mentioned, Proposition 1 considers a single gossip—
leader. The following corollary generalizes its result to mul-
tiple gossip—leaders and provides an estimate to the size dis-
tribution of generated out—stars.

COROLLARY 2.
1. Denote by Sk the number of out-stars of size k gener-
ated by |G| gossip—leaders. Denote by S the total number of

out-stars generated by |G| gossip—leaders. Then E {SNk} =
IGIE{Sk}, E{Si"} = IGIPE{s}, E{S} = GIE{S} and
E{5%} = |GIE{s?}.

2. The ratio Sk /S converges to E{Sy} JE{S} almost surely
as |G| — oo'.

Proof: See [1] for the complete proof. [J

2.2 Information Flow Tree Model

The second model considers paths in which the gossip

propagates from the source subscriber to all the others. Namely,

it generates the directed graph G = (V, E) in which the set
V of nodes contains all subscribers that eventually received
the information and the set F of edges contains all directed
edges n1 — ng so that the subscriber n, was chronologically

9'Hence, when the number of gossip-leaders is large enough,
the fraction E {S;.} /E {S} can be used as an estimate for the em-
pirical frequency of out—stars of size k£ among all out—stars.



the first to pass the information to n2. We refer to the node
n” that initiated the information propagation as the root.

We consider only the first time the information is received
by a node, hence the in—degree of each node is 1, except for
the root n” that has a degree of 0. It can be easily seen from
the definition of the graph that the information flow graph
is a directed tree.

This model requires the following parameters as its in-
put:(1) the set of subscribers N; (2) parameters ag, bo of
the root degree distribution; and (3) parameters ap/ ,» and
aps v for A = 1,2 and v’ = 1,2,3 of degree distribution of
other nodes.

The information flow tree is generated in a layer-by-layer
fashion. We begin from the layer 0 that contains a single
node which is the root. At each stage we go over all nodes
in the current layer, generate their out-degrees and place
the corresponding number of nodes in the next layer. This
procedure is repeated for the next layer as long as it is non-
empty. The probability distribution of the degree r of the
root is given by po(-) = DGX (ao,bo)(-). The degree d of a
node in layer h > 1 is generated through a two step process.
We begin by generating an auxiliary variable d’ according
to a probability distribution DGX (ap/ 7, bps ), where

h' = min{h, 2} and r" = min{r, 3}. (6)

We then set d = d' — 1. The “truncation” of h and r was
observed empirically and the variable d’ is introduced in
order to give a positive probability to the event d = 0. The
identities of the nodes are generated according to a uniform
distribution over N without repetitions. We note that the
resulting tree may contain less than M subscribers, in this
case, the process may be repeated from the start. Here is
the complete description of the model:

1. Generate the identity n" of the root according to uni-
form distribution over N. Generate the degree r of the
root according to DG X (ao, bo) and generate r distinct
subscribers {n;};i—; according to a uniform distribu-
tion over N \ {n"}.

2. Let L1 = {n1,...,nr}, Lo = {} and h = 1. Update the
sets of nodes and edges as follows: V = {n"}U Ly and
E=U_{n" — n;}.

3. For each subscriber n € L do the following;:

- Generate the auxiliary variable d’ of the current
subscriber according to DG X (ap/ .+, by ), where
R’ and r’ are defined in (6). Set the degree d of
the current node n to d = d’ — 1. If d = 0 then
continue to the next node in Lj,.

- If d > 0 then generate d distinct subscribers {ni}le
for i = 1,..,d according to a uniform distribu-
tion over N \ V. Add new nodes to the next
layer, namely, set Ly, «— U% {n;} U Lpi1. Up-
date the sets of nodes and edges as follows: V «—
Ule{m} UV and E «+— U?Zl{n —n;}UE.

4. Set h « h+1 and Lp41 < {}. Go to step 3 if the new
current set Ly is not empty.

We divide the generated trees into the following classes
based on their topology.
(1) Topology 1: Pure stars, namely, trees in which the root
has an out—degree of at least M — 1 and rest of the nodes
are leafs, i.e., have an out—degree of 0;
(2) Topology 2: Trees in which the out—degree of the root is

(1) (2)

(3) (4)

<k .

Figure 1: Topologies 1 to 4.

1, the out—degree of its only child is at least M — 2 and the
rest of the nodes are leafs.
(3) Topology 8: Trees in which the out—degree of the root is
at least M — 2, exactly one of its children has an out—degree
of 1 and the rest of the nodes are leafs.
(4) Topology 4: Strings, namely, trees in which all the nodes
has an out—degree of 1 except for a single node which is leaf.
(5) Topology 5: The out—degree of the root is at least 2, out—
degrees of at least two additional nodes is exactly 1 and the
rest of the nodes are leafs.
(6) Topology 6: The rest of the trees.
GPCs of topologies 1 to 4 are illustrated in Figure 1. The
significance of this specific topologies was observed empiri-
cally by applying clustering techniques to topologies of in-
formation flow in the gossip propagation events in the data.
We proceed to investigate the properties of some of these
topologies. Assume that M > 4 and consider a tree gener-
ated by the Information Flow Tree Model with parameters
as above. Let IV denote the total number of nodes in the tree
and let E; for ¢ = 1,2,..,4 denote the event that the gener-
ated tree is of Topology i. The following proposition assesses
one of the basic properties of these topologies, namely, the
distribution P{ N = -| E1 } of sizes of GPCs in each topology.

PROPOSITION 3. The size distribution of GPCs of Topolo-
gies 1 to 4 is given by the following expressions.
(1) For Topology 1:

P{N =n|E1} =po(n—1) (pr.5(0))" " /P{E1} (>},

where P{E1} =32, 1 po(r) (p1,3(0))".
(2) For Topology 2:

P{N = n| E2} = po(0)p1.1(n — 2) (p2,1(0))" "2 /P{E2},

where P{Ea} = 523 1, po(0)pr1(d) (p21(0)".
(3) For Topology 3:

(n—2) [dp1,3(1) (p1.3(0))" ] p2.,3(0)
P{Es} ’

where P{Es} = Y5 5, o po(d) [dpra(1) (pr.3(0))""] p2.a(0).
(4) For Topology 4:
P{N =n|Ed} = (pr3(1))" " (1 = pr3(1)),

where P{E4} = po(1)p1.1(1) (p1,5(1))" ~° p1,3(0)/(1—p1,5(1)).

P{N =n|Es} =2

Proof: These results can be easily shown by straightfor-
ward calculations. [
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Figure 2: Illustrative T-causal line graph.

3. IDENTIFICATION OF GOSSIP PROPA-
GATION EVENTS

As mentioned, we assume that gossip spreads rapidly in
the sense that once a subscriber receives it, he will either
transfer it further to at least one subscriber within 7" min-
utes or will refrain from transferring it again. Once the sub-
scriber finishes the transfer, it either transfers this gossip to
an additional subscriber within the following 7" minutes or
halts spreading it.

Equivalently, we consider a call ¢ to be involved in gossip
propagation if one of the following two conditions holds: (1)
this call is the first call in gossip propagation; or (2) at least
one of the subscribers was involved in gossip—propagation
call in the last 7" minutes. Naturally, identification of a
gossip propagation event requires finding all calls involved
in it.

This observation is made rigorous in the following way.
We say that call ¢; = (n],nd,tl,, ¢ ) is T-causally con-
nected to call ¢; = (ni,nb,tt, tL.,) if the following condi-
tions hold: (1) these calls share at least one common sub-
scriber; (2) ¢; precedes c¢;; and (3) the time interval be-
tween two calls is smaller than 7. Namely, it holds that
{niniyn{nl ni} #Pand 0 < t), —ti,, <T.

Let ¢; = (ni,nb,ti,t,,) for i = 1,..,k be a set of calls
numbered in chronological order, namely, ti, < tifl for all
i. We call these calls T-causally connected set if every call
¢j, j > 1, is T-causally connected to an earlier call c;.

We define Gossip Propagation Component (GPC) as a T -
causally connected set of calls that contains at least K calls
and at least M distinct subscribers.

Our algorithm for identification of GPCs relies on a T'-
causal line graph that is defined in the following way.

DEFINITION 4. Let C be a set of calls. The directed graph
G = (V, E) is a T-causal line graph corresponding to the set
C if it has a vertex v € V for each call c € C and a directed
edge v; — v; for each pair of corresponding calls ¢; and c;
so that ¢; is causally connected to c;.

We extract GPCs by applying the DFS algorithm (e.g.,
see Cormen et.al. [3]) to the T-causal line graph and iden-
tifying each DFS tree that is large enough. We note that
the same call may be partitioned to GPCs in several differ-
ent ways. For instance consider the partition of the calls
whose T-causal line graph is depicted in Figure 2 for K =
N = 4. This CDR can be partitioned to DFS trees in sev-
eral ways, including, {(c1,cs,ca),c2}, {(c2,c3,c4),c1} and
{(ca), (c3), (c2),(c1)}. We can not distinguish between the
first two options as both of them may transfer information.
However, the last decomposition is problematic because it
breaks this call sequence to groups of sizes which are below
the size threshold. We avoid such decompositions heuristi-
cally by choosing the starting point for the next DF'S tree to
be the chronologically earliest call that was not used is ex-
isting DF'S trees. See Algorithm 1 for the complete details.

The GPCs provide us with the list of calls involved in the
specific gossip propagation event. We proceed to extract the

Algorithm 1 GPC identification

Input: Call data records, T’

Build T-causal line graph G = (V, E) that corresponds to

the given CDR.

Initialize all nodes in G as unvisited.

repeat
Choose the unvisited node with the smallest topological
index.
Run the DFS visiting algorithm starting from this node.
Identify the obtained DFS tree as a GPC if it contains
at least K calls and at least M subscribers.

until all nodes are visited

information paths from this list, namely, the routes in which
information propagates from one subscriber to another. As
mentioned in Section 2.2, the information paths graph is a
tree, hence it is fully described by the identify of its root
and parent-child relations of other nodes.

Our method proceeds as follows. The caller of the chrono-
logically first call is assumed to be the origin of the gossip
or root. The callee of this call is the child of the root. We
note that both of these nodes posses the information after
the first call. We continue by going over all other calls in a
GPC according to a chronological order. In each new call
either only one of the subscribers possesses the information
or both of them. The latter case is irrelevant to information
paths hence discarded. In the former case, the subscriber
that receives the gossip is added as a child of the subscriber.

4. ANALYSIS OF REAL-WORLD DATA

Our experiments were performed on data from a large
cellular operator. Specifically, we focused on calls logged
by this operator in a city with population of over 2 million
people in 24 days out of period from February 10th, 2008
to March 9, 2008. Each call is described by a Call Data
Record (CDR), which contains its start and end times, as
well as the obfuscated identity of the involved subscribers.
Naturally, we have a record of a call only if either the caller
or the callee used services of the analyzed operator. In cases
where both subscribers were mobile, call details also contain
the general geographical locations of the subscribers at the
beginning of the call, given through cell identifiers.

The raw data contains more than 50 million calls involv-
ing 5.4 million distinct subscribers, out which approximately
2.07 million belong to the analyzed operator. The remain-
ing subscribers belong to other service providers. Therefore
we have only partial information on their calls. In the pre-
processing phase we filtered out calls of all subscribers that
are involved in more than 200 calls a day. We assumed that
these subscribers were public service providers (police, etc.)
and commercial payphones, which are less of interest to us in
our investigation of information propagation events. There
were detected less than 1000 subscribers of the above type
and they produced overall of less than 2.5 million calls in
the designated period.

This section proceeds as follows. In Section 4.1 we discuss
the general properties of GPCs found in the data. Section
4.2 outlines our methodology for estimation of model pa-
rameters. Sections 4.3 and 4.4 discuss the goodness of fit of
the Day Generation Model and the Information Flow Tree
model respectively. Finally, in Section 4.5 we produce evi-
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Figure 3: Number of GPCs by weekdays.

dence that some of the GPCs transfer geographical data.

4.1 Structural Properties of GPCs

In this section we describe properties of GPCs found by
our algorithm. We focus on GPCs that contain at least 4
calls that involve at least 4 unique subscribers. We fur-
ther let the maximal time T between two consequent calls
involved in propagation of a gossip be 20 minutes. This spe-
cific selection is arbitrary; furthermore, as indicated below,
any value of 7" in the interval 7 minutes to 30 minutes would
yield similar results. However, we note that the median time
between two calls of the same subscriber is 35 minutes, hence
it is not a typical behavior of a subscriber to produce several
calls with a time interval smaller than 20 minutes between
each other.

We emphasize that GPCs found by our algorithm need not
have a single subscriber (gossip—leader) that calls all other
subscribers, they may have a different structure. In fact, the
found GPCs can be divided into the following three groups:

1. Out—Star. These GPCs have a dominant gossip—leader,
namely, a subscriber that calls at least 80 percent of
involved subscribers.

2. In—Star. This is an “inverted version” of the previous
structure. Here, at least 80 percent of subscribers call
one central node to (probably) get some information
from him. A structure like this can be created by calls
to some information center, e.g., traffic information
service.

3. Non—Star. GPCs that do not fit in the previous two
groups.

Figure 3 shows the average number of GPCs in each day
of the week. As this figure shows, the number of GPCs
depends on the day of the week: it has its smallest value on
Sunday, has similar higher values on Monday to Thursday,
and has its highest values on Friday and Saturday. This may
due to higher levels of social activities towards the weekend.

The fraction of GPCs of each of the three types depends
on the parameter 7' and does not vary greatly from day to
day. For instance, Figure 4 depicts the fraction of out-stars
among all GPCs as a function of T for February, 11 2008.
Analyzing the identified GPCs, we find that over 50 percent
of GPCs for T" < 30 minutes are, in fact, out—stars. This
lends support to the use of gossip—leader models such as the
ones analyzed in this paper.

4.2 Estimation of Model Parameters

We begin by estimating the parameters for the Day Gener-
ating Model. We begin by calculating the empirical distribu-
tion of the number of calls made by gossip—leaders during a
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Figure 4: Fraction of out—stars among all GPCs.

single day. The parameters of the DGX distribution used to
generate the number of calls of a gossip—leader are found by
fitting the empirical curve by DGX distribution in a log-log
scale. The obtained DGX distribution fits with R? = 0.99
which corresponds to a very good fit (see Shao [12] for the
definition of R?).

The parameters aq, ap, Ba, Bb, Vo and v, are estimated
in the following two steps. In step 1, we consider a span of
possible numbers N of calls made by a gossip—leader. For
each value n of N we consider only gossip—leaders that make
ezactly n calls and calculate the empirical probability of time
intervals between calls for these subscribers only. Using the
same method as above we fit the DGX distribution to this
empirical distribution. We denote the estimated parameters
by an, and b,. In step 2, we fit series a, and b, with a
quadratic function of n.

We proceed to estimate the parameters for the Informa-
tion Flow Tree Model. We begin by calculating the empirical
degree distribution of the root. We further estimate the em-
pirical degree distribution p,p(-) of other nodes given the
degree r of the root and node’s depth h. We note that for
r > 3 and any h the distributions p, »(-) and ps »(-) are sim-
ilar, hence it suffices to consider only r = 1,2,3. Further,
for any h > 2 and any r the distributions p, () and pr2(-)
are also similar, hence it suffices to consider h = 1,2. The
parameters of the model are estimated by fitting the DGX
distribution to the corresponding empirical distribution. We
find that DGX fits the degree distribution of the root with
R? = 0.91 and it fits distributions pr.a(s) for r=1,2,3 and
h = 1,2 with R-squared of at least 0.97.

In order to avoid overfitting we estimate the model pa-
rameters and check the quality of predictions made by our
models on a data from separate days. However, it is im-
portant that these days would have a similar levels of social
activity, therefore these days should be either both working
days or both weekend days.

4.3 The fit of the Day Generating Model to the
data

The property of out—stars we are interested in predicting
the most is the distribution of their sizes. Figure 5 depicts
the empirical distribution of sizes out—stars in terms of calls
and in term of unique subscribers involved for 7" = 20 min-
utes. We note that the measured distribution of out—star
sizes in terms of number of unique subscribers is significantly
different from the other distributions. This discrepancy is
attributed to the fact that the gossip—leader calls some of
the subscribers more than once.

We proceed by generating out—stars according to the Day
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Generating Model using 40 thousand gossip leaders. The
empirical distribution of sizes of the obtained out—stars fits
the distribution in the real-world data with R? = 0.88.

The threshold 7" is a parameter of the definition of out—
stars and it is of interest to understand the dependence of
the number of out—stars on 7. The Day Generation Model
allows us to predict the dependence between the number of
out-stars and the value of parameter 7. We note that the
total number of out-stars is proportional to the size |G| of
the set of gossip—leaders, hence we normalize the simulated
number of out—stars so it would equal to the measured one
for T' = 20 minutes. Figure 6 depicts the ratio of the normal-
ized number of out stars predicted by the Day Generation
Model and the number of out-stars found in the data. We
note that for 7 < T < 30 minutes we predict the number of
out—stars with the precision of 5 percent.
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Figure 6: Ratio of number of out-stars found in
the data to the normalized number of out-stars pre-
dicted by the Day Generation Model.

4.4 The fit of the Information Flow Tree Model
to the data

In this section we focus on the quality of prediction of
topological properties of information paths underlying the
GPCs. In particular we consider topologies introduced Sec-
tion 2.2.

We begin by checking the quality of prediction of frac-
tion of GPCs belonging to each topology both generated
and found in real-world data. In Table 1 listed the average
fraction of GPCs of each topology over 17 working days in
data and the average fraction of GPCs in generated data
over 100 runs. The confidence of the values is measured by
standard deviation time three. We note that the quality of
prediction for Topologies 1 — 3 and 5 is relatively high.

We further checked the quality of prediction of size and
height distributions of all GPCs and GPCs of a specific

Topology  Data Simulated
Topology 1  0.33+0.02  0.29 £ 0.004
Topology 2 0.138 £0.01 0.102 £ 0.002
Topology 3 0.18 +0.01 0.189 £ 0.004
Topology 4 0.04 +0.004 0.011 £ 0.002
Topology 5 0.124+0.01  0.126 £ 0.003
Topology 6 0.2 4+ 0.02 0.281 £ 0.005

Table 1: Average fraction of GPCs belonging to each
topology + standard deviation times three.

topology. The generated distributions fit the data with R-
squared of at least 0.93.

4.5 Geographic evidence for information prop-
agation

In this section we describe an experiment that provides
evidence that GPCs represent information diffusion, by ob-
serving the relationship between the geospatial behavior of
subscribers and the appearance, or lack therefore, of GPCs.

We consider 85,000 pairs p; of subscribers so that there
is exist a day on which they both appear in the same GPC.
For each pair p;, we choose randomly a single day D; on
which they both appear in the same GPC (there may be
more than one day) and a single day D; on which they do
not appear in the same GPC. We measure the probability
of these subscribers to make or receive calls from the same
location on D; and on D;.

The description of each call includes the number of cell
in which s was located at the beginning of the call. The
median radius of cells is only 0.7 kilometers, hence it defines
rather accurately the geographic location of the subscriber
at the time of the call. We can obtain an information about
movements of the subscribers during days D; and D; by con-
sidering all calls it participated in during the corresponding
day. Let a; and a; denote the number of gells both sub-
scribers in p; visited on the days D; and D;, respectively.
Using Wilcoxon signed-rank test (e.g., see Shao [12]), we
tested whether a; and @; can be generated by the same prob-
ability distribution. The result was that the probability for
this happening by chance were p < 107!%. Tt can also be
clearly seen from Figure 7 that the average value of a; is
larger than the average value of a;. Namely, the appearance
in the same GPCs increase the chances that two subscribers
will visit the same geographic location during the day.
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Figure 7: Ratio of the probability of the number
of common cells for the day with common GPC to
probability for the day without common GPC.



5. CONCLUSIONS

Identifying information propagation events makes it pos-
sible to track an important aspect of social interaction be-
tween subscribers in a mobile telephone network. Beyond
the sociological interest, it may serve, alongside with identi-
fication of information propagation leaders, as an important
preliminary step in choosing target audiences for a market-
ing campaign. We note that our choice of influential sub-
scribers is based on dynamical social interactions rather than
on topology of the underlying static graph of social connec-
tions. We believe that this approach can be extended to
other social media. The identity of gossip—leaders may also
prove to be a useful feature in various behavior prediction
systems, e.g., in churn predictors.

In this work we focused on a rapid mode of information
propagation - which we termed gossip. We provided two
generative models: one for the temporal evolution of gossip
propagation events and another for the topology of infor-
mation propagation paths. These models are local in the
sense that they describe the behavior of a small number
of subscribers rather than of the whole graph of calls. We
further introduced an algorithm for identification of gossip—
propagation components, namely, sets of calls involved in
gossip propagation. We applied our algorithm to large—scale
real-world data and showed that our models provide a good
description for the properties of a significant fraction (over
50% for one model and over 85% for another) of gossip-
propagation components.

Further work of immediate interest includes finding a uni-
fying model that would explain both the temporal evolution
of the gossip propagation and the topology of the underly-
ing information paths; modeling of an inter—day behavior of
gossip—propagation leaders; incorporating the existence of
the social circle in our analysis; and leveraging geographical
information to get additional insights on the social structure
of mobile call networks.
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