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ABSTRACT

Online social networks provide a globally available, massive-
scale infrastructure for people to exchange information and
ideas. A topic of great interest in social networks research
is how to model this information exchange and, in partic-
ular, how to model and analyze the effects of interpersonal
influence on processes such as information diffusion, influ-
ence propagation, and opinion formation. Recent empirical
studies indicate that, in order to accurately model commu-
nication in online social networks, it is important to con-
sider not just relationships between individuals, but also
the frequency with which these individuals interact. We
study a model of opinion formation in social networks pro-
posed by De Groot and Lehrer and show how this model
can be extended to include interaction frequency. We prove
that, for the purposes of analysis and design, the opinion
formation process with probabilistic interactions can be ac-
curately approximated by a deterministic system where edge
weights are adjusted for the probability of interaction. We
also present simulations that illustrate the effects of differ-
ent interaction frequencies on the opinion dynamics using
real-world social network graphs.

Categories and Subject Descriptors

J.4 [Computer Applications|: Social and Behavioral Sci-
ences—Sociology; C.4 [Performance of Systems]: Mod-
eling techniques

General Terms

Theory, Performance
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1. INTRODUCTION

Online social networks provide globally available, massive-
scale information infrastructures for people to exchange in-
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formation and ideas. A topic of great interest in social net-
works research is how to model these exchanges and, in par-
ticular, how to model and analyze the effects of interpersonal
influence on processes such as information diffusion, influ-
ence propagation, and opinion formation. If one can iden-
tify the properties of the network that shape these process,
then it may be possible to alter these properties to achieve
a desired outcome, for example to encourage purchase of a
product or support of a cause.

Early work to characterize interpersonal influence in social
networks focused on static, structural properties of the net-
work graph such as vertex degree, distance centrality, and
betweenness centrality [25]. However, recent investigations
of data from real-world, online social networks indicate that
the dynamics of user interactions may be equally, if not more
important than these static properties in determining how
information flows in a social network [14, 26, 24]. It is not
sufficient to only consider the network graph derived from
relationships such as friendships in Facebook. One must
also consider the frequency and timing of interactions be-
tween individuals. In fact, the structure of the interaction
graph may differ dramatically from that of the relationship
graph.

In this paper, we study the process of opinion formation
in online social networks and the effects of interaction dy-
namics on this process. Research on opinion formation in
social groups predates the advent of online social networks
by decades, and several formal mathematical models of the
opinion formation process have been proposed [7, 5, 15, 9,
12]. These models all share the assumption that individu-
als communicate with each other in a synchronized fashion,
and the models do not allow for any variation in the fre-
quency of interaction. We consider one such model which
was proposed by De Groot [5] and Lehrer [15], and we show
how this model can be extended to include interaction fre-
quency. We then prove that, for the purposes of analysis
and design, the opinion formation process with probabilistic
interactions can be accurately approximated by a determin-
istic system with no interaction dynamics, but where edge
weights are adjusted for the probability of interaction. The
benefit of this result is that any analysis or design that has
been done for the model with no interaction dynamics can
automatically be extended to a network with probabilistic
interactions. We highlight several of these design and anal-
ysis results in Section 2. We also present evaluations of
the effects of different interaction frequencies on the opin-
ion dynamics using real-world social network graphs. These
evaluations also illustrate the accuracy of the proposed de-



terministic model in approximating opinion dynamics with
probabilistic interactions.

Related Work

Several models for interaction dynamics in online social net-
works have been proposed. The most similar to our work is
that of Song et al. [22]. In this work, the authors model the
diffusion of an innovation in a network using a continuous-
time Markov chain, and they adjust the rates of flow between
individuals to account for communication delay. They then
use this model to rank the influence of users and to deter-
mine the correlation between the adoption of an idea at pairs
of users. The work by Tang et al. [22] presents a temporal
graph model of a social network and proposes global and
local (per user) structural metrics for this temporal graph.
The authors define several structural properties similar to
those studied in static graphs that incorporate communica-
tion dynamics.

We also note that the De Groot/Lehrer model of opinion
dynamics is very similar to distributed consensus algorithms
studied in the context of multi-agent systems and coopera-
tive control. There is a large body of work in this area that
may provide insight into the process of opinion formation
with different types of interaction dynamics. In particular,
this work was inspired by work on consensus in stochastic
networks [17, 18, 21, 23, 6, 20].

The remainder of this paper is organized as follows. In
Section 2, we describe the model of opinion dynamics which
we call classical opinion dynamics, and we highlight impor-
tant analytical results and applications for this model. Sec-
tion 3 contains the main contribution of this work. We show
how the classical opinion dynamics model can be augmented
to include the frequency of interaction between users. We
then present analysis of this new model that is analogous
to that given for the classical model. We also derive an
approximation of the interaction-driven system that can be
used to solve network design problems in an efficient man-
ner. Section 4 presents measurements of the efficiency of the
opinion formation process in several real world networks for
both the interaction-driven model and the approximation of
this model. Finally, we conclude in Section 5.

2. CLASSICAL OPINION DYNAMICS

The social network is modeled by a graph G = (V, E)
where the vertices represent users or agents, with |V| = n,
and the edges represent relationships between users, with
|E] = m. The graph may be directed or undirected. A di-
rected graph is used to model networks where relationships
are not symmetric, for example, the follower relationship
in Twitter. An undirected graph models a network with
symmetric relationships such as the friend relationship in
Facebook. We say that agent i is a neighbor of agent j if
(¢,7) € E. In this work, we restrict our analysis to undi-
rected graphs, though many of the results presented in this
paper hold in both directed and undirected networks. We
indicate this fact where applicable.

We consider the model of group opinion formation within
a social network that was proposed by De Groot [5] and
Lehrer [15]. Each agent ¢ has an initial opinion x;(0). The
opinion is assumed to be a real number, for example a nu-
merical representation of the agent’s support for an issue.
The agreement process takes place in discrete rounds. In
each round, each agent updates his opinion based on infor-

mation exchanged along edges in the network graph, taking
a weighted average of his own opinion and the opinions of
his neighbors. Let w;; be the weight that agent ¢ places on
the opinion of agent j with the normalization requirement
that Z;‘Zl w;; = 1. We refer to w;; as the weight of edge
(7,7). In each round, agent 7 updates his opinion as follows,

Jti(t —+ 1) = wilxl(t) =+ ’wigmg(t) 4+ ...+ wm:cn(t), (1)

where w;; > 0 only if (¢,j) € E. We note that the formula-
tion (1) admits the possibility that w;; = 0 even if (¢, j) € E,
meaning ¢ does not place any weight on the opinion of j even
though they are neighbors in the network.

The vector z(t) = [z1(t) z2(t) ... z,(t)]" is the opinion
profile of the network at time ¢. The opinion profile evolves
according to the following linear recursion equation,

z(t+1) = Wa(t) (2)

where W = [w;;] is the n x n matrix of edge weights. An
alternate definition of the weight matrix W can be obtained
from the Laplacian matrix of the graph G. Let A be the
weighted adjacency matrix of the graph, and let the degree
of each node i be defined

dl‘ = Z Wij-
JEV,j#i
d is the vector of node degrees. The weighted Laplacian
matrix of the graph G is

L := diag(d) — A.
The weight matrix W is equivalent to
W=1-L.

We say that the opinion formation process described by
the recursion (2) leads to consensus if eventually, all agents’
opinions converge to a single value, or formally, if for every
initial profile (0), there exists a consensus value ¢ such that
limg—oo 23 (t) = cfor alli € V.

We note that in the formulation presented above, the com-
munication structure of the opinion formation process is de-
fined by the non-zero entries of W and that this structure
remains the same for the duration of the process. Every
node communicates with all of its neighbors (for which the
entry of W is positive) in every round. In Section 3, we show
how the system (2) can be augmented to incorporate the in-
teraction frequency of each pair of nodes. In the remainder
of this section, we describe some of the analytical results and
applications of the opinion formation model given in (2).

2.1 Social Influence Analysis

The following questions are of particular interest in the
study of opinion dynamics and interpersonal influence in
social networks [8].

(Q1) What network topology, edge weights, and initial pro-
file lead to consensus?

(Q2) What is the consensus value?
(Q3) How efficient is the agreement process?

We note that the opinion dynamics model (2) is a linear
recursion and that the matrix W is stochastic. Therefore,
it is possible to draw from various tools in linear analysis
and Markov theory to analyze the evolution of the opinion



profile z(t) and determine answers to the above questions.
Below, we highlight theoretical results that provide answers
to these questions.

Consensus Conditions

The following theorem gives a sufficient condition for con-
sensus [5]. This condition applies to both directed and undi-
rected networks.

THEOREM 2.1. Let the edge weights in the system (2) be
such that for every two agents i,j € V, there exists a third
agent k € V. — {i,j} such wir > 0 and wjr > 0. Then, the
system leads to consensus.

We note that if the network graph is strongly connected,
then it is always possible to find an assignment of edge
weights that leads to consensus [18]. For example, if ev-
ery edge weight is equal to a value o, 0 < a < %, where A
is the maximum node degree of the graph, then convergence
to consensus is guaranteed.

A necessary and sufficient condition for consensus has also
been derived.

THEOREM 2.2. The system (2) leads to consensus if and
only if the matriz W is primitive, i.e. if 1 is a simple eigen-
value of W and all other eigenvalues have magnitude less
than 1 [10, 18].

This theorem also holds for both directed and undirected
networks.

Consensus Value

In undirected networks, the matrix W is doubly stochastic.
It is well-known that if the agents convergence to consensus,
the consensus value is the average of the initial opinions,
Tave 1= %Ziev 2:(0). In directed networks, the consensus
value depends on both the initial opinion profile and the
network topology [18].

Agreement Efficiency

Agreement efficiency is a measure of how quickly nodes reach
consensus. Before we present results on efficiency, we require
an alternate definition of the notion of consensus. Let the
deviation from consensus vector be defined as

B(t) = (1 _ %11*) (t)

where 1 is the n-vector of all ones. Each component Z;(t)
indicates how far agent ¢ is from the consensus value,

i‘l(t) = l’(t) — Zave-
The system (2) leads to consensus if, for every z(0) € R,
Jim lZ(#)]| = 0.

Agreement efficiency can be defined as the rate at which
||Z(t)|| approaches 0, which can be obtained from the follow-
ing inequality,

2@ < A2 (W) 1Z(0)]].

A2(W) is the second largest eigenvalue of the weight matrix
W (by magnitude). We call A\o(W) the decay factor because
it is the factor by which ||z(t)|| decreases in each round.
This inequality also defines how many rounds are required
for agents’ opinions to be “close” to each other. This result is
formally defined in the following theorem (see [19] for proof).

THEOREM 2.3. In a system with opinion dynamics of the
form (2), the number of rounds required for ||Z(t)||/]|Z(0)| <
€18

loge
log(A2(W))

The analytical results presented in this section enable the
prediction of the outcome of the opinion formation process
for a given network. One can predict whether agents will
reach consensus and how quickly they will do so. These re-
sults also allow for the possibility of strategic network modi-
fication where the network characteristics are altered in or-
der to achieve a desired outcome [8]. In the next section,
we describe some possible approaches for strategic network
modification based on the classical opinion dynamics model.

2.2 Strategic Network Modification

Strategic network modification is similar to the problem of
system design in cooperative control, and thus we can draw
from applications of system design in this area. In this sec-
tion, we describe two applications that have been proposed
in the context of multi-agent systems. We believe that these
applications hold value for the the social networks setting as
well. Both applications are concerned with increasing the ef-
ficiency of the agreement process by minimizing | A2 (W)].

(A1) Selecting edge weights to optimize efficiency of agree-
ment process [28].

In this application, the network graph is given, and the goal
is to find an assignment of edge weights that results in the
fastest convergence to consensus. In the context of social
networks, the optimal edge weight assignment can be used
as a guide to encourage or discourage information flow be-
tween agents so as to bring about the fastest agreement.

The edge weight selection problem corresponds to finding
the solution to the following optimization problem,

minimize [A2(W)]
1 *
subject to tlim W= =11
— 00 n

w;i; >0 only if (Z,]) e k.

For undirected graphs, where W is symmetric, this problem
can be expressed as a semi-definite program which can be
solved efficiently for graphs with on the order of 10° edges.

(A2) Forming relationships to improve efficiency of agree-
ment process [11, 4].

In this application, we are given a weighted graph G =
(V, Evase) and a set of candidate edges Ecqna. The goal is
to choose k edges from FE.qnq. such that adding these edges
to Fpgse results in the graph with the most efficient opinion
dynamics. The corresponding optimization problem is

minimize [A2 (W (Epase U E)) |
subject to |E| =k
E Q Ecand-

The optimal solution can be found by trying all possible
combinations of candidate edges. Clearly, this solution will
not scale to the size of large online social networks. However,
scalable heuristic-based algorithms have been proposed that
have been shown to yield good solutions.



The classical model of opinion dynamics and the theoret-
ical results and applications derived for this model can offer
insight into the opinion formation process in online social
networks. However, this model depends on the assumption
that agents communicate with all of their neighbors in every
time period. This assumption does not accurately reflect the
interaction dynamics observed in real world social networks.
In the next section, we show how the classical model can be
modified to included interaction frequency, and we present
analogous theoretical results for this augmented interaction-
driven model.

3. INTERACTION FREQUENCY

It has been observed that users interact frequently with
only a small subset of their neighbors and that communi-
cation is infrequent along many edges [26]. It is reasonable
to expect that the frequency of interaction will have a large
impact on the evolution of opinions in online social networks.

To capture the notion of interaction frequency, we asso-
ciate a (unique) probability of communication p;; with each
edge (i,7) € E. p;; is the probability that agents’ ¢ and j will
communicate in each round. The evolution of the opinion
profile with probabilistic interactions is given by the follow-
ing recursion,

a(t+1)=|T— > &;(wi L | 2(t) (3)

(i,j)€EE

where 0;;(t) are independent Bernoulli random variables with

5iy(t) = 1 with probability p;;
“ - 0 with probability 1 — p;;.

This model has been adapted from the model for multi-
agent consensus in stochastic networks [20]. Each L;; is the
weighted Laplacian matrix of the graph G;; = (V,{(7,4)}),
the graph that contains the same n vertices as the original
graph G and the single edge (¢,7). When 0;; = 1, agents’ &
and j exchange information just as they did in the classical
model. When d;; = 0, agents ¢ and j do not communicate.

We note that
W=I- > Ly,
(i,j)€E

where W corresponds to the weight matrix defined in (2).
Therefore, if p;; = 1 for all (¢,j) € E, then the model (3)
is equivalent to the classical model given in (2) where all
agents communicate with all neighbors in every round. If
pij = 0 for all (i,7) € E, then no communication takes place
in any round, and all agents keep their initial opinions. We
are interested in the opinion dynamics for communication
probabilities other than these two extremes, and we would
like to analyze the consensus conditions, consensus value,
and agreement efficiency as was done for the the classical
model.

Consensus Value

In the opinion formation process specified by (3), the in-
formation exchange in each round can be represented by a
matrix W (t). By definition, each W (¢) matrix is symmetric,
which implies that if the agents reach consensus, the consen-
sus value will be the average of the initial opinion profile. If
instead, we consider the scenario where agents communicate

with independent probability in each round, i.e. p;; # pji,
each W (t) is no longer guaranteed to be symmetric. In this
case, the consensus value is a weighted average of x(0) that
depends on the failure probabilities, edge weights, and net-
work structure (see [6]).

Consensus Conditions and Agreement Efficiency

As in the previous section, we address these questions of
consensus conditions and efficiency by studying the devia-
tion from consensus Z(t). However, since the system (3)
is a stochastic system, we must consider the second order
statistics of the deviation vector. To this end, we define the
autocorrelation matrix of Z,

M(t) :==E{z()Z" (1)} = E{Qz(t)z" (1)@},

where Q := (I — 211%). The total variance of the deviation
from consensus at time ¢ is given by

V(t) =)&) =tr (M(1))).

eV
We say that the system leads to consensus in mean-square
if

tlim V(t)=0.
We measure the efficiency of the agreement process by the
rate at which V(¢) approaches 0.

In order to study the evolution of M(t), and therefore of

V(t), we define the matrix-valued operator W

W(X) = Wo(X) + Wi(X) + Wa(X) (4)
with

Wo(X) = QX Q
Wi(X) = > pi(~XLij — Li; X + Li; X L)

(i,5)€E
Wa(X) = D> piprsLigM(#)Lns

(r,s)eE
(r,8)#(4,5)

and note that M (¢t + 1) = W(M (¢)).

The consensus conditions and agreement efficiency of sys-
tem with stochastic opinion dynamics (3) are given in the
following theorem.

THEOREM 3.1. The system with second order statistics
defined by (4) leads to consensus in mean square if and only
if p(W) < 1, where p(W) denotes the spectral radius of W.
The total variance of the deviation from consensus decays,
in worst case, as

V(t) < p(W)'V(0),

where this upper bound is tight. We call p(W) the decay
factor of the stochastic system.

PROOF. A proof of the convergence condition and an up-
per bound on the decay factor is given in [3]. This upper
bound is shown be a tight upper bound in [20] for the case
where the p;;’s are all equal. A similar argument can be
applied to the case where the probabilities of interaction are
not identical. []

This theorem implies that the following conditions are suf-
ficient for the system to lead to consensus in mean square.



1. The weight matrix W is such that Ao(W) < 1.

2. pi; >0 for all (’L,]) cFE.
In other words, if A2(W) < 1, as long as there is even the
smallest probability of communication along each edge in
the network, the agents will reach agreement. We note that
condition 1 is a necessary condition for consensus but con-
dition 2 is not. Depending on the network topology, agents
may still reach consensus even if communication does not
take place along all edges.

We can compute the decay factor for the system described

by (4) using the matrix representation of the W operator

W o= Q- > pylLy|® Q- > piLy
(i,J)EE (i,J)EE
+ Z (pij — i) Lij ® Lij, (5)
(i))eE

where X ® Y denotes the Kronecker product of the matrices
X and Y. p(W) is the absolute value of the largest eigen-
value of this matrix.

This matrix representation can also be used in the net-
work design applications described in the previous section
by using p(W) in the optimization criteria. However, this
approach presents a scalability challenge since for a graph
with n nodes, the matrix in (5) is an n? xn? matrix. Even for
moderately sized social networks with on the order of 10,000
nodes, this matrix will be too large for computations with
standard software. Therefore we propose a simpler system
that approximates the behavior of the stochastic system (3)
and can be described by an n X n matrix for use in analysis
and design.

A Deterministic Approximation

We define the linear system

2t+1)=|T= > pilLi | 2(0). (6)

(i,5)€E

where each L;; is the weighted Laplacian with the single
edge (i,7) and p;; is the probability of communication over
edge (i,7) as defined in the previous subsection. Note that
each p;; is a scalar, not a random variable. This system
(6) is a deterministic system of the same form as (2), but
where each non-zero edge weight w;; is reduced by the factor
pij. Analogous to the total variance of the deviation from
consensus for the stochastic system (3), we define

Vi(t) = Z %(t)?

where Z(t) = Qz(t). The decay factor of V (t) is the spectral
radius of the matrix valued operator

W)= Q- > piLi | X|Q— Y piLi

(1,5)€E (i,5)€EE

Unlike the matrix-valued operator in (4) for the stochastic

system, there is a simple relationship between p(W) and the
probability-scaled weight matrix defined in (6),

2

pOV) =X [ T= > pisLi
(i,5)€EE

Therefore, one can perform analysis and design of this sys-
tem using the n X n matrix

I— Z pijLij-

(i,j)eE

rather than an n? x n? matrix.

We now show that the decay factor of this deterministic
system is a close approximation of the decay factor of the
system with probabilistic interactions.

THEOREM 3.2. Consider the opinion formation process
over a large, connected, undirected network where the prob-
ability of interaction along each edge (i,7) is ep;j for some
small €. The decay factor of the agreement process given by
the stochastic system (8) is identical, up to first order in e,
to the decay factor of the deterministic system (6) where the
weight of each edge (i,7) is reduced by a factor of ep;;.

PrOOF. We first define the probability-scaled Laplacian
matrix, where the weight of each edge (4, 7) is reduced by a

factor of p;j,
L:= Y piyLy
(i,5)EE
Let the eigenvectors of L be v,, 7 = 1...n, with [lv,|| = 1.
It can be shown that the eigenvalues of L are

A(L) =Y piywis(or(d) — v, (5))%.

(4,5)€E

We note that as long as each p;; > 0, L has a single eigen-
value equal to 0, with eigenvector 1, and all other eigenvalues
are in the interval (0, 2).

We now use spectral perturbation analysis [13] to find
the spectral radius of the W operator defined in (4). Let
W(X, €) be the matrix-valued function of a matrix X and a
scalar € € R of the form

WX, €) = Wo(X) + Wi (X) + EWa(X),

where each W; is a normal operator. W is analytic for all
€ € R. When ¢ is small, the eigenvalues of VW are analytic
in € and are each given by the expansion

Ax(€) = )\,(cm + e)\,(cl) + 62/\§f) + ...,

where /\,(CO) is a eigenvalue of Wy with eigenmatrix Vi, = v,v}.
In our case W is the identity transformation. Therefore, for
all k, )\560) = 1. The value of the largest eigenvalue of W, up
to first order in ¢, is then

Ai(e) =1— max (vyv;, Wi(vrvl)), (7

Vs €
Note that the inner product on matrices is

(X, V)=tr (XY).
For the set V' we are free to choose any set of vectors that

span the space orthogonal to span(1). Here, we let V' be
the eigenvectors of L, excluding v, = 1.



The inner product in (7) simplifies as follows,
<’UT’UZ, Wl (Urv.:)>

= tr(viv. Z Pij (—’UT’U:L(Z-J-) — L, jyvrv;
(i,J)eE

+ L, jyvrvi L )

* *
= - E DijVy Lijvr — E Dijvs Lijvs

(i,J)€E (i,J)EE
+ Z pij'U:LijUrU:Lij'Us
(4,J)€E
= = 3 pyw ) - v.())
(i,5)€E
. N\ 2
= D pigwi(vs(i) = vs(5))
(4,5)€E
+ > puwiive(i) — ve(4))vs (i) — vs(j)°
(4,5)€E

= A(D) = A(E) + 0 (M (D)A(E)).

In the above expansion, the notation v, (i) refers to the i‘"
component of the r*" eigenvector.

The value A1 (€) is maximized when we choose v, = v, with
eigenvalue A(L) := \,—1(L), the second smallest eigenvalue
of L. Therefore, the spectral radius of W up to first order
in € is

p(W) = |1 = 2eA(L) + €O(A(L)*) + O(e").
The spectral radius of W is exactly
pOWV) = |1 — 2eA(L) + EAL7).

For large networks, A(L) >> A(L?), and therefore the )\?
term plays a negligible role in the convergence behavior of
each system. []

This theorem shows that it is possible to model proba-
bilistic interaction dynamics simply by scaling edge weights
by the probability of interaction. The resulting determin-
istic system can be used in network analysis and in the
design problems described in the previous section. These
design problems can be solved for the n x n probability-
scaled weight matrix rather than the n? x n? matrix repre-
sentation of the stochastic system, and the solutions will be
near-optimal for the stochastic system.

4. SIMULATIONS

In this section, we illustrate the effect of the frequency
of communication on the efficiency of the opinion formation
process using several real-world social networks. Our aim is
to highlight the fact that interaction frequency can have a
large impact on the opinion formation dynamics. Therefore,
it is necessary to incorporate interactions if one wishes to ac-
curately model opinion dynamics in online social networks.
We also show the accuracy of efficiency measures obtained
from the deterministic system when compared with those of
the original system with probabilistic interactions. These
results demonstrate that it is not necessary to study the
original n? x n? matrix for the stochastic model of opinion
formation with user interactions. Instead, one can study
the more compact, deterministic model with modified edge

weights and use simulation-free techniques to accurately an-
alyze, predict, and alter interaction-driven opinion dynamics
processes

We analyze the opinion dynamics in two online social net-
works. The first is the General Relativity and Quantum
Cosmology collaboration network [16]. The nodes in this
network correspond to authors of papers; an edge exists be-
tween two nodes if the authors have co-authored at least one
paper. The network is determined from papers in e-print
arXiv [1] in the period from January 1993 to April 2003.
We use the largest connected component of this network,
which consists of 4,158 nodes and 13,428 edges. The second
network is obtained from a 2009 snapshot of the Facebook
Monterey Bay regional network [26]. This network has 6,115
nodes (Facebook users) and 31,374 edges (friendships). As
neither of these data sets have edge weights, we generate our
own edge weights using the Metropolis-Hastings algorithm
(see [2]). The weight on edge (i,7) is

1
Wi = max(di, dj)’
where d; and d; are the degrees of nodes ¢ and j respectively.
These edge weights guarantee convergence to consensus for
any probability of interaction greater than 0.

We measure the agreement efficiency for three different
assignments of probabilities of interaction. In the first sce-
nario, the probability of interaction over each edge is 1,
meaning every agent communicates with all of its neigh-
bors in each round. In the second and third scenarios, the
probabilities of communication along the edges are gener-
ated uniformly at random, from the interval [0.25,0.75] in
the second scenario and the interval [0.01,0.1] in the third
scenario.

We quantify the efficiency of the opinion formation process
using two values. The first is the decay factor, which was
shown in the previous section to be p(W), where W is the
matrix-valued operator that defines the opinion dynamics
of the network. The second value is the consensus time as
defined in [27],

1
T log(1/X2(W))"

The consensus time is the number of rounds required for the
total variance of the deviation from consensus to decrease by
a factor of 1.

For the deterministic systems, we find the decay factor by
computing the spectral radius of the weight matrix adjusted
by the interaction probabilities as defined in (6) and then
squaring that value. For the stochastic systems, the associ-
ated weight matrices are too large for spectral analysis via
readily available software. We therefore find the decay fac-
tor through simulations. We select the components of the
initial opinion profile z(0) uniformly at random from the in-
terval [0,10]. We then run the opinion formation process
with stochastic interactions and plot the logarithm of the
variance of the deviation from consensus as a function of
time. After some time interval, this plot becomes linear,
indicating that the largest eigenvalue dominates the decay.
The slope of this line gives us an estimate of log p(WV). All
computations were done using MATLAB.

The results of our simulations and computations are shown
in Figure 1. The first point to note is that, for both networks,
the consensus time is dramatically larger when interaction



Table 1: The decay factor and consensus time for two social networks, where interaction probabilities are
drawn uniformly at random from the specified intervals. The table presents the values computed for both
the stochastic system of the form (3) and the deterministic system of the form (6) that approximates the

stochastic system.

Network Probability Stochastic System Deterministic System
of Communication | Decay Factor | Consensus Time | Decay Factor | Consensus Time

Arxiv GR-QC pij =1 n/a n/a 0.9966 298
Collaboration Network pij € [.25,0.75] 0.9989 883 0.9989 879
(4158 nodes, 13428 edges) pij € [.01,.1] 0.999853 6821 0.99987 7774
Facebook pij =1 n/a n/a 0.99097 111
Monterey Bay pij € [0.25,0.75] 0.996855 318 0.997001 330
(6115 nodes, 31374 edges) pij € [0.01,0.1] 0.99977 4230 0.999834 6026

probabilities are low versus when every agent communica-
tions in each round. This is evident in both the deterministic
and stochastic systems. These results emphasize the empir-
ical and theoretical observations that interaction frequency
has a large impact on the efficiency of the agreement process.

We also note that the deterministic system provides accu-
rate estimates for the efficiency measures of the stochastic
system. The estimates of consensus times are closer to those
of the stochastic system when interaction probabilities are
in the interval [0.25,0.75] than when the probabilities are
in the interval [0.01,0.1]. This discrepancy may be due in
some part to the fact that computations for the systems with
smaller probability values are more sensitive to rounding er-
TOrs.

Finally, we observe that the the Facebook network ex-
hibits greater efficiency than the collaboration network rel-
ative to the number of nodes. The Facebook network also
has a greater edge to node ratio than the collaboration net-
work, which is some indication that this network is “more
connected”. However, the notion of connectivity is not well
defined in this context. While it depends in some part on
the number of edges, there are other graph attributes that
must be considered, including network diameter and node
degree distribution. We are currently investigating ways to
analytically characterize complex networks like social net-
works and the effects of these network characteristics on the
opinion dynamics.

S. CONCLUSION

In this work, we have extended the model of opinion for-
mation in social networks proposed by De Groot and Lehrer
to accommodate frequency of user interactions. We have
shown that, for the purposes of analysis and design, the
stochastic opinion formation process, where interactions oc-
cur with some probability, can be accurately approximated
by a deterministic system where edge weights are adjusted
for the probability of interaction. We have also presented
simulations that demonstrate the effects of different interac-
tion frequencies and the accuracy of the deterministic model
that approximates the interaction-driven stochastic system.

While the classical model of consensus is very simple, anal-
ysis of this model can provide insight in to how to incorpo-
rate interactions into other models of information flow in
online social networks. In future work, we plan to extend

our mathematical analysis to the opinion dynamics model
proposed by Friedkin and Johnsen, [9]. The structure of the
Friedkin/Johnsen model is similar enough to the classical
model that many of the techniques used in this paper can
be applied. Unlike in the classical model, the initial profile
plays an important role in determining the final opinions,
and one can change the consensus value by altering the ini-
tial opinions of a few important individuals. This opens up
the possibility of more powerful strategic network modifica-
tion applications.
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