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ABSTRACT
Social media systems have become increasingly attractive
to both users and companies providing those systems. Effi-
cient management of these systems is essential and requires
knowledge of cause-and-effect relationships within the sys-
tem. Online experimentation can be used to discover causal
knowledge; however, this ignores the observational data that
is already being collected for operational purposes. Quasi-
experimental designs (QEDs) are commonly used in social
sciences to discover causal knowledge from observational
data, and QEDs can be exploited to discover causal knowl-
edge about social media systems. In this paper, we apply
three different QEDs to demonstrate how one can gain a
causal understanding of a social media system. The con-
clusions drawn from using a QED can have threats to their
validity, but we show how one can carefully construct so-
phisticated designs to overcome some of those threats.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Design, Experimentation

Keywords
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1. INTRODUCTION
Social media systems, specifically collaborative platforms for
asking questions and providing answers such as Yahoo! An-
swers1 and Stack Overflow2, can be seen as implicit knowl-

1http://answers.yahoo.com/
2http://stackoverflow.com/
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edge discovery systems. By grouping their content around
user questions, these platforms organize the collective infor-
mation of individuals and allow their users to identify useful
content and interesting knowledge. Bian and coauthors [5]
considered question-answer platforms as a form of informa-
tion retrieval, and here, we further consider them as a form
of knowledge discovery.

Social media systems are widely used and intrinsically in-
teresting to analyze for two main reasons. First, these sys-
tems allow us to collect data about human social interaction.
This data can be analyzed to identify cause-and-effect rela-
tionships in a way that reveals the human behavior within
social media. Second, causal analysis of this data can pro-
vide a better understanding of the impact of system design,
how users collaborate and interact with one another, and
how best to incentivize individuals within peer production
to increase user contribution and improve content quality.
Such understanding is essential for managers of these sys-
tems [9] and can provide useful insights for making better
design choices for future versions of the system.

Efforts to discover cause-and-effect relationships in social
media have taken three basic forms. First, Kohavi and
coauthors [14] presented online experimentation to identify
causal relationships. This method has the advantage of ex-
ploiting random assignment; however, it typically requires
full control over the system to perform experiments. Fur-
thermore, an experimental platform is needed for efficient
online experimentation [13], which requires a high upfront
cost. Even with an experimental platform, online experi-
ments take considerable resources, thus experimenters want
to strategically choose the right experiments to perform.
The second line of work focuses on surveys among users to
gather data for causal conclusions [10, 17]. This is an ex-
pensive method and requires careful implementation of the
whole process to account for all potential biases. The third
main line of work is on game theoretic formulations of so-
cial media systems to understand the user behavior [20, 10].
Different incentive designs are compared to understand user
motivation.

Much of this previous work requires experimentation or
additional data collection to identify causal knowledge, yet
none of it exploits the already-collected observational data
of social media systems. Observational data exists through
standard logging of day-to-day system usage by users and in
the database of content within the system. Social scientists
use a class of methods known as quasi-experimental designs



(QEDs) to discover cause-and-effect relationships [19] from
observational data. Discovering these relationships by QEDs
is beneficial for two reasons. First, QEDs do not require an
experimental platform or additional data collection. Second,
performing QED analysis is often cheaper and quicker when
compared to performing experiments.

In this paper, we present how causal conclusions can be
made about social media systems simply by analyzing exist-
ing data through the use of QEDs. We identify three differ-
ent causal questions about Stack Overflow, a question-and-
answer social content website. By performing the analysis
suggested by our designs, we are able to understand several
interesting behaviors by users within the system. For exam-
ple, QEDs have allowed us to discover that (1) the existence
of a previous high-quality answer does not discourage other
users from contributing subsequent answers; (2) when two
answers have equally high ratings, users prefer the newer
answer regardless of the order in which the answers are pro-
vided; and (3) the contributions of highly active users de-
cline shortly after receiving community recognition of that
activity level. These conclusions can be made with high
confidence due to the use of QEDs.

In section 2, we briefly introduce QEDs and threats to
validity for experimental studies in general. In section 3, we
overview the specific social media used in our analysis, Stack
Overflow. In section 4, we ask three different causal ques-
tions and identify potential QEDs to answer each of these
questions. We also perform analysis of these designs and
discuss threats that are not eliminated in our conclusions
for each design. In section 5, we overview existing litera-
ture on discovering knowledge from social media. Section 6
concludes this paper and poses future directions.

2. QUASI-EXPERIMENTAL DESIGNS
In experimental settings, random assignment of experimen-
tal units to treatment variables [7, 8] is often used. Ran-
domization ensures that, in expectation, the effects due to
all non-treatment variables are equivalent. Having proba-
bilistically identical groups is an ideal condition for assessing
the effect of treatment on experimental units.

In many social media applications, randomization may not
be viable due to economic and experimental integrity con-
cerns. It may be too costly to design an experiment and then
deploy it over millions of customers. Businesses are likely to
be careful about the design of experiments and hesitant to
deploy anything that sours their users’ interaction with a
system. In many social media systems, collaboration and
sharing are an integral component of the experience. Indi-
viduals within an experiment may be able to communicate
and thereby eliminate the independence between treatment
groups, invalidating any causal conclusions.

QEDs are a type of design that is often used in circum-
stances when random assignment of treatment is either im-
possible or infeasible. Other than lacking random assign-
ment, QEDs have purposes and attributes similar to those
of randomized experiments. Designs generally work by iden-
tifying an experimental unit that has undergone treatment
and comparing it to another experimental unit that has not
undergone treatment but which is similar in other aspects.

The simplest design is to compare a unit against itself by
evaluating a change in an outcome variable on that unit in
a series of pre-tests and post-tests. When the data permits,
more sophisticated designs allow the creation of compari-
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Figure 1: Entities in Stack Overflow

son groups that match different units in similarity save for
the treatment. QEDs which come closest to true randomized
experiments specifically model the reason treatment was ap-
plied to one unit and not to another and potentially yield
an unbiased analysis.

Since the groups under comparison are not necessarily
identical, there may be concerns about the conclusions that
can be drawn over these experiments. These concerns are
called threats to validity. To justify the conclusions, one
typically rules out as many of the threats to validity as pos-
sible. Since each quasi-experimental design is subject to its
own set of threats to validity, one can apply multiple QEDs
to eliminate multiple threats. Threats can also be ruled
out by utilizing additional strategies, namely, utilizing do-
main knowledge and employing more sophisticated designs.
Shadish, Cook, and Campbell [19] identify threats to four
categories of validity:

– Statistical Conclusion Validity: The confidence in the
statistical methods utilized to identify the correlation be-
tween treatment and outcome variables in a unit.

– Internal Validity: The confidence of an assertion that
observed correlation in a unit is a causal relationship.

– Construct Validity: The confidence in the selection of
metrics for variables that are measured.

– External Validity: The confidence in generalization of
inferred relationships to alternative groups of units.

3. STACK OVERFLOW
Stack Overflow is an online platform where users can ex-
change knowledge related to programming. The content of
the platform is completely provided by users. There are
three main services in Stack Overflow. First, users can ask
questions. The users are restricted to asking questions re-
lated to programming, and the moderators on the system
are very strict on this policy. Second, users can share their
knowledge by providing an answer to a particular question.
Third, users can explore questions for which answers are al-
ready provided and can discover interesting facts about the
topics that they are interested in.

Like other social media systems, Stack Overflow continu-
ously collects observational data from users. This includes
the questions users ask, the answers they provide, how users
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Figure 2: Matching process for treatment and comparison questions

rate each answer or question, and even how user reputations
change over time. In the website, many entities interact and
affect each other. Understanding the interactions among
different entities has valuable implications when designing
future versions of the system. Stack Overflow provides an
excellent opportunity for exploiting existing data by apply-
ing QEDs to discover causal knowledge.

There are five main entities in Stack Overflow, as shown in
a simple entity-relationship diagram in Figure 1: (1) users,
(2) posts, which represent the questions and answers in the
system, (3) comments, (4) votes, and (5) badges.

Registered users can ask and answer questions and leave
comments discussing the different posts. A user is limited to
certain capabilities in the system, dependent on the number
of reputation points earned. Thus in addition to the intrin-
sic benefit users get from using the website, they are also
motivated through the acquisition of points and status.

In Stack Overflow, users get reputation points when one
of their answers or questions receives positive votes from
other users. Users lose reputation points when one of their
answers or questions receives negative votes. After accumu-
lating a certain number of reputation points, a user’s capa-
bilities increase in the system. One interesting capability
is that users with enough points can edit other individual’s
answers and questions to improve their quality. This capa-
bility is expected to improve the quality of questions and
answers within Stack Overflow, making it an authority on
programming topics.

Questions and answers are treated as posts within the
system. Each question is asked by a specific user and can be
tagged according to the content of the question. A question
can have at most five different tags. Tags make it easier
for other users to find questions that they are interested in
answering. Questions can have multiple answers provided
by users other than the asker. A user may provide only one
answer for a particular question.

Users can provide comments on both questions and an-

swers. Comments can be used to clarify the question or
answer, and they provide a mechanism for a discussion be-
tween the users. Users may leave any number of comments.

Votes are used by users to indicate a positive or negative
opinion of a post. Questions and answers can be voted up
or down by users who have enough reputation points to do
so. Users can get answers for their questions anytime after
questions are posted, and they can determine the accepted
answer anytime after they start getting answers. If no an-
swer is selected, then the system will automatically assign
the answer with the highest vote as the accepted answer.

Users can earn a variety of badges. A couple of examples
are a famous question badge for users who ask a question
with 10,000 views, an autobiographer badge for users who
complete all user profile fields, a good answer badge for users
who provide an answer that is voted up by 25 users, and a
epic badge for users who hit the daily reputation point limit
on 50 days.

4. USING DESIGNS TO DISCOVER CAUSAL
KNOWLEDGE

In this section, we show the full process of applying QEDs to
discover causal knowledge by using three example designs to
answer different causal questions about Stack Overflow. For
each design evaluation we use the following process: First,
we identify an interesting causal question from Stack Over-
flow. Second, we apply a preliminary design (and perhaps
additional, more sophisticated designs) and show the results.
Finally, we discuss the conclusions drawn from the results
as well as the threats to the validity of such conclusions. For
all of our analysis, we used the Stack Overflow data dump
which is released in February 2010.

4.1 The Matched Design
The first design we consider is a matched design. The matched
design identifies pairs of units where one has received a treat-
ment and the other has not but who are otherwise similar.



Time Experiments
∆t No Random Matching

(in minutes) Matching Pairs
5 -2.46 -2.04 1.14
10 -0.90 -0.57 0.48
15 -0.78 -0.66 NS
20 -0.45 NS NS
25 -0.52 -0.25 NS
30 -0.36 -0.24 0.18
60 -0.24 -0.12 NS
90 -0.10 -0.07 NS
120 -0.10 NS NS
150 -0.03 NS NS
180 -0.05 NS NS
210 -0.04 NS NS
240 -0.04 -0.03 NS

Table 1: For No Matching experiments, differences
in answer rate for each time interval are shown. For
Random Pairs and Matching, differences between
the answer rate change for treatment group and the
answer rate change for comparison group are shown.
NS means Not Significant. Values are number of an-
swers per hour.

The validity of the causal conclusions drawn from a matched
design improves as the matched pairs become more alike.

A causal question that can be tested with this design is:

Does posting a high-quality answer for a partic-
ular question cause other users to stop providing
answers for that question?

The user who asks a question can select one answer and
this selected answer is called the accepted answer. The
accepted answer is often selected long after it is initially
posted, and this time lag allows us to examine the effect
of high-quality answers (as measured by its selection as the
accepted answer) on behavior that occurs before it is actu-
ally selected as the accepted answer. In this causal analysis,
we want to identify whether posting a high-quality answer
for a particular question has any effect on the answer rate
for that question. In general, this test will analyze whether
users stop providing answers for a question once they think
a good answer has been provided. We assume that the ac-
cepted answer has high quality for that particular question
since the user who asks the question chooses the answer.

For comparison purposes, we apply three different de-
signs. In the first experimental setup, we only examine treat-
ment questions (i.e., questions with accepted answer) with-
out any matching. In the second setup, we have treatment-
comparison pairs where comparison questions are randomly
selected from questions that have the same tag. Here, we
make sure that comparison questions do not have an ac-
cepted answer prior to the relative time the treatment has
an accepted answer. In the third setup, we match treatment
and comparison questions by requiring a much stronger sim-
ilarity within pairs.

The first design is a simple statistical analysis that evalu-
ates the change in answer rate around the time an accepted
answer occurs. Time is measured on a relative scale where
the creation time of a question is 0 for all questions and t is
the time the accepted answer is posted for a question.

The outcome measure in this test is the difference between
the answer rate for ∆t minutes after an accepted answer
is posted and the answer rate for ∆t minutes before the
accepted answer is posted:

answer rate change =
NTt+∆t −NTt

∆t
−
NTt −NTt−∆t

∆t
(1)

where NTt+∆t is the number of answers for the treatment
question at time t + ∆t, NTt is the number of answers for
the treatment question at time t and NTt−∆t is the number
of answers at time t− ∆t (See Figure 2).

We apply this design using ∆t values ranging from 5 min-
utes to 240 minutes. The results are shown in Table 1 un-
der the column No Matching. The difference in the answer
rate ∆t minutes after an accepted answer is posted (i.e.,
our treatment in this design) and ∆t minutes before an ac-
cepted answer is posted is a negative number. This suggests
that the answer rate is greater before the treatment and that
there is a decrease in the number of answers provided after a
high-quality answer is posted. Although this simple analysis
identifies a decrease in answer rate after the treatment, it is
not clear whether the cause of this change is the appearance
of the eventually accepted answer (i.e., treatment). What
if the decrease in the answer rate is caused by the amount
of elapsed time rather than the presence of the accepted
answer?

To eliminate the effect of some other unobserved variables
(e.g., time), we can use the second design, a basic matching
design. We pair each treatment question with a random
question to better compare the difference in the behavior.
The matching goal is to factor out some of the unobserved
variables by capturing the trend around time t with the
comparison group.

To find a matched pair, we first select a random question
with an accepted answer posted at some time t. Then, we
find a comparison question by selecting another question
that has the same tag as the treatment question and for
which an accepted answer occurs after time t + ∆t. We
assume that questions having the same tag are similar in
topic to one another and have a similar pattern to their
overall answer rates. By choosing comparison questions with
accepted answers occurring at least t+ ∆t, we assume they
do not have a treatment applied to them.

The outcome measure for this design is the difference be-
tween the answer rate change of a treatment question (i.e.,
Tarc) and the answer rate change of its comparison question
(i.e., Carc) within the matched pair:

outcome = Tarc − Carc (2)

Tarc and Carc are calculated according to Equation 1 for
both the treatment and comparison questions, respectively.
In Figure 2, NCt is the number of answers for the comparison
question at time t, NCt+∆t is the number of answers for
the comparison question at time t+ ∆t, and NCt−∆t is the
number of answers for the comparison question at time t−
∆t.

A positive answer rate change indicates that more answers
occur after time t within the ∆t window while a negative an-
swer rate change means fewer answers show up after time
t. If the outcome measure is positive, it means that the
treatment question experienced more answers occurring af-
ter a high-quality answer is posted, t + ∆t, than did the
comparison. When the outcome is negative, it means that



the treatment question experienced fewer answers occurring
after a high-quality answer is posted than the comparison
question.

As shown in the Random Pairs column of Table 1, with
this more sophisticated design, we conclude that at least
in some of the cases the difference between the treatment
and comparison questions is not significant when compared
to the simple design without matching. We conclude, in
those cases, the accepted answer has no effect on answer
rate. We can also observe that the real effect is not as large
as was observed for the former design without pairs. This
shows that we can have a more thorough analysis by using
designs that rule out larger number of threats to the validity
of conclusions.

Although this design forms a pair of questions to compare,
we are not guaranteed to find perfectly matched pairs. In
the ideal case, we would like the questions in our pairs to be
identical except for the fact that one has a treatment and the
other does not. However, since we do not have control over
assigning treatment, we may pair questions with different
answer rates. In such cases, any difference we observe may
be due to the inherent difference in their answer rate rather
than the high-quality answer provided.

To create better matched pairs in the third design, we use
two criteria: First, we want the treatment question and the
comparison question to have almost the same number of an-
swers provided before time t. Second, we want the matched
pair to have a similar answer rate for the specified time in-
terval, t − ∆t. From these two metrics, we formulated a
similarity metric which is calculated for treatment questions
as follows:

similarity metric =

NTt

t
+
NTt −NTt−∆t

∆t
2

(3)

For each treatment question, a comparison question is cho-
sen that has the same tag as the treatment question and that
is the closest in terms of the similarity metric. As before,
we also require that comparison questions have no accepted
answer before time t + ∆t. Using the procedure described
above, we identified 200 matched pairs.

This design uses the same outcome measure as the second
design. With this matching design, we are able to identify a
positive effect for only the 5- and 10-minute time intervals.
This suggests that there is much less decrease in the answer
rate when compared to the comparison question after time
t when a high-quality answer is provided. In other words,
having a high-quality answer actually increases the answer
rate when compared to the comparison group.

A close observation reveals that posting an answer may
take on average 5 to 10 minutes, and there may often be
one other user who is in the process of typing an answer
around the time the accepted answer is posted—accepted
answers are usually posted not too long after the question
is posted. We may conclude that it is not that high-quality
answers increase the answer rate, but that users type their
answers for the question without knowing about other users
who are also providing answers for the same question, espe-
cially right after a question is posted. We suspect that the
significant result for the 30-minute time interval is a false
positive error given its small magnitude and the overall set
of non-significant results.

As shown in Table 1, we can reach different conclusions
depending on the design we use. The most sophisticated

Vote Number of
Number Instances P-Value χ2-Statistic Frequency
1 87405 < 2.2e-16 2684.1770 0.41
2 45899 < 2.2e-16 2207.9890 0.39
3 24908 < 2.2e-16 1042.6050 0.40
4 14260 < 2.2e-16 807.8006 0.38
5 8555 < 2.2e-16 532.8141 0.38
6-8 12291 < 2.2e-16 638.3208 0.39
9-12 6434 < 2.2e-16 337.6867 0.38
13-17 3748 < 2.2e-16 145.3159 0.40
18-26 3593 < 2.2e-16 109.4153 0.41
26-665 9728 < 2.2e-16 160.6188 0.44

Table 2: The results of a chi-square test on the fre-
quency of votes for the older answer before the pol-
icy change. Degree of freedom is 1 for each stratum.

matching design shows that having a high-quality answer
has no effect on answer rate whereas the previous designs
do show an effect. Even in some cases where the results of
the random pair design suggest that a high-quality answer
has an effect, the matching design is able to conclude that
the effect is not significant.

In an ideal matching design, good matching criteria should
eliminate all alternative explanations of the observed effect.
Depending on the causal question, an analyst can identify
matching criteria to control for most of the variables that
can influence the observed effect. For example, matching
criteria could control for the tag of the question as well as
some property of the users posting the questions, like their
badges or reputation points. Regardless of the matching
criteria used, however, the analyst should continue to think
about alternative explanations at the end of the analysis.

4.2 The Natural Experiment Design
A natural experiment is a condition within the observed
dataset which approximates a randomized experiment. Such
a condition can occur if a social media system changes a sin-
gle aspect, like a user interface, and has data collected both
before and after the change. While the system change was
never intended to be a treatment used in an experiment, a
quasi-experiment can look at the data as if it was.

A causal question in Stack Overflow for this design is:

For a particular answer, does being displayed above
other answers cause it to get more vote-ups?

To answer this question, a policy change in Stack Overflow
can serve as a natural experiment. In Stack Overflow, an-
swers for a question are sorted in descending order in terms
of their net number of votes. To break ties, two different ap-
proaches are taken in the system. Before August 2009, ties
were broken in terms of the creation date of the answers.
Older posts got higher priority and were listed higher on the
page when there was a tie in the number of votes. After
August 2009, Stack Overflow managers changed their policy
and decided to break ties randomly, which removed bias in
ordering answers for older posts. Answers are sorted ran-
domly when they have the same net number of votes.

To exploit this implicit natural experiment, we consider
tie-breaking votes before and after the policy change as our
data instances. A tie-breaking vote is a vote-up that is cast
for an answer that is in a tie with exactly one other answer.
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Figure 3: Histogram for tie-breaking votes before and after the policy change. The last bar is the aggregate
of all the tie-breaking votes of answers for which the pre-tie-breaking vote count is greater than 50.

Our treatment variable is the way the answers are ordered
in a tie situation (i.e., either from oldest to newest or ran-
domly). Our outcome variable is the frequency of voting for
the older answer when there is a tie. If the order of answers
has an effect on voting, we would expect to see a signifi-
cant difference between the frequency of voting for the older
answer before and after the policy change.

We randomly choose more than 200,000 tie-breaking votes,
both before and after the policy change. For each vote, we
assign a binary value that is 0 if the vote is for the newer
answer in the tie situation or 1 if the vote is for the older
answer. Then we do a chi-square test to determine if those
values are significantly different than a binomial distribution
where the success probability is 0.5. In such a binomial dis-
tribution, we would expect to have equal numbers of votes
for newer answers and for older answers. We do the same
test for the votes before and after the policy change.

The frequency of tie-breaking votes for the older answer is
0.40 before the policy change, and the chi-square test reveals
that this frequency is significantly different than 0.5 with
χ2=8487.76 and p<0.001. Similarly, after the policy change,
the frequency of tie-breaking votes for the older answer is
0.40, and the chi-square test reveals that this frequency is
also significantly different than 0.5 with a χ2=8424.14 and
p<0.001. These results show that users are more likely to
vote for the newer answer than for the older answer regard-
less of the policy change. The results could also imply that
the newer answers are often of a higher quality than older
answers.

To assess the effect of the policy change, we compare the
frequency of tie-breaking votes for the older answer before
and after the policy change. We do a two-sample unpaired
t-test with two-tail analysis, and the results reveal no signifi-

cant difference between the frequencies of tie-breaking votes
for the older answer before the change and after the change
with t=0.35, degrees of freedom = 433640, and p=0.73. We
can conclude that the data does not support the hypothesis
that the policy change had an effect on voting behavior.

Recall that in our dataset of tie-breaking votes, we have
votes that correspond to a vote-up for an answer for which
the pre-tie-breaking vote count (i.e., the number of existing
vote-ups of this answer right before this tie-breaking vote)
is in a tie situation with exactly one other answer. This
vote-up in our data set breaks this tie between these two
answers (i.e., answer pairs) either by voting for the older
answer or the newer answer. A closer observation of this
vote distribution for the tie-breaking votes in our dataset is
shown in Figure 3. In these figures, the x-axis shows the
number of pre-tie-breaking votes and the y-axis shows the
frequency of tie-breaking votes. For example, from Figure 3,
we can see that in our dataset there are more than 20,000
tie-breaking votes that break the tie between answer pairs
for which the pre-tie-breaking vote count is three. Both
answers in the pair already have three vote-ups, and the tie-
breaking vote in our dataset breaks this tie by increasing the
vote number for one of the answers (either the older answer
or the newer answer) by one.

The histograms in Figure 3 show that many of the tie-
breaking votes are cast for answer pairs when there is exactly
one pre-tie-breaking vote for each answer in these pairs. The
number of qualifying-vote instances decreases rapidly as the
number of pre-tie-breaking votes goes up for two reasons.
First, since vote-ups are counted cumulatively for an an-
swer, there are more vote-up instances that correspond to
answers for which the pre-tie-breaking vote counts are small
than instances that correspond to answers for which the pre-



tie-breaking vote counts are large. Second, being in a tie sit-
uation with another answer when the pre-tie-breaking vote
count is small is more likely than when the pre-tie-breaking
vote count is large. For these two reasons, we get more
tie-breaking votes that correspond to answers for which the
pre-tie-breaking vote counts are small when we randomly
sample from vote-up instances (i.e., there is a bias towards
small pre-tie-breaking vote counts for data instances both
before and after the treatment as shown in Figure 3).

To better account for the difference in the distributions
seen in Figure 3, we stratify our data points into 10 strata,
as shown in the vote number column of Table 2. For each
stratum, we perform the chi-square test to see if the fre-
quency of tie-breaking votes for older answers is different
than the binomial distribution where probability is 0.5. Ta-
bles 2 and 3 show the results for the data points in each stra-
tum before and after the policy change, respectively. Those
tables show that, for each stratum, the frequency is signif-
icantly different than 0.5, both before and after the policy
change.

We also performed an two-sample unpaired t-test with
two-tail analysis to see whether, in each stratum, the fre-
quency of voting for the older answer before the policy change
is different than the frequency after the policy change. Ta-
ble 4 summarizes the results of these tests. Except for strata
2 and 3, the results were not significant, indicating that
we cannot accept the hypothesis that the frequency of the
vote for the older answer differs before and after the policy
change. For strata 2 and 3, although we get a significant
result, the difference in the frequency values is extremely
small, suggesting a very small effect, if any.

Another recent policy change in the Stack Overflow sys-
tem sets up another natural experiment to assess whether
there is a causal relationship between reputation points and
asking questions. Users get reputation points when their
questions or answers get a vote-up. Before the recent policy
change, users received 10 points for a vote-up, both for a
question and an answer. However, after this change, users
get 5 reputation points after a vote-up for their questions
and still get 10 reputation points after a vote-up for their
answers. The goal of this change is to decrease the number
of questions a user asks and increase the number of answers
that a user provides.

This natural experiment can be exploited to identify the
effect of the change in vote-up reputation points on user
behavior. The treatment variable is the change in vote-up
reward for questions. The outcome variable is the number of
questions provided by a particular user. We seek to answer
the following question: Will users provide more answers and
fewer questions after this policy change? Although this is
an interesting natural experiment, we could not apply this
design because the policy change is recent and data collected
after the treatment event is not yet sufficient to perform the
analysis.

4.3 The Interrupted Time-Series Design
In the interrupted time series design, we observe an outcome
variable for a certain time interval, ∆t, before a treatment
and after the treatment. This observation over ∆t lets us
identify intrinsic trends within the time-series and therefore
rule out some threats to validity. The causal question we
consider that uses this design is:

Vote Number of
Number Instances P-Value χ2-Statistic Frequency
1 87436 < 2.2e-16 2652.1340 0.41
2 46079 < 2.2e-16 1915.5370 0.40
3 24756 < 2.2e-16 1253.2280 0.39
4 13954 < 2.2e-16 884.9216 0.37
5 8718 < 2.2e-16 527.2696 0.38
6-8 12323 < 2.2e-16 670.7478 0.38
9-12 6530 < 2.2e-16 271.7035 0.40
13-17 3970 < 2.2e-16 118.5380 0.41
18-26 3668 < 2.2e-16 139.7644 0.40
26-665 9810 < 2.2e-16 177.5423 0.43

Table 3: The results of a chi-Square test on the fre-
quency of votes for the older answer after the policy
change. Degree of freedom is 1 for each stratum.

Vote Frequency Frequency
Number P-Value t-Statistic Before After
1 0.81 0.2332 0.41 0.41
2 0.02 2.3235 0.39 0.40
3 0.02 -2.3376 0.40 0.39
4 0.25 -1.1484 0.38 0.37
5 0.90 0.1263 0.38 0.38
6-8 0.66 -0.4326 0.39 0.38
9-12 0.15 1.4448 0.38 0.40
13-17 0.19 1.3155 0.40 0.42
18-26 0.41 -0.8243 0.41 0.40
26-665 0.69 -0.3994 0.44 0.43

Table 4: The results of a two-sample unpaired t-test
with two-tail analysis for comparing the frequency
of voting for the older answer before and after the
policy change.

Does receiving an epic badge cause an increase in
participation for that user?

This causal question can be formulated across many dif-
ferent badges. However, we focus on only the epic badge,
which is given to users who hit the daily reputation cap 50
times. For this design, the treatment is a user getting the
epic badge. The time-series will be the number of posts
per day by the user with the outcome measure being the
change in the number of posts by that particular user before
and after treatment. We use number of posts provided by a
user instead of number of points obtained by a user as our
outcome metric because number of posts is only influenced
by the corresponding user, whereas number of points is in-
fluenced both by the corresponding user and the external
events (e.g., another user can vote-up a question/answer).
Hence, number of posts is a better metric for user behavior.

Threats to validity of the interrupted time-series include
historical effects. For example, users may actually have a
decreasing trend in their number of posts at the same time
as treatment occurs. Without getting multiple observations
of the outcome measure, we may falsely conclude that this
decrease is due to the treatment effect; however, it may be
actually due to an intrinsic decreasing trend.

There are 54 users with the epic badge in our dataset.
For each user, we determine the relative time at which they



get the epic badge. Then we calculate the number of posts
corresponding to each user for 30 days before they get the
epic badge and 30 days after they get the epic badge. To
make the analysis clearer, we calculate the average number
of posts for the 30-day period before the treatment for each
user, and we normalize the daily number of posts for each
user by subtracting that average. We then calculate the av-
erage number of posts from those normalized values among
54 users for each day and plot those values in Figure 4. We
fit linear models to the data points before and after the treat-
ment. If we observe a significant slope change in these two
fitted linear models, we can conclude that treatment has an
effect. If the slope of the post-treatment line is smaller than
the pre-treatment line, we can conclude that users start to
contribute less after getting the epic badge and vice versa.

In Figure 4, we show the results of the interrupted time
series design. The vertical dashed line represents the 30-day
mark for each user at which the epic tag was granted. As
mentioned above, we fit two linear models: The first linear
model is for the average number of posts before the badge is
granted and the second linear model is for the average num-
ber of posts after the badge is granted (note that values for
average number of posts are normalized). The slope of the
first line is −0.001 and this slope is not significantly differ-
ent than 0 (p=0.94). The slope of the second line is −0.100
and this slope is significantly different than 0 (p<0.01). We
observe a decrease in the slope of these lines. We may con-
clude that getting the epic badge reduces the number of
posts provided.

In our interrupted time series design, we do not have a
comparison group which would allow us to account for other
unobserved effects. Other events occurring at the same time
as our treatment might explain the observed behavior. For
example, the system may go down so that users cannot in-
teract with the system, or the time of the establishment of
the badge may be right before another event that causes
them not to participate. However, we have more than 50
users who received this badge, and all measurements were
done in a relative time scale for each user. Thus, we expect
that these effects should average out. In other words, the
time that a user obtains the epic badge can be treated as
random.

5. RELATED WORK
Discovering cause-and-effect relationships from observational
data by using QEDs has been widely studied in the social
sciences [6, 19]. Social scientists use QEDs in circumstances
for which experimentation is not feasible for various rea-
sons (e.g., ethical, economic). However, these methods have
not been extensively used by researchers studying social me-
dia. Jensen and coauthors [12] showed that these meth-
ods can be automatically identified, and Aral, Muchnik and
Sundararajan [4] used propensity score matching, a type of
QED, to distinguish homophily and social influence. Some
researchers have compared different social media systems
that have similar purposes, which is a type of QED with
non-equivalent control groups [9, 11].

Computer scientists have recently focused on designing al-
gorithms for causal discovery. Spirtes, Glymour and Scheines
[21] proposed the PC algorithm for identifying causal struc-
ture from data in a propositional domain under certain as-
sumptions. Maier and coauthors [16] extended the PC algo-
rithm to relational domains, pushing causal discovery into
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Figure 4: Average post count for users with an epic
badge. Values are normalized for each user by sub-
tracting the corresponding average number of posts
before treatment.

more complex domains. Pearl [18] also provided a more the-
oretical framework for algorithmic causal discovery.

Knowledge discovery in social media systems has often
been based on associational discovery. Researchers have
tried to identify high-quality content in social media [2], and
to identify attributes that predict answer quality in question
and answer platforms [1, 9]. Maia and coauthors [15] iden-
tified discriminator attributes in a social network setting to
cluster users by their behavior. These studies are almost
all based on identifying correlations between variables, and
they do not try to identify cause-and-effect relationships.

As outlined in section 1, existing research on causal dis-
covery from social media focuses on three main approaches.
The first is online experimentation, which is widely used [22,
14], and is an ideal tool for causal discovery. However, it of-
ten requires full control over the system, necessitating an
experimental platform [13] to perform online experimenta-
tion cost effectively. Another approach used for causal dis-
covery is surveying users of the system to understand their
behavior and motivation [10, 17, 3]. Researchers have also
used game-theoretic platforms to understand user behavior
in social media [20, 10]. Although their work shares the
goal of causal discovery in social media systems, it requires
additional experimentation and data collection rather than
exploiting observational data.

6. CONCLUSION AND FUTURE WORK
In this work, we show that QEDs can be utilized to dis-
cover causal knowledge about social media systems. We
identify and carry out three different designs in Stack Over-
flow. First, we show a matching design and demonstrate
how an analyst can reach false conclusions without using
a matching design. Second, we show a natural experiment



that is hidden in the system and analyze this implicit ex-
isting experiment. Third, we present an interrupted time
series design to observe user participation after a particu-
lar event (i.e., obtaining a badge in our scenario). For all
three designs, we point out the threats to the validity of the
conclusions.

Manual application of QEDs can be time consuming and
involve a process of successively eliminating threats to a
causal conclusion. A better approach is one where an algo-
rithm automatically identifies all of the applicable designs,
executes those designs, and then eliminates the threats. One
of our goals is to eventually develop algorithms capable of
this automated discovery.

QEDs can be combined with online experimentation. Since
performing all possible experiments is often infeasible, QEDs
can be used to filter out some of the potential experiments
that correspond to alternative hypothesis. For a causal ques-
tion, first a quick QED analysis can be performed, and then
for the alternative threats that a particular QED is unable
to eliminate, an online experimentation can be formulated.
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