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Abstract

Given a set of k networks, possibly with different sizes and no overlaps in nodes
or edges, how can we quickly assess similarity between them, without solving the
node-correspondence problem? Analogously, how can we extract a small number
of descriptive, numerical features from each graph that effectively serve as the
graph’s “signature”? Having such features will enable a wealth of graph mining
tasks, including clustering, outlier detection, visualization, etc.

We propose NETSIMILE — a novel, effective, and scalable method for solving the
aforementioned problem. NETSIMILE has the following desirable properties: (a)
It gives similarity scores that are size-invariant. (b) It is scalable, being linear on
the number of edges for “signature” vector extraction. (c) It does not need to solve
the node-correspondence problem. We present extensive experiments on numer-
ous synthetic and real graphs from disparate domains, and show NETSIMILE’s
superiority over baseline competitors. We also show how NETSIMILE enables
several mining tasks such as clustering, visualization, and discontinuity detection.

1 Introduction

We address the problem of network similarity. Specifically, given a set of networks of (possibly)
different sizes, and without knowing the node-correspondences, how can we efficiently provide a
meaningful measure of structural similarity (or distance)? For example, how structurally similar are
the SDM and SIGKDD co-authorship graphs? How does their structural similarity compare with the
similarity between the SDM and ICDM co-authorship graphs? Such measures are extremely useful
for numerous graph-mining tasks. One such task is clustering: given a set of graphs, find groups of
similar ones; conversely, find anomalies or discontinuities — i.e., graphs that stand out from the rest.
Transfer learning is another application, if graphs GG and G5 are similar, we can transfer conclusions
from one to the other to perform across-network classification with better classification accuracy.

We define the network similarity / distance problem as follows. Input: A set of k£ anonymized
networks of potentially different sizes, which may have no overlapping nodes or edges. Output:
The structural similarity (or distance) scores of any pair of the given networks (or better yet, a
feature vector for each network).!

The core of our approach, NETSIMILE, is a careful extraction and evaluation of structural features.
For every graph GG, we derive a small number of numerical features, which capture the topology
of the graph as moments of distributions over its structural features. The similarity score between
two graphs then is just the similarity of their “signature” feature vectors. Once we have the sim-
ilarity function, we can do a wealth of data mining tasks, including clustering, visualization, and
anomaly detection. Our empirical study includes experiments on more than 30 real-world networks
and various synthetic networks generated by four different graph generators (namely, Erdds-Rényi,

"Throughout the paper, we assume similarity and distance are interchangeable.



Forest Fire, Watts-Strogatz, and Barabasi Preferential Attachment). We compare NETSIMILE with
two baselines. The first baseline extracts frequent subgraphs from the given graphs and performs
pairwise comparison on the intersection of the two sets of frequent patterns. The second baseline
computes the k largest eigenvalues of each network’s adjacency matrix and measures the distance
between them. Our experiments provide answers to the following questions: How do the various
methods compare w.r.t. their similarity scores? Are their results intuitive (e.g., is a social network
more similar to another social network than to a technological network)? How do they compare
to null models? Are the methods just measuring the sizes of the networks in their comparisons?
How scalable are the various methods? Can we build a useful taxonomy for networks based on their
similarities?

Contributions

e Novelty: By using moments of distribution as aggregators, NETSIMILE generates a single
“signature” vector for each graph based on the local and neighborhood features of its nodes.

o Effectiveness: NETSIMILE produces similarity / distance measures that are size-
independent, intuitive, and interpretable.

e Scalability: The runtime complexity for generating NETSIMILE’s “signature” vectors is
linear on the number of edges.

e Applicability: NETSIMILE'’s “signature” vectors are useful in many graph mining tasks.

The rest of the paper is organized into the following sections: Proposed Method, Experiments,
Related Work, and Conclusions.

2 Proposed Method

NETSIMILE has three steps. First, it extracts structural features from each given graph. This step
produces a node x feature matrix per graph. Second, it aggregates each column of the node x
feature matrix to produce a single “signature” feature vector per graph. Third, it compares the
signature feature vectors of graphs. We discuss each of these steps below.

Feature extraction. NETSIMILE’s feature extractor generates a set of structural features for each
node based on its local and egonet-based features — a node’s egonet is the induced subgraph of its
neighboring nodes. Specifically, NETSIMILE computes the following features.

d; = |N(7)|: degree of node i; N (i) denotes the neighbors of node .

e ¢;: clustering coefficient of node ¢, defined as the number of triangles connected to node @
over the number of connected triples centered on node i.

dn(;): average number of node i’s two-hop away neighbors, computed as d%_ D vjeN (i) 45
® Cn(;): average clustering coefficient of N(z) , calculated as d% ZVjeN(i) Cj.

|E
|E¢,(iy|: number of outgoing edges from ego(i).
| N (ego(i))|: number of neighbors of ego(i).

ego(i)|: number of edges in node i’s egonet; ego(i) returns node #’s egonet.

Note that NETSIMILE is flexible enough to incorporate additional features. We choose these local
and egonet-based features because they satisfy our constraints in terms of effectiveness (namely,
size-independence, intuitiveness, and interpretability) and scalability (see Section 3).

Feature aggregation. After the feature extraction step, NETSIMILE has extracted a node x feature
matrix, F,, for each graph G; € {G1, G2, - -, Gi}. We can measure similarity between graphs by
comparing their feature matrices (see discussion below). However, we discovered that generating
a single “signature” vector for each graph produces more efficient and effective comparisons. To
this end, NETSIMILE uses the following aggregators on each feature (i.e., on each column of Fg,):
median, mean, standard deviation, skewness, and kurtosis. Note that expect for median, the rest are
moments of distribution of each feature. NETSIMILE is flexible enough to use other aggregators



as well, though we found these to be sufficient for the task of network comparison and satisfy our
effectiveness and scalability constraints (see Section 3).

Comparison. After the feature aggregation step, NETSIMILE has produced a “signature” vector 3g;
for every graph G; € {G1, G2, - ,G)}. NETSIMILE now has the whole arsenal of clustering tech-
niques and pairwise similarity / distance functions at its disposal. Amongst the collection of pairwise

similarity / distance functions, we found Canberra Distance (dgqen (P, Q) = 25:1 ‘?;gfl) to be
very discriminative (a good property for a distance measure). This is because Canberra Distance
is sensitive to small changes near zero; and it normalizes the absolute difference of the individual

comparisons.

Computational complexity. Let & = number of graphs given to NETSIMILE (ie., & =
{G1, - ,Gr}]), n; = the number of nodes in G;, m; = the number of edges in G, f = num-
ber of structural features extracted, and r = number of aggregators used.

Lemma 1 The runtime complexity for generating NETSIMILE's “signature” vectors is linear on
the number of edges in {G1, - -+ , Gy}, and specifically

k
O(Z(fnj + fnjlog(ny))) (1)

where f < n; < m; and njlog(n;) ~ m; in real-world graphs.

Proof To generate NETSIMILE’s “signature” vectors, structural features need to be extracted and
then aggregated. The feature extraction part involves computing local and neighborhood-based
structural features. As proved in [1], computation of neighborhood-based features is expected to
take O(n;) for real-world graphs. Therefore to compute f neighborhood-based features on a graph
G, it takes O( fn;). Feature aggregation takes O( fn;log(n;)) for each graph G;. Recall that NET-
SIMILE’s aggregators are median, mean, standard deviation, skewness, and kurtosis. The latter four
can be computed in one-pass through the f feature values. The most expensive computation is the
median which cannot be done in one-pass. However, it can be computed in O(nlog(n) + n) for n
numbers. Basically, one needs O(nlog(n)) to sort the n numbers. Then, a selection algorithm can
be used to get the median with only O(n) operations. [

Remark: Network comparison through statistical hypothesis testing. Given the node x feature
matrices of two graphs, Fg, and Fig,, NETSIMILE can use statistical hypothesis testing to see
if the two graphs are samples from the same underlying distribution. Specifically, NETSIMILE
normalizes each column (i.e. feature) in Fiz, and Fig, by its Ly norm. Then, NETSIMILE does
pairwise hypothesis testing across the features of the graphs. For example, it does hypothesis testing
between the degree columns in GG; and Gg; between the clustering coefficient columns in G and
G2; and so on. This process produces seven p-values (corresponding to the seven features extracted
by NETSIMILE). To decide whether the two graphs are from the same underlying distribution,
NETSIMILE uses the maximum p-value. We also tried the average of the p-values, though that
analysis did not produce as discriminative results as the maximum p-value.

For the statistical hypothesis tests, NETSIMILE can use any test available. We tried the Mann-
Whitney Test [2] and the Kolmogorov-Smirnov Test [3]. The Mann-Whitney Test is nonparametric.
It assumes two samples are independent and measures whether the two samples of observations
have equally large values. The Kolmogorov-Smirnov Test is also nonparametric. We used the two-
sample Kolmogorov-Smirnov Test which compares two samples w.r.t. the location and shape of the
empirical cumulative distribution functions of the two samples. We found that neither test generated
enough discriminative power to effectively capture differences between graphs (though the Mann-
Whitney Test was more discriminative).

Remark: Network comparison at the local- vs. global-level. Whether one prefers local-level net-
work similarity to global-level network similarity depends on the application for which the similarity
is being used. NETSIMILE is designed such that it can take either local-level or global-level features.
Here, we emphasis NETSIMILE’s local-level network similarity. The advantages of local-level com-
parison is that node-level and egonet-level features are often more interpretable than global features
— e.g., consider average degree of a node vs. the number of distinct eigenvalues of the adjacency
matrix. Also, local-level features are computationally less expensive than global-level features —



e.g., consider clustering coefficient of a node vs. diameter of the graph. Moreover, looking at local-
level features answers the question: “are the given two networks from similar linking models?”” For
example, consider the Facebook and Google+ social networks. Even though Google+ is a smaller
network than Facebook, are its users linking in a similar way to the users of the Facebook network?
In other words, is the smaller Google+ network following a similar underlying model as the lager
Facebook network? Local-level features can capture any similarity present in the linking models of
the two networks, but global-level features cannot.

3 Experiments

We ran experiments on over 30 real-world graphs including arXiv: 5 co-authorship networks from
arXiv corresponding to different fields, DBLP-C: 6 co-authorship networks from DBLP correspond-
ing to different conferences, DBLP-Y: 5 DBLP co-authorship networks spanning 2005 to 2009,
IMDB: 5 collaboration networks from IMDB for movies issued from 2005 to 2009, Query Log:
5 word co-occurrence networks built from a query log of approximately 20M web-search queries
submitted by 650K users over 3 months, Oregon AS: 5 autonomous systems routing graphs col-
lected between March 31st and May 26th 2001. For experiments on synthetic graphs, we generated
Barabasi-Albert, Forest Fire, Erdos-Rényi, and Watts-Strogatz graphs based on different settings.
Details are available in [4]. For each generator and for each node-set size, we built five networks.
Our results (on synthetic graphs) report the average values obtained across the five networks per
generator and node-set size. We implemented our approach in C++ and Matlab, making use of
the GNU Statistic Libraries and igraph. The code was run on a server equipped with 8 Intel Xeon
processors at 3.0GHz, with 16GB of RAM, and running CentOS 5.2 Linux.

The rest of this section is organized as follows. We describe our baseline methods next. Then,
we present results that answer the following questions: How do the different approaches compare?
Is there a particular method which clearly outperforms the others? If yes, to which extent? How
can we interpret the results? Can we build a taxonomy over the networks based on our results? Is
NETSIMILE affected by the sizes of the networks? How well does NETSIMILE perform in various
graph mining applications?

3.1 Baseline Methods

We compare NETSIMILE with (a) Frequent Subgraph Mining and (b) Eigenvalues Extraction. We
chose these two methods because they are intuitive and widely applicable. Many methods discussed
in Section 4 are application-dependent.

FSM (Frequent Subgraph Mining): Given two graphs, we take the intersection of their frequent
pattern-sets and build two vectors (one per graph) of relative supports of their patterns [5]. We
compare these FSM vectors with NETSIMILE’s “signature” vectors using Cosine Similarity and
Canberra Distance. A clear drawback of FSM is its lack of scalability (since it relates to subgraph
isomorphism).

EIG (Eigenvalues Extraction): This is an intuitive measure of network similarity that is based on
global feature extraction (as opposed to the local feature extraction of NETSIMILE). For each graph,
we compute the k largest eigenvalues® of its adjacency matrix, and thus we obtain a vector of size
k per graph. Then, we use the Canberra Distance in order to compare these vectors and find the
pairwise similarities between the graphs. A disadvantage of EIG is that it is size dependent: larger
networks - or ones with larger LCC (Largest Connected Component) - have higher eigenvalues.
Thus, EIG will lead to higher similarity between networks with comparable sizes. Moreover, there
is no global upper-bound for eigenvalues, making distance values hard to compare.

3.2 Entropy of Graph Feature Vectors

We measure the entropy in feature vectors generated by NETSIMILE, FSM, and EIG on the DBLP-
C co-authorship networks. As Figure 1 shows, NETSIMILE’s feature vectors have higher entropy
than FSM’s or EIG’s. Higher entropy means more uncertainty (i.e., we need more bits to store the

We tried a few values for k and saw no significant changes around 10; so we selected k = 10.



desired information). So, NETSIMILE’s feature vectors capture the nuances (i.e. uncertainty) in the
graphs bettern than FSM or EIG, which leads to more discriminative power w.r.t. graph comparison.
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Figure 1: Entropy of feature vectors generated by NETSIMILE, FSM, and EIG on the DBLP-C
co-authorship networks. NETSIMILE’s feature vectors have higher entropy than FSM’s or EIG’s,
which implies that they are capturing the nuances in the graphs better than FSM or EIG.

3.3 Interpretability of Results

To make sense of our results, we exploit the background knowledge about the networks used in
our experiments. Amid the real networks, we have three sets of collaboration networks (DBLP-C,
DBLP-Y and IMDb), one technological network (Oregon AS), and a word co-occurrence network
(Query Log). In addition, we have different synthetic networks generated by various commonly
used models. One would expect these networks to be “clustered” by their types. This idea was
inspired by the considerations found in [6], where a large set of networks of different types are
analyzed, together with their typical global and local features. For these experiments, we use ag-
glomerative clustering [7] with Canberra Distance and unweighted average linking since it allows
for easy interpretation of results.

Figure 2(a) presents the dendrogram of all of our networks built by hierarchical agglomerative clus-
tering with unweighted average linking and the Canberra Distance and using NETSIMILE’s graph
“signature” vectors. The network names are colored by data set. As evident in Figure 2(a), there is
a clear distinction between the clusters. The collaboration networks appear all together, along with
the forest fire synthetic networks. The Oregon AS forms a cluster that only at the height of 0.45
joins with the Query Log. The Erdos-Rényi and Watts-Strogatz form a separate cluster. This, in
turns, reflects our aforementioned intuition about following our background knowledge of the data.

Figure 2(b) shows the dendrogram for the above experiment (hierarchical agglomerative clustering
with unweighted average linking and the Canberra Distance) for graph vectors generated by EIG.
This figure clearly shows a different picture, where the networks are grouped differently (see how the
distribution of the colors is mixed). For example, in the leftmost cluster, two collaboration networks
from arXiv are put together with four Query Log networks, while the missing Query Log network is
placed together with the Oregon AS networks. The EIG results are not intuitive, thus making EIG
not suitable for interpreting graph-similarity results.

3.4 Similarity of Networks with Different Sizes

One question that may arise regarding NETSIMILE is whether its results are affected by the differ-
ences in sizes or other basic statistics of the two networks being compared. We do not want the size
to play an important role in our solutions given that our interpretation of the question “are two net-
works similar?” leads to the question “do the two networks follow the same (or similar) underlying
linking model?”.

To answer the aforementioned questions, we compared the relationships between the NETSIMILE
with Canberra Distance and some basic statistics of our real and synthetic networks. Specifically, we
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Figure 2: Hierarchical dendrograms of all network based on (a) NETSIMILE with Canberra Distance,
and (b) EIG with Canberra Distance. Network names are colored by data set. Homogeneity in colors
(NETSIMILE’s dendrogram) indicates better and more intuitive groupings (than EIG’s dendrogram).
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Figure 3: NETSIMILE Canberra Distance is not measuring size, as there is no clear evidence of
correlation between the two axes.

compared NETSIMILE values of two networks with the ratio between their (1) number of nodes, (2)
number of edges, (3) average clustering coefficients of the nodes, (4) average degree, (5) maximum
degree, and (6) network clustering coefficient. In all of them, we saw no correlation. For brevity,
we only show the scatterplot for the NETSIMILE values and the ratio between the number of nodes
of the two networks (see Figure 3(a)) and the scatterplot for the NETSIMILE values and the ratio
between the average clustering coefficients of the nodes of the two networks (see Figure 3(b)). As
evident in these scatterplots, NETSIMILE’s results are not merely reflecting the difference in sizes
of the networks. If they were, we would expect to observe correlations among the points in each
scatterplot. This implies that we can generate two networks of the same kind, with different sizes
(e.g., Forest-Fire networks [8] with 10K and 100K nodes) and NETSIMILE would find them similar.

3.5 Applications
NETSIMILE can be used in numerous graph mining applications. Here we discuss one of them. See
[4] for more applications.

NETSIMILE as a Measure of Node-Overlap. Given three graphs G4, G, and G¢ of the same
domain (e.g., co-authorship networks in SIGMOD, VLDB and ICDE), can we use only their NET-



SIMILE’s “signature” vectors to gauge the amount of node-overlap between them? Our hypothesis
is that if graph G4 is more similar to graph G p than graph G¢, then G 4 will have more overlap
in terms of nodes with Gp than G¢. To test this hypothesis, we ran NETSIMILE with Canberra
Distance on our real networks. Figure 4(a) depicts the scatterplot of NETSIMILE results on graphs
within each comparable group (i.e., arXiv, DBLP-C, DBLP-Y, IMDb, Query Log, and Oregon AS
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shows the lower the NETSIMILE Canberra Distance, the higher the normalized node intersection.
This confirms our hypothesis that NETSIMILE can be used to gauge node-overlap between two
graphs without node correspondence information. Figure 4(b) shows the same scatter plot, but com-
puted using the EIG Canberra Distance approach. In this case, there is no correlation between node
overlap and the distance. Due to its scalability issues, the FSM approach could not be computed on
all the networks in Figure 4.

graphs). The y-axis is the normalized node overlap and is equal to . As the figure

1 T T T T T 1o ] i = 5
N DBLP-C  + @ o
0.9 - T~ DBLP-Y x - % -
. N IMDb % 0.8 - X X — n
08 X x ~ - Z ox =
s X=X y —__Oregon AS O s %
g o7l < Queylog 1 5 o6l .
g Ui W . — 9
2 o6l B S — I
g - = E o4l . -
S 05 3
g8 °°r 1 B L+ |
g o04r . 13 " +$+
= - S + ¥
= |~ i = R
: 03 — 4. E Of T DpBLPC 4
S 02 \\\\ _ c \BBJ&E\ %
ty Fo—y 02} IMDb— |
0.1 L + T A Oregon AS O
R Query Log
0 ! ! ! ! ! ! ! -0.4 L ! | L !
0O 005 01 015 02 025 03 035 04 0 0.1 0.2 0.3 0.4 0.5 0.6
NETSIMILE - canberra distance EIG - canberra distance
(@) (b)

Figure 4: (a) NETSIMILE Canberra Distance on DBLP, IMDb, Oregon and QueryLog. (b) EIG
Canberra Distance on the same networks. NETSIMILE is an effective measure for node overlap
without any node-correspondence information. The lower the NETSIMILE Canberra Distance, the
higher the normalized node intersection. This correlation does not hold for EIG. The points in both
plots are along the fitted lines. For NETSIMILE (a), the root mean square of residuals are 6.55—2
for DBLP-C, 2.6 E—2 for DBLP-Y, 9.0E—3 for IMDb, 1.4F—2 for Oregon AS, and 6.5FE—2 for
Query Log. For EIG (b), the root mean square of residuals are 8.2F—2 for DBLP-C, 4.2FE—2 for
DBLP-Y, 1.3E£—3 for IMDb, 1.2E—2 for Oregon AS, and 6.7E—2 for Query Log.

NETSIMILE as a Network Labeler. Given a new (never before seen) graph, can we use the Can-
berra Distance between its NETSIMILE’s “signature” vector to known graphs’ NETSIMILE “signa-
ture” vectors to accurately predict its label? To answer this question, we setup and ran the following
4-step experiment. In step 1, we created a set of fest graphs by generating 50 synthetic graphs of
types Erdos-Rényi, Watts-Strogatz, Barabdsi, and Forest Fire. In step 2, for each test graph, we com-
pared its NETSIMILE score using the normalized Canberra Distance with our real-world graphs. In
step 3, we assigned to the test graph the label of its most similar graph. In step 4, we computed the

accuracy of our predictions.

The predictive accuracy of NETSIMILE was 100% — i.e., NETSIMILE was able to label all 50 test
graphs accurately. For each of the 50 test graphs, we inspected the NETSIMILE normalized Canberra
Distance between the most similar graph (whose label we chose) and the second most similar graph
(whose label we did not choose). Let’s call the former dist; and the latter dist;. The minimum
difference between dist; and disty across the 50 test graphs was 0.001. The maximum was 0.428.
The mean difference was 0.143; and the standard deviation was 0.112. Thus, the answer to the
aforementioned question of whether NETSIMILE can be used effectively as a network labeler is
yes. We ran the same experiments using EIG with Canberra Distance on the same networks. The
predictive accuracy of EIG was 72%, i.e., 14 graphs were uncorrectly labeled.



4 Related Work

Assessing the similarity between two “objects” comes up in numerous settings. Thus, the literature
is rich in similarity measures for various domains: distributions or multi-dimensional points [9],
datacubes [10], and graphs, such as social ([11, 12]), information [13], and biological networks [14].
Berlingerio et al. [4] provide a detailed account on graph similarity when the node correspondences
are unknown. Our work is different from previous work because it uses moments of distributions of
local structure; and in this way is able to measure network similarity in a scalable, size-independent,
intuitive, and interpretable.

5 Conclusions

We introduced NETSIMILE, a novel, effective, size-independent, and scalable method for comparing
large networks. NETSIMILE has three components: (1) feature extraction, (2) feature aggregation,
and (3) comparison. The heart of our contribution is in components (1) and (2), where we discovered
that moments of distributions of structural features computed on the nodes and their egonets provide
an excellent “signature” vector for a graph. These “signature” vectors can be used to effectively and
quickly assess the similarity of two or more graphs. Our broader contributions are as follows. Nov-
elty: NETSIMILE avoids the (expensive) node correspondence problem, as well as adjusts for graph
size. Effectiveness: NETSIMILE gives results that agree with intuition and the ground-truth. Scala-
bility: NETSIMILE generates its “signature” vectors in time linear on the input size (i.e., number of
edges of the input graphs). Applicability: NETSIMILE’s “signature” vectors are useful in numerous
graph mining tasks. In addition, NETSIMILE is easily extensible to include features and aggregators
besides the ones presented.
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