SnapVX Developers Guide

Abhijit Sharang David Hallac
Stanford University Stanford University
Stanford, CA 94305 Stanford, CA 94305

abhisgl@stanford.edu hallac@stanford.edu

This document is meant for developers interested in contributing to the code base. It provides in-
structions on how to submit bug reports, add new unit tests, contribute code, improve documentation,
and more.

If you feel we are missing anything here, or if a section in this document is unclear, please see
Section 3.2 for instructions on how to contribute to the Developer Documentation. You are also
welcome to reach out to David Hallac at hallac@stanford.edu and we will be happy to help!

1 Introduction to SnapVX

SnapVX is a convex optimization solver for problems which are defined on a graph. Given a vertex
set) and an edge set £, we solve the following optimization problem:

min Y fi(z) + D gklwy,wr)
1€V (5,k)e€
The variables are x1, x2, .., T,,,. Here, x; € RP is the variable and f; is the cost function at node ;
gjk is the cost function associated with edge (j, k). When the cost functions are convex, SnapVX
provides:

e A solution based on the alternating direction method of multipliers (ADMM) that is guar-
anteed to converge to the global optimum for any problem of this form.

e A fast, scalable, and parallelizable algorithm capable of being distributed across multiple
cores of a single machine.

e An integration of Snap.py and CVXPY.

2 Contributing to SnapVX

2.1 Submitting a bug report

In case you have any issues in using the package, please submit a ticket at the https://github.
com/snap-stanford/snapvx/issues, You are also welcome to add new feature requests
here.

2.2 Fixing existing bugs
We keep track of all bugs at https://github.com/snap-stanford/snapvx/issues.
If there is an open issue that no one has resolved, feel free to claim it on Github (by “assigning”

it to yourself). Once it is fixed, see Section 2.4 for how to merge your modified code back into the
current code base.

2.3 Retreiving the latest code

We use |git|for version control and host the repository on /Githubl

https://github.com/snap-stanford/snapvx/issues
https://github.com/snap-stanford/snapvx/issues
https://github.com/snap-stanford/snapvx/issues
https://git-scm.com/
https://github.com/

You can check out the latest sources with the command:
git clone https://github.com/snap-stanford/snapvx.git.

To generate a development version, run setup . py with develop flag:

sudo python setup.py develop
If you do not have sudo access, you would have to add the ——user flag to the above command as
well (i.e., python setup.py develop --user). For more installation options, refer to the
python distutils module.

Run the test script Tests/test_basic.sh to check that the installation proceeded cor-
rectly.

2.4 Contributing new code

The preferred way to contribute to snapvx it to fork the main repository on Github and issue a pull
request.

1. Create an account on|githublin case you don’t already have one.

2. Fork the project repository by clicking on Fork button on the upper right corner of the
repository’s page.

3. Create a branch to incorporate your changes.
git checkout -b branch_name

4. Write your tests inside the appropriate hierarchy of the Test s folder as explained in
(OPTIONAL, but highly recommended)

5. Make sure the existing tests are passing. In case any test fails, use the error messages to fix
the affected section of the code.

6. Commit your changes to git, with comments about the new updates.
git add your_-new_file(s) git commit

7. Push these changes upstream.
git push -u origin branch_name

Once you are satisfied with the changes you have made, issue a pull request by going to your repos-
itory’s page https://github.com/your_id/snapvx and clicking on the button “New pull
request”.

2.5 Contributing examples

If you have new examples, feel free to add them to the Examples folder! Before you do so, please
add comments to your code, so users understand how it works.

2.6 Testing and improving unit tests

We have divided the unit tests into three components, each catering to a different aspect of the
package.

e tests_installation - This folder contains basic tests to check if the package and its
dependencies have been installed correctly and the package is behaving expectedly.

e tests_functionality - All tests pertaining to different solver features that the pack-
age provides go here.

e tests_scalability - This contains tests for how well the package handles problems
with different unknowns and graph sizes.

Running test suites requires python unittest module. To run all tests, execute the script
test_developer.sh in the Tests folder. This will display the details of all the tests, whether
they passed or failed, and in the latter case, the specific reason behind the test failing. This is a more
comprehensive, but slower, set of tests than test basic. sh, which just checks that the software

https://docs.python.org/2/library/distutils.html
https://github.com/
https://docs.python.org/2.7/library/unittest.html

was properly installed. Before you commit any changes, please check that your code passes the
developer tests too, and not just the basic tests.

You can add your own test inside the appropriate folder. Make sure that your python file is
defined as test_<your test name>. Your test must define a class deriving BaseTest which is
present at the top hierarchy of the Tests folder (see the existing tests for sample syntax). Write
the relevant unittest functions, and execute the shell script test_developer. sh to check that
the tests pass.

In case your test does not fit the test hierarchy we have defined, please create another folder
with the name tests_<your feature name> and write your tests inside this folder in the same
format as described above. Also make sure to edit the test script to look for tests inside this folder.
Otherwise, if your tests fall into one of the three predefined folders, the test script will handle the
new tests automatically.

3 Contributing to Documentation

3.1 User Documentation

You are welcome to contibute any form of documentation for the users : tutorials, function
docStrings and reStructuredText documentation etc. The reStructuredText documentation resides
inside the doc folder in the source code repository.

For building the documentation, you would require make and sphinx. You can edit the
documentation using any text editor, and then generate the HTML output using make html. The
generated files will reside in Jouild/html folder. Please follow the same conventions for pushing
the new documentation as pushing the new code.

3.2 Developer Documentation

The developer documentation (the current document) is generated using IS[EX. We highly recom-
mend posting any issues and suggestions to the repository issues page on Github,

4 ADMM Details

This section gives a comprehensive overview of the iterative ADMM algorithm, which provides the
foundation for the SnapVX software package.

To solve via ADMM, we introduce a copy of x;, called z;;, at every edge jk. Note that the same
edge also has a z;5, a copy of x;,. We rewrite the original formulation as its equivalent problem,

minimize Y- fi(v:) + >0 gin(2jk, 2k5)
i€V (5,k)e€
subjectto x; =z, j=1,...,m, ke&N(j),

where N (j) is the set of neighbors of node j. Deriving the problem’s augmented Lagrangian (see
Boyd et al., 2011), we get

Ly(x,z,u) =Y filz:) + Y <9jk(zjk7zkj)—(ﬂ/2) (lujiells + [lur; l13) +
=) (.k)EE
(0/2) (5 — 2 + w3 + ke — 21 + uij%)),

where u is the scaled dual variable at each edge and p > 0 is a scalar penalty parameter that
determines the tradeoff between primal and dual convergence. ADMM consists of the following

https://www.gnu.org/software/make/
http://www.sphinx-doc.org/en/stable/
https://github.com/snap-stanford/snapvx/issues

steps, with k denoting the iteration number:

2" = argmin L, (z, 2%, u¥)
x

k+1

ZFH = argmin L, (2"
z

,2,u")

uk+1 — uk + ($k+1 _ Zk+1).
Now, we analyze each of these steps in more detail.

z-Update. In the x-update we minimize a separable sum of functions, one per node, so it can be
calculated independently at each node and solved in parallel. At node ¢, this is

ot = argmin | fi(z:) + Y (p/2)|li — 25 + uljll3
o
‘ JEN (i)

z-Update. The z-update is separable across the edges. Note that for edge 75, we need to jointly
update z;; and z;;. This becomes

. s —— (gmzﬁ, 235) + (0/2) (250 — iy + |3 + 25+ — 2 + u;zn%)).

ZijsZji

u-Update. The u-update is also edge-separable. For each variable, this looks like

k+1 _ K k41 k41
u =g (T =2,

Global Convergence. Because the problem is convex, ADMM is guaranteed to converge to a global
optimum. The stopping criterion can be based on the primal and dual residuals, commonly defined
as r and s, being below given threshold values; see Boyd et al., 2011. In this case, these residuals
correspond to ¥ = Az* — zF and s¥ = pAT(zF*+1 — 2F), where A € R?"X™ has 2n nonzero
elements (all ones), one per row, mapping each z;; to the node where it has an equality constraint.
This allows us to stop when z* and z* are close, and when z* (or z*) does not change much in one
iteration. As is typical for ADMM, the algorithm tends to attain modest accuracy relatively quickly,
and high accuracy (which in many applications is not needed) only slowly.

Algorithm 1 ADMM Steps
given 6pri7 €dual
repeat

2y = argmin (fi(afi) + X (p/2)llwi — 25+ ug—ll%)

2 2 = argmin (g5 (205, 2i) + (0/2) (|25 = 2ij + ub 13+ |25 — 25 + Uﬁ@))
ZijsZji

uf;rl =uf; + (af T — zfj“)

until |7¥ ||y < €™ |55l < edual,

	Introduction to SnapVX
	Contributing to SnapVX
	Submitting a bug report
	Fixing existing bugs
	Retreiving the latest code
	Contributing new code
	Contributing examples
	Testing and improving unit tests

	Contributing to Documentation
	User Documentation
	Developer Documentation

	ADMM Details

