
Applying SnapVX to Real-World Problems

David Hallac

Stanford University



Goal

I Other resources (MLOSS Paper, website, documentation, . . .)
describe the math/software side of SnapVX

I This presentation is meant to explain how SnapVX can be applied to
real-world problems

– Assumptions: Basic knowledge of optimization, graph theory

I For additional examples of how to solve machine learning problems
in SnapVX, see http://snap.stanford.edu/snapvx/#examples

2

http://snap.stanford.edu/snapvx/#examples


Putting a problem in SnapVX form

I Step 1: What is the network?

I Step 2: What are the objectives, constraints at each node and edge?

I Step 3: Are they convex?

– If not, how can you form a convex relation of the original problem?

I Step 4: Solve!

I In this presentation, we use a running example to illustrate the
process (predicting housing prices)

– Example comes from “Network Lasso”, KDD 2015

3



Step 1: What is the network?

I Large problems can often be represented as a network

– Nodes - series of subproblems
– Edges - relationships that define the coupling between the different

nodes (entities)

I Examples: cyber-physical, social, financial transactions, . . .

– Representational networks count too! (i.e. graphical models)

4



Application — housing price prediction

I Given: A set of houses

– Attributes: latitude, longitude, general features (# of bedrooms,
square footage, . . .)

I Goal: Build a regression model to predict the sales price of a house

5



Modeling the problem on a network

I Build a housing network where neighboring houses (nodes) are
connected by edges

I Now, each node will solve for a vector xi, the parameters weights in
the regression model used to predict the price of house i

6



What are the objectives and constraints?

I Housing nodes want to build a good model to accurately predict
price

– For example, linear regression: fi(xi) = ‖Axi − b‖22
– A are the feature values, b the sales price

I However, we are building a linear regression model with only one
training example (the house itself!)

I This is where the edge objectives come in. . .

7



Edge objectives

I Housing edges connect nearby houses

– Intuitively, we’d want nearby houses to share similar (or the same)
regression model

I Depending on how we want the penalty to work, we define edge
objectives to yield our desired behavior!

– Network Lasso (‖xi − xj‖2) penalty encourages the graph to cluster
into groups of nodes which share common models of x

– This can be thought of as simultaneously solving for a price
prediction model while also discovering neighborhoods in the real
estate market

I Other penalties can lead to different behaviors

– For example, with Laplacian regularization (‖xi − xj‖22), the housing
model xi will be unique at every house, but will change slowly and
smoothly across the network

8



Tradeoff between node and edge objectives

I For each house, there is a tradeoff between accurately predicting its
own price (the node objective), and agreeing on a similar model as
its neighbors (the objective at each edge)

– In other words, should it pick a “local” or a “global” model?
– Too local: there is not enough data to build a robust classifier, so we

will overfit our model
– Too global: houses will be forced to share common models with

houses very far away on the other side of town
I And with real estate, location is everything!

I SnapVX makes it easy to tune these parameters to find the right
values for each application

– Edge weights, regularization, etc. . .

9



Solving the problem

I Once you’ve set up your graph and objectives, check convexity

– If non-convex, there are many available resources to help “convexify”
your problem (see “Convex Optimization” by Boyd and
Vandenberghe)

I Now, just plug into SnapVX and solve!

10



Sample applications

I For more details on the housing example, see Hallac, Leskovec, and
Boyd, KDD 2015

I Lots of common problems from many different fields can be
efficiently solved via SnapVX

– Event detection
– Consensus and exchange
– Pagerank
– Fixed Routing
– Network inference
– Information diffusion

I See the SnapVX website or the “Examples” folder in the software
download for additional concrete examples!

11



Summary

I SnapVX: http://snap.stanford.edu/snapvx

I A computationally tractable method of leveraging network data

I Fast, scalable, and robust

I The same setup can solve a variety of different problems

12

http://snap.stanford.edu/snapvx


Thanks for reading!

13


