GenBaraHierar

GenBaraHierar(GraphType, Levels, IsDir=True)

Generates a Ravasz-Barabasi deterministic scale-free graph.

Corners of the graph are recursively expanded with miniature copies of the base graph (below). The graph has power-law degree distribution with the exponent 1+ln(5)/ln(4) and clustering coefficient with power-law decay exponent -1. Base graph:

o---o
|\ /|
| o |
|/ \|
o---o

Parameters:

  • GraphType: graph class (input)

    Class of output graph – one of PNGraph, PNEANet, or PUNGraph.

  • Levels: int (input)

    The number of expansions of the base graph.

  • IsDir: bool (input)

    Indicates whether the edges should be directed or undirected. Defaults to directed.

Return value:

  • graph

    A Snap.py graph of the specified type.

For more information see: Hierarchical organization in complex networks. Ravasz and Barabasi. http://arxiv.org/abs/cond-mat/0206130

The following example shows how to generate a Ravasz-Barabasi deterministic scale-free graph (in this case of level 100) using the GenBaraHierar() for classes TNGraph, TUNGraph, and TNEANet:

import snap

Graph = snap.GenBaraHierar(snap.PNGraph, 3, True)
for EI in Graph.Edges():
    print "edge: (%d, %d)" % (EI.GetSrcNId(), EI.GetDstNId())

UGraph = snap.GenBaraHierar(snap.PUNGraph, 3, True)
for EI in UGraph.Edges():
    print "edge: (%d, %d)" % (EI.GetSrcNId(), EI.GetDstNId())

Network = snap.GenBaraHierar(snap.PNEANet, 3, True)
for EI in Network.Edges():
    print "edge: (%d, %d)" % (EI.GetSrcNId(), EI.GetDstNId())

Previous topic

GenSmallWorld

Next topic

GenConfModel

This Page