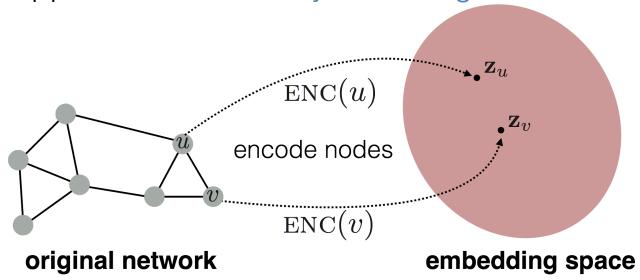
This Talk

- 1) Node embeddings
 - Map nodes to low-dimensional embeddings.
- 2) Graph neural networks
 - Deep learning architectures for graphstructured data
- 3) Applications

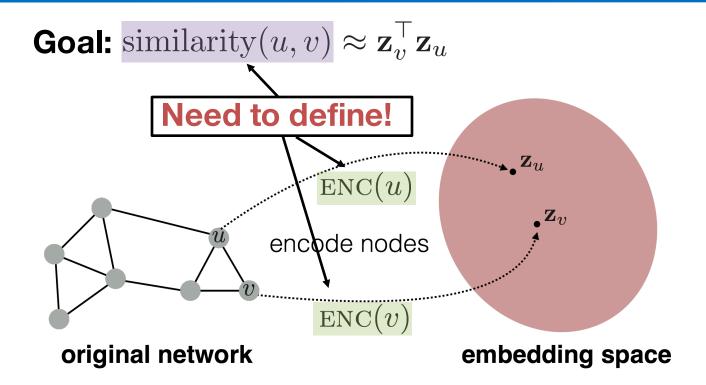
Part 2: Graph Neural Networks

Embedding Nodes

 Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network.



Embedding Nodes



Two Key Components

Encoder maps each node to a lowdimensional vector.
d-dimensional

$$\mathrm{ENC}(v) = \mathbf{z}_v$$
 embedding node in the input graph

 Similarity function specifies how relationships in vector space map to relationships in the original network.

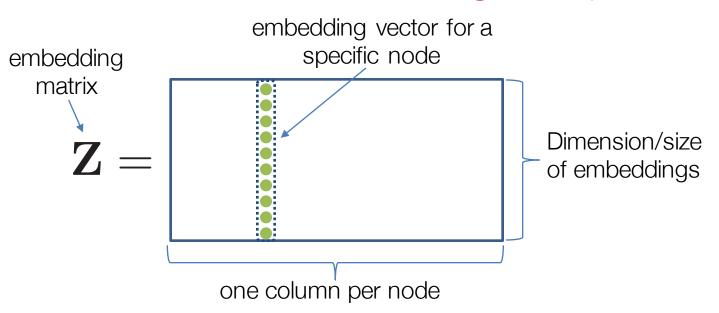
similarity
$$(u, v) \approx \mathbf{z}_v^\top \mathbf{z}_u$$

Similarity of u and v in the original network

dot product between node embeddings

From "Shallow" to "Deep"

 So far we have focused on "shallow" encoders, i.e. embedding lookups:



From "Shallow" to "Deep"

- Limitations of shallow encoding:
 - O(|V|) parameters are needed: there no parameter sharing and every node has its own unique embedding vector.
 - Inherently "transductive": It is impossible to generate embeddings for nodes that were not seen during training.
 - Do not incorporate node features:
 Many graphs have features that we can and should leverage.

From "Shallow" to "Deep"

 We will now discuss "deeper" methods based on graph neural networks.

$$\mathrm{ENC}(v) = \frac{\mathrm{complex\ function\ that}}{\mathrm{depends\ on\ graph\ structure.}}$$

 In general, all of these more complex encoders can be combined with the similarity functions from the previous section.

Outline for this Section

- We will now discuss "deeper" methods based on graph neural networks.
 - 1. The Basics
 - 2. Graph Convolutional Networks (GCNs)
 - 3. GraphSAGE
 - 4. Gated Graph Neural Networks
 - 5. Subgraph Embeddings

The Basics: Graph Neural Networks

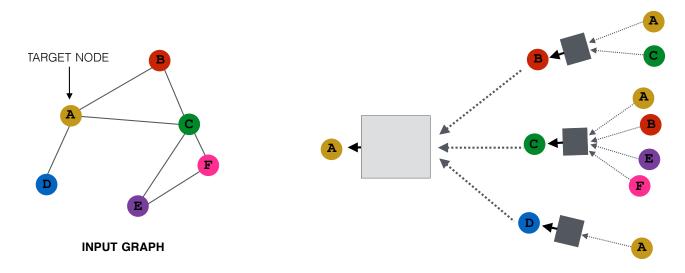
Based on material from:

- Hamilton et al. 2017. <u>Representation Learning on Graphs: Methods</u> and <u>Applications</u>. *IEEE Data Engineering Bulletin on Graph Systems*.
- Scarselli et al. 2005. <u>The Graph Neural Network Model</u>. *IEEE Transactions on Neural Networks*.

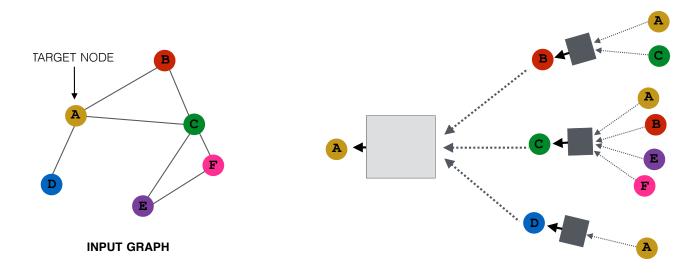
Setup

- Assume we have a graph G:
 - V is the vertex set.
 - A is the adjacency matrix (assume binary).
 - $X \in \mathbb{R}^{m \times |V|}$ is a matrix of node features.
 - Categorical attributes, text, image data
 - E.g., profile information in a social network.
 - Node degrees, clustering coefficients, etc.
 - Indicator vectors (i.e., one-hot encoding of each node)

 Key idea: Generate node embeddings based on local neighborhoods.

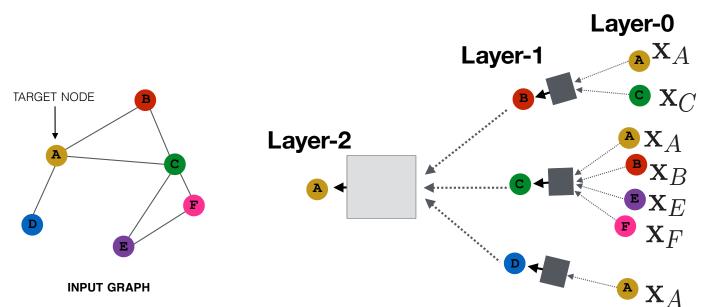


 Intuition: Nodes aggregate information from their neighbors using neural networks



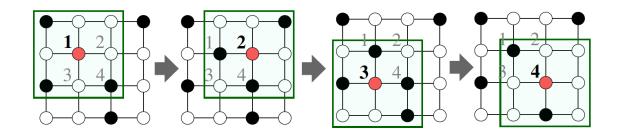
Intuition: Network neighborhood defines a computation graph Every node defines a unique computation graph! INPUT GRAPH

- Nodes have embeddings at each layer.
- Model can be arbitrary depth.
- "layer-0" embedding of node u is its input feature, i.e. x_u .



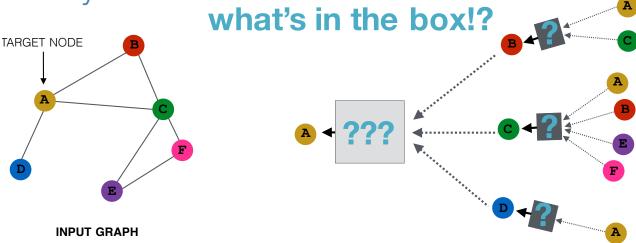
Neighborhood "Convolutions"

 Neighborhood aggregation can be viewed as a center-surround filter.

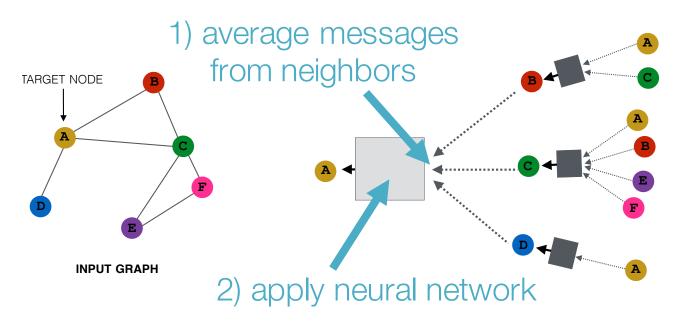


 Mathematically related to spectral graph convolutions (see <u>Bronstein et al., 2017</u>)

 Key distinctions are in how different approaches aggregate information across the layers.

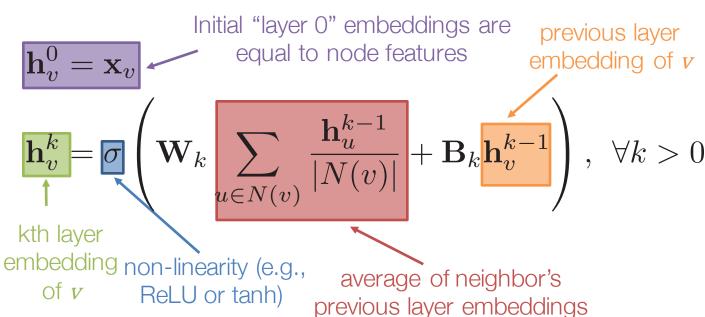


 Basic approach: Average neighbor information and apply a neural network.

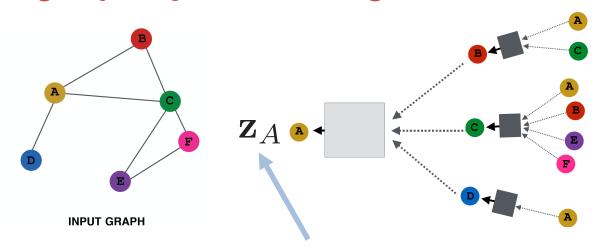


The Math

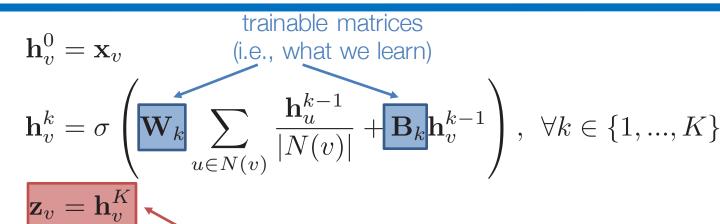
 Basic approach: Average neighbor messages and apply a neural network.



How do we train the model to generate "high-quality" embeddings?



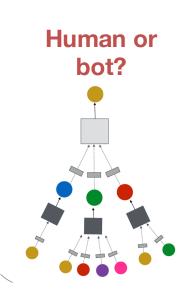
Need to define a loss function on the embeddings, $\mathcal{L}(z_{ij})!$



- After K-layers of neighborhood aggregation, we get output embeddings for each node.
- We can feed these embeddings into any loss function and run stochastic gradient descent to train the aggregation parameters.

- Train in an unsupervised manner using only the graph structure.
- Unsupervised loss function can be anything from the last section, e.g., based on
 - Random walks (node2vec, DeepWalk)
 - Graph factorization
 - i.e., train the model so that "similar" nodes have similar embeddings.

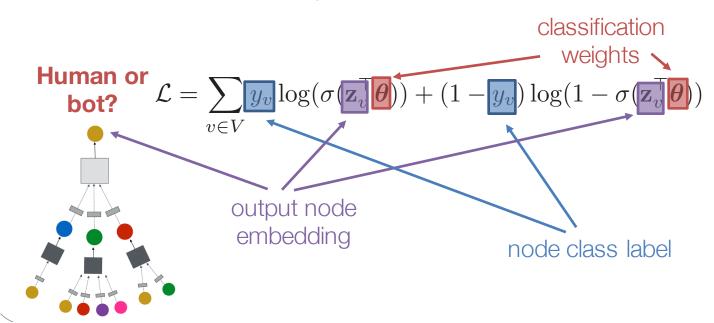
• Alternative: Directly train the model for a supervised task (e.g., node classification):





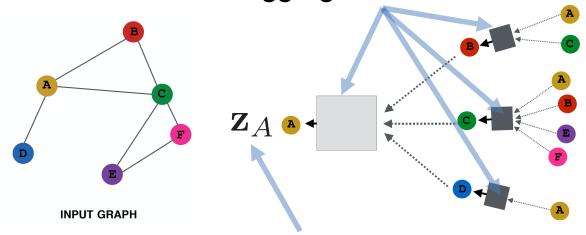
e.g., an online social network

• Alternative: Directly train the model for a supervised task (e.g., node classification):



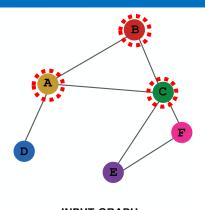
Overview of Model Design

1) Define a neighborhood aggregation function.

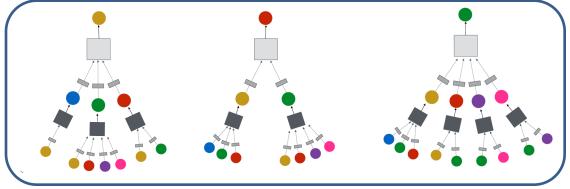


2) Define a loss function on the embeddings, $\mathcal{L}(z_{ij})$

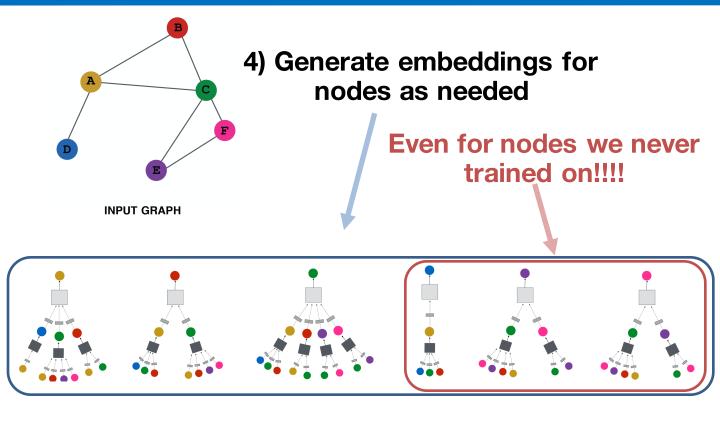
Overview of Model Design



3) Train on a set of nodes, i.e., a batch of compute graphs

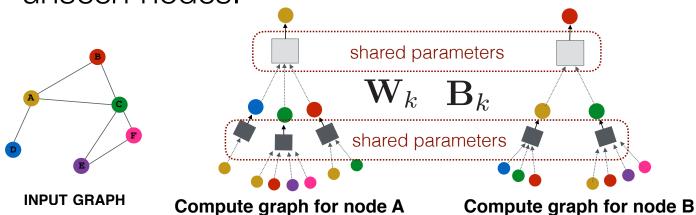


Overview of Model

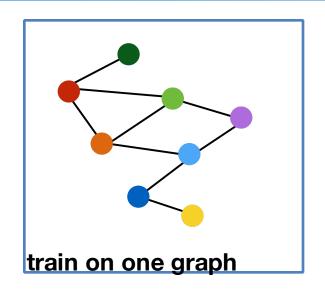


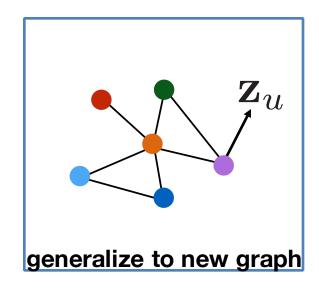
Inductive Capability

- The same aggregation parameters are shared for all nodes.
- The number of model parameters is sublinear in |V| and we can generalize to unseen nodes!



Inductive Capability

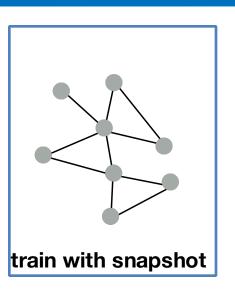


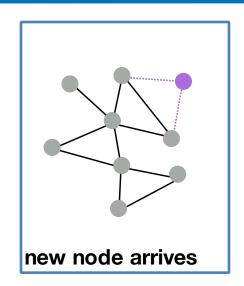


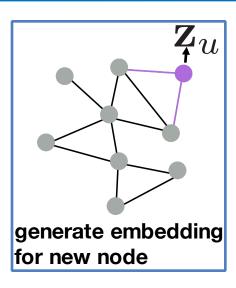
Inductive node embedding -> generalize to entirely unseen graphs

e.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

Inductive Capability







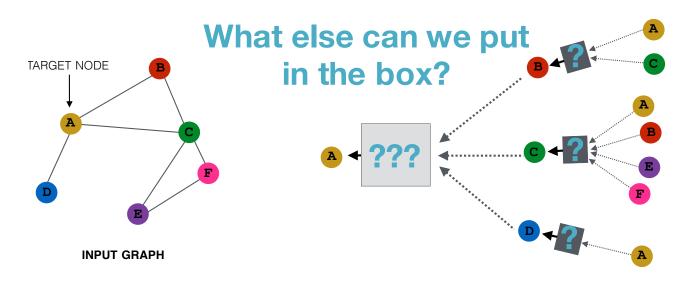
Many application settings constantly encounter previously unseen nodes. e.g., Reddit, YouTube, GoogleScholar,

Need to generate new embeddings "on the fly"

Quick Recap

- Recap: Generate node embeddings by aggregating neighborhood information.
 - Allows for parameter sharing in the encoder.
 - Allows for inductive learning.
- We saw a basic variant of this idea... now we will cover some state of the art variants from the literature.

 Key distinctions are in how different approaches aggregate messages



Outline for this Section

- 1. The Basics
- 2. Graph Convolutional Networks

- 3. GraphSAGE
- 4. Gated Graph Neural Networks
- 5. Subgraph Embeddings

Graph Convolutional Networks

Based on material from:

• Kipf et al., 2017. <u>Semisupervised Classification with Graph Convolutional Networks</u>. *ICLR*.

Graph Convolutional Networks

Kipf et al.'s Graph Convolutional
 Networks (GCNs) are a slight variation on the neighborhood aggregation idea:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v) \cup v} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)||N(v)|}} \right)$$

Graph Convolutional Networks

Basic Neighborhood Aggregation

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$

VS.

GCN Neighborhood Aggregation

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v) \cup v} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)||N(v)|}} \right)$$

same matrix for self and neighbor embeddings

per-neighbor normalization

Graph Convolutional Networks

- Empirically, they found this configuration to give the best results.
 - More parameter sharing.
 - Down-weights high degree neighbors.

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v) \cup v} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)||N(v)|}} \right)$$

use the same transformation matrix for self and neighbor embeddings

instead of simple average, normalization varies across neighbors

Batch Implementation

 Can be efficiently implemented using sparse batch operations:

where
$$\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$$

$$\mathbf{D}_{ii} = \sum_{j} \mathbf{A}_{i,j}$$

O(|E|) time complexity overall.

Outline for this Section

- 1. The Basics ✓
- 2. Graph Convolutional Networks

- 3. GraphSAGE 7
- 4. Gated Graph Neural Networks
- 5. Subgraph Embeddings

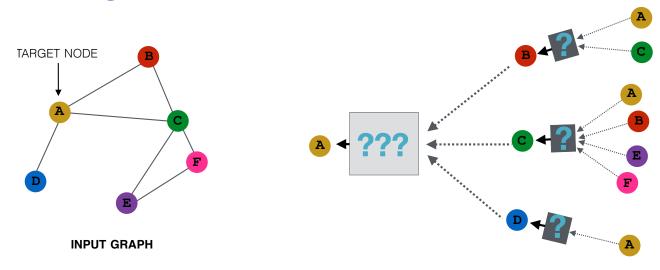
GraphSAGE

Based on material from:

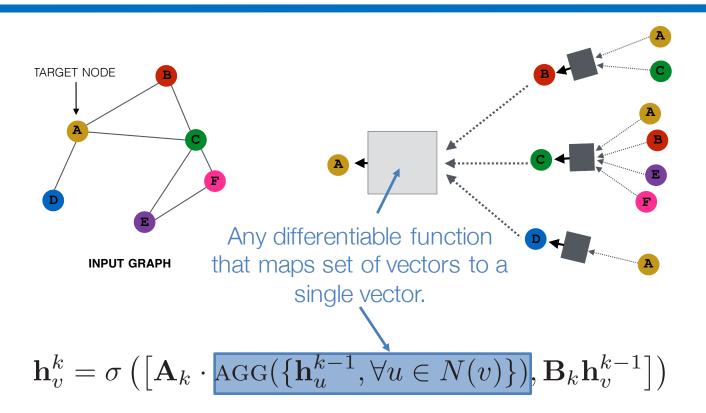
Hamilton et al., 2017. <u>Inductive Representation Learning on Large Graphs</u>.
 NIPS.

GraphSAGE Idea

So far we have aggregated the neighbor messages by taking their (weighted) average, can we do better?



GraphSAGE Idea



GraphSAGE Differences

Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$

GraphSAGE:

concatenate self embedding and neighbor embedding

$$\mathbf{h}_{v}^{k} = \sigma\left(\left[\mathbf{W}_{k} \cdot \overline{\mathbf{AGG}\left(\left\{\mathbf{h}_{u}^{k-1}, \forall u \in N(v)\right\}\right)}, \mathbf{B}_{k} \mathbf{h}_{v}^{k-1}\right]\right)$$

generalized aggregation

GraphSAGE Variants

Mean:

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|}$$

Pool

 Transform neighbor vectors and apply symmetric vector function.
 element-wise mean/max

$$AGG = \gamma(\{\mathbf{Qh}_u^{k-1}, \forall u \in N(v)\})$$

- LSTM:
 - Apply LSTM to random permutation of neighbors.

$$AGG = LSTM ([\mathbf{h}_u^{k-1}, \forall u \in \pi(N(v))])$$

Outline for this Section

- The Basics √
- 2. Graph Convolutional Networks

- 3. GraphSAGE ✓
- 4. Gated Graph Neural Networks

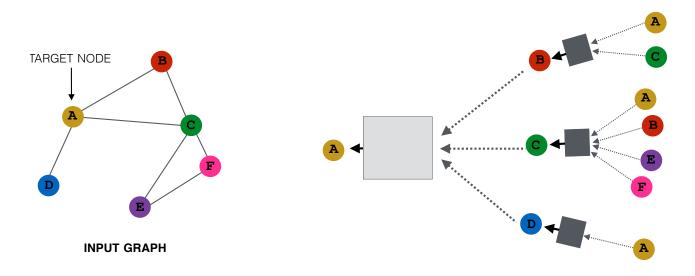
5. Subgraph Embeddings

Based on material from:

• Li et al., 2016. Gated Graph Sequence Neural Networks. ICLR.

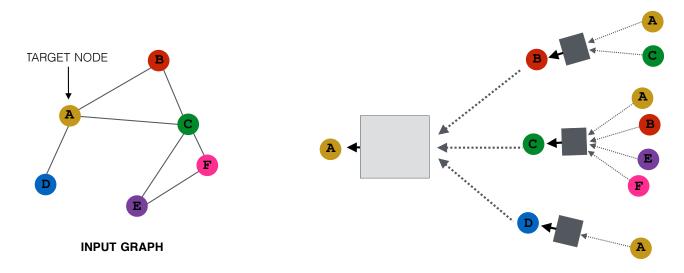
Neighborhood Aggregation

 Basic idea: Nodes aggregate "messages" from their neighbors using neural networks



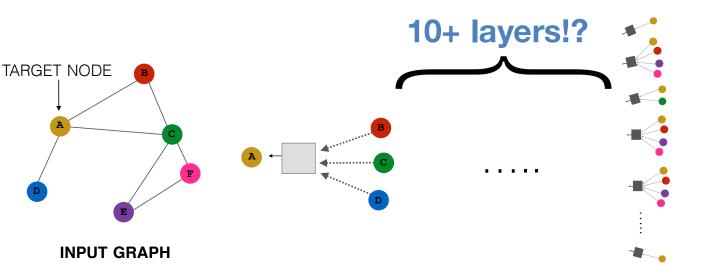
Neighborhood Aggregation

GCNs and GraphSAGE generally only
 2-3 layers deep.



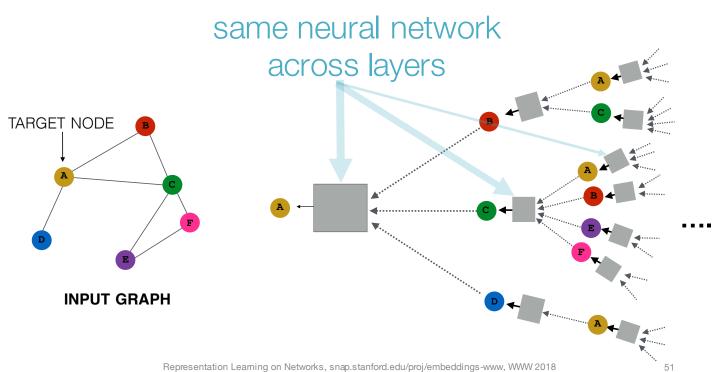
Neighborhood Aggregation

But what if we want to go deeper?

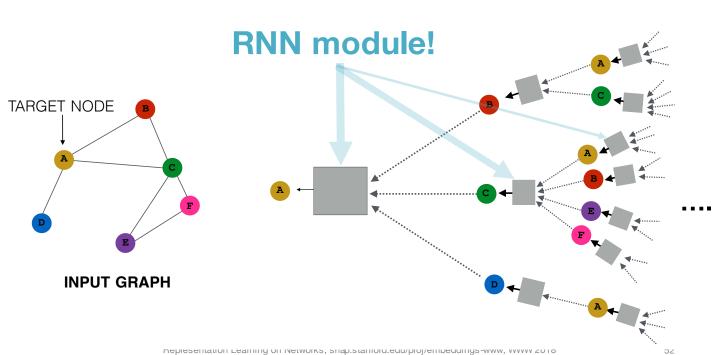


- How can we build models with many layers of neighborhood aggregation?
- Challenges:
 - Overfitting from too many parameters.
 - Vanishing/exploding gradients during backpropagation.
- Idea: Use techniques from modern recurrent neural networks!

Idea 1: Parameter sharing across layers.



Idea 2: Recurrent state update.



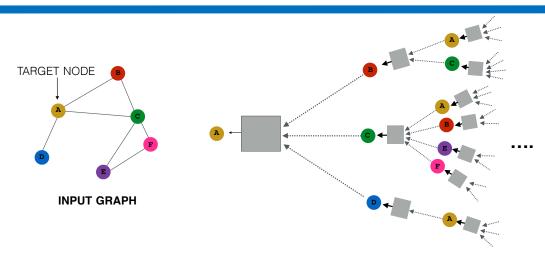
The Math

- Intuition: Neighborhood aggregation with RNN state update.
 - 1. Get "message" from neighbors at step k:

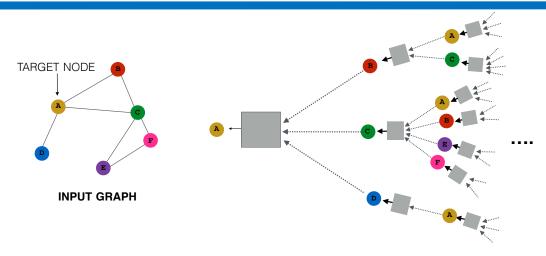
$$\mathbf{m}_v^k = \boxed{\mathbf{W} \sum_{u \in N(v)} \mathbf{h}_u^{k-1}} \quad \text{aggregation function does not depend on } \mathbf{k}$$

2. Update node "state" using <u>Gated Recurrent</u> <u>Unit (GRU)</u>. New node state depends on the old state and the message from neighbors:

$$\mathbf{h}_{v}^{k} = \text{GRU}(\mathbf{h}_{v}^{k-1}, \mathbf{m}_{v}^{k})$$



- Can handle models with >20 layers.
- Most real-world networks have small diameters (e.g., less than 7).
- Allows for complex information about global graph structure to be propagated to all nodes.



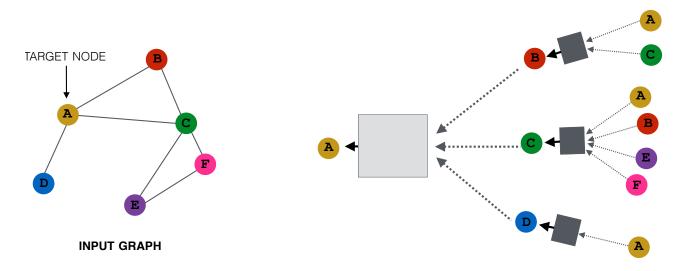
- Useful for complex networks representing:
 - Logical formulas.
 - Programs.

Outline for this Section

- 1. The Basics
- 2. Graph Convolutional Networks
- 3. GraphSAGE ✓
- 4. Gated Graph Neural Networks
- 5. Subgraph Embeddings

Summary so far

 Key idea: Generate node embeddings based on local neighborhoods.



Summary so far

Graph convolutional networks

 Average neighborhood information and stack neural networks.

GraphSAGE

Generalized neighborhood aggregation.

Gated Graph Neural Networks

Neighborhood aggregation + RNNs

Recent advances in graph neural nets (not covered in detail here)

- Attention-based neighborhood aggregation:
 - Graph Attention Networks (Velickovic et al., 2018)
 - GeniePath (<u>Liu et al., 2018</u>)
- Generalizations based on spectral convolutions:
 - Geometric Deep Learning (<u>Bronstein et al., 2017</u>)
 - Mixture Model CNNs (Monti et al., 2017)
- Speed improvements via subsampling:
 - FastGCNs (<u>Chen et al., 2018</u>)
 - Stochastic GCNs (<u>Chen et al., 2017</u>)

Outline for this Section

- 1. The Basics
- 2. Graph Convolutional Networks
- 3. GraphSAGE ✓
- 4. Gated Graph Neural Networks
- 5. Subgraph Embeddings

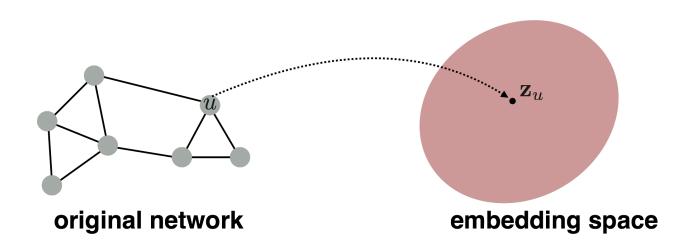
Subgraph Embeddings

Based on material from:

- Duvenaud et al. 2016. <u>Convolutional Networks on Graphs for Learning Molecular Fingerprints</u>. *ICML*.
- Li et al. 2016. <u>Gated Graph Sequence Neural Networks</u>. ICLR.

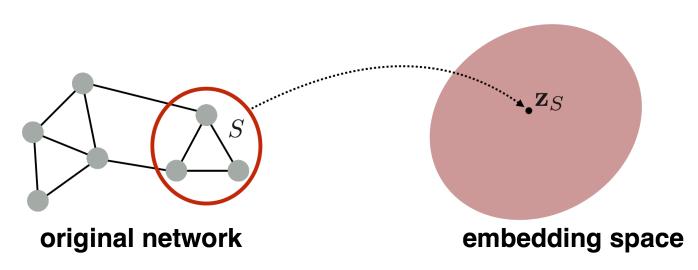
(Sub)graph Embeddings

So far we have focused on nodelevel embeddings...



(Sub)graph Embeddings

But what about subgraph embeddings?



Approach 1

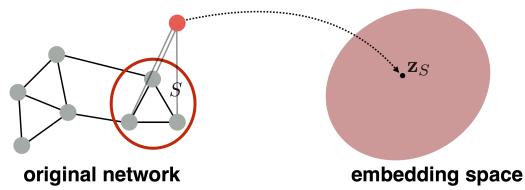
 Simple idea: Just sum (or average) the node embeddings in the (sub)graph

$$\mathbf{z}_S = \sum_{v \in S} \mathbf{z}_v$$

 Used by <u>Duvenaud et al., 2016</u> to classify molecules based on their graph structure.

Approach 2

 Idea: Introduce a "virtual node" to represent the subgraph and run a standard graph neural network.



 Proposed by <u>Li et al., 2016</u> as a general technique for subgraph embedding.

(Sub)graph Embeddings

Still an open research area!

- How to embed (sub)graphs with millions or billions of nodes?
- How to do analogue of CNN "pooling" on networks?