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Abstract

Network models have been popular for modeling and repregpodmplex rela-
tionships and dependencies between observed variablegtwork can be ex-
plored by estimating the sparse precision matrix of the fesevariables. This
work consider a scenario where data comes from a dynamibastic process, so
that a single static network model cannot adequately cejptansient dependen-
cies, such as, gene regulatory dependencies throughouebpmental cycle of
an organism. Itis assumed that the data can be partitioted imumber of blocks,
so that one precision matrix fits data in each block, whiabwedlfor modeling and
exploration of more general data sets. Without knowing tinalmer of blocks or
the boundaries of the partitions, an estimation procedudeveloped that jointly
estimates the partition boundaries and the coefficientefpiarse precision matrix
on each block of the partition. Convergence rates of botlpénttion boundaries
and the network structure are established.

1 Introduction

In recent years, we have witnessed fast advancement ofadgtasition techniques in many ar-
eas, including biological domains, engineering and sawances. As a result, new statistical and
machine learning techniques are needed to help us devettgr bhaderstanding of complexities
underlying large, noisy data sets. Networks have been carynused to abstract noisy data and
provide an insight into regularities and dependencies éetvwobserved variables. Recent popular
techniques for modeling and exploring networks estimagesfharse precision matrix, which is the
inverse of the covariance matrix, since the elements of theigion matrix represent the associa-
tions or conditional covariances between correspondiniglvigs. Once the sparse precision matrix
is estimated, the network is drawn by connecting variablees& corresponding elements of the
precision matrix are non-zero. The problem of estimatirgptecision matrix with zeros is known
in the statistical literature as covariance selectionnasduced in the seminal paper by [3].

Let D = {x!,...,x"} be an independent and identically distributed sample @aegrto ap-
dimensional multivariate normal distributiov, (0, 3), whereX is the covariance matrix. L& :=

> ~1! denote the precision matrix, with elemefis,;), 1 < a,b < p. In the case of the multivariate
normal distribution, the precision matrf2 encodes the conditional independence structure of the
distribution and the pattern of the zero elements in theigi@t matrix define the structure of the
associated grap@d. In particular, an edgéu, b) is element of the edge set if and only if the element
of the precision matrixv,; is non-zero. Covariance selection deals exactly with tlublpm of
estimating the non-zero elements$ffrom the sampleD. Since the work of [3], there has been
a lot of work on model selection and parameter estimatiorhefgrecision matrix in the GGM,
which we do not plan summarize here. Recently proposed rdethtimate the sparse precision
matrix by optimizing penalized likelihood [20, 4, 1, 16, 8, 22] or through neighborhood selection
[10, 12, 6, 19], where the structure of the graph is estimhyeektimating the neighborhood of each



node. Both of these approaches are suitable for high-dimesisproblems, even when>> n, and
can be efficiently implemented using scalable convex progralvers.

Most of the above mentioned work assumes that one networlehigdufficient to describe the
dependencies in the observed data. Often such assumpt®nstgjustified. For example, when
data consists of microarray measurements of the gene siqmésvels collected throughout the cell
cycle or development of an organism, different genes aresadtiring different stages. This suggests
that different distributions and hence different netwoskeuld be used to describe dependencies
between measured variables at different time intervalsthig paper we are going to tackle the
problem of estimating the structure of the GGM when the stiecis allowed to change over time.
By assuming that the parameters of the precision matrixgdarith time, we obtain extra flexibility
to model a larger class of distributions while still retaigithe interpretability of the static GGM. In
particular, as the coefficients of the precision matrix deaver time, we also allow the structure
of the underlying graph to change as well.

Let {x'};c;n) € R? be a sequence of independent observations (we Ls€ to denote the set
{1,...,n}) from ap-dimensional multivariate normal distribution, not nesadly the same for
every observation. Lef3’},c ) be a disjoint partitioning of the s¢t] where each block of the

partition consists of consecutive elements, thassisn B/ = () for j # j’ and U, B’ = [n] and
B = [Tj,1 IT]'] = {ijl,,l—vjflﬂ-].,...,jjj—].}. LetT := {To =1<Ti<...<Tp :n—|—1}
denote the set of partition boundaries. We will considerfdfiewing model

x' ~ NH(0,37), i€ B, (1)

so that observations indexed by elements3inare p-dimensional realizations of a multivariate
normal distribution with zero mean and the covariance m&i = (07, ), e[y Let := (27)~*

denote the precision matrix with elemerts), ), ,c(,. With the number of partitionsi3, and the
boundaries of partitiong], unknown, we study the problem of estimating the non-zezmehts of
the precision matrice$Q’} (5| from the samplex’};c(,. In particular, we study the problem
where the coefficients are piece-wise constant functionsn&. A scenario where the coefficients
are smoothly varying functions of time has been considaerg¢@2] for the GGM and in [7] and [8]
for the discrete MRF.

If the partitions{37 }; were known, the problem would be trivially reduced to theisgtanalyzed

in the previous work. Dealing with the unknown partitionsgether with the structure estimation
of the model, calls for new methods. We propose and analyzethad based otime-coupled
neighborhood selection, where the regression coefficiargsforced to stay similar across time
using a fusion-type penalty and the sparsity of each neigdiidmal is obtained through the penalty.
Details of the approach are givengd. The structural changes are commonly determined through
hypothesis testing and a separate linear model is fit to efatie @stimated segments. In our work,
we use the penalized model selection approach to jointlynast the partition boundaries and the
model parameters.

2 Graph estimation via Tempor al-Difference L asso

In this section, we introduce our covariance selectiongdace, which is based on the neighborhood
selection using the fused-type penalty. We call the prapp@secedure Temporal-Difference Lasso
(TD-Lass9. We start by reviewing the neighborhood selection prooedwhich has previously
been used to estimate graphs in, for example, [12, 10, 135i6t, we relate the elements of the
precision matrix2 to a regression problem. Let the sgtto denote the neighborhood of the node
a. DenoteS, the closure ofS,, S, := S, U {a}, andN, the set of nodes not in the neighborhood
of the nodeu, N, = [p]\S,. It holds thatX, 1| Xy, |Xgs,. The neighborhood of the nodecan

be easily seen from the non-zero pattern of the elementseipitbcision matrix2, S, = {b €
[p]\{a} : wap # 0}. Furthermore, it is a well known result for Gaussian graphicodels that we
can writeX, = Zbesa X0y + €, wheree is independent ok , andd = —Wab/Waq- Therefore,
the neighborhood of a node S,, is equal to the set of non-zero coefficient®6f This relationship
was used in [10] to estimate the coefficie@tsusing the Lasso.

In this paper, we build on the neighbourhood selection gloto estimate the changing graph
structure in model (1). We us®’ to denote the neighborhood of the naden the block’ and



N to denote nodes not in the neighborhood of the noda thejj-th block, N7 = V\S7. The set
Sa is used to denote the union of all neighborhoods of the node, = U;c(5S;. Consider the
following estimation procedure

2
3% = argmin Z (mz - Z wiﬁb,i) +peny, »,(B) @)
BERP—1xn i€[n] be\a
£(B)

where the penalty is defined as

n

peny, \,(8) =20 ) (1B — Buicallz+2X02 D> > |Bul- ©)

i=2 i=1be\a

The penalty term is constructed from two terms. The first tenmsures that the solution is going
to be piecewise constant for some partition[of (possibly a trivial one). The first term can be
seen as a sparsity inducing term in the temporal domaine strpenalizes the difference between
the coefficients3. ; and3. ;41 at successive time-points. The second term results in atsrhat

have many zero coefficients at each block of the partitiore d$timated set of partition boundaries

T={Th = 1}u{Ty € 2:n] : B, # B }U{T; = n+ 1} contains indices of

points at which a change is estimated, withbeing an estimate of the number of blocks The

estimated number of the blodk is controlled through the user defined penalty parametewhile
the sparsity of the neighborhood is controlled through taeglty parametexs.

Based on the estimated set of partition boundafiesve can define the neighborhood estimate of
the node: for each estimated block. L6t/ = 5% Vi € [T;_; : ;] be the estimated coefficient
vector for the block3’ = [T}_; : T}]. Using the estimated vectér-7, we define the neighborhood
estimate of the node for the block37 as S/ := S(6%7) := {b € \a : 67 # 0}. Solving (2)
for each node € V gives us a neighborhood estimate for each node. Combinegetghborhood
estimates we can obtain an estimate of the graph structusaéh point € [n].

The choice of the penalty term is motivated by the work on peai@on using total variation [15,

9], which results in a piece-wise constant approximatioarmfinknown regression function. The
fusion-penalty has also been applied in the context of nauitite linear regression [17], where
the coefficients that are spatially close, are also biasdwve similar values. As a result, nearby
coefficients are fused to the same estimated value. Insteaaalizing the/; norm on the difference
between coefficients, we use thenorm in order to enforce that all the changes occur at the same
point.

2.1 Numerical procedure

Finding a minimizer3“ of (2) can be a computationally challenging task for an bé-shelf convex
optimization procedure. We propose two use an acceleragmtiemt method with a smoothing
technique [11], which converges @(1/¢) iterations where is the desired accuracy.

We start by defining a smooth approximation of the fused pgraim. LetH € R™*"~! be a
matrix with elements-1 wheni = j, 1 wheni = j + 1 and 0 otherwise. With the matrid we can
define the following smooth approximation to the fused pignal
] = U, 2\, 8H) — p||U|[?
u(B) = max (U, 20 SH)) — u[[U][p
whereQ = {U € RP~1xn=1 + ||U |l < 1, Vi € [n — 1]} andp > 0 is the smoothness
parameter. We have thét,(3) < ¥ (8) < ¥,(8) + u(n — 1). Setting the smoothness parameter

topu = ﬁ the correct rate of convergence is ensured. From [11], we H@at¥,(3) is
continuously differentiable and convex, with the gradient
AGH

vV, (8) = 2)\1HQ(ﬁT)H’ 4)

that is Lipschitz continuous. Heléy(+) is the projection operator onto the 2t



Algorithm: Accelerated Gradient Method for Equation (2)
Input: X € R"¥P, Bg € RP~1X" v > 1, L >0, u = D)
Output: 3*
Initialize k := 1, ay := 1, z, := By
repeat

while F'(pr(z)) > Qr(pr(zk), z,) do

L:=~L

Br = pr(zx) (using Eq. (6))

Zp+1 = Bk + i’;i;l(ﬁk — Br-1)
until convergence
B¢ := B

With the above defined smooth approximation, we focus onmizing the following objective

in F(B) = in L v 2\ .
g, F(B) =, min, £(B) +¥,(8) +2xlIBll

Following [2], we define the following quadratic approxinaat of F'(3) at a point3,

QL(B,Bo) = L(Bo)+Y,.(Bo)+ (B — Bo, VL(Bo) + V‘If(ﬁo)»-f—§||ﬂ—50|\%+2>\2|\5|\1 5)

whereL > 0 is the parameter chosen as an upper bounds for the Lipsdmistant ofV L + V.
Let pr.(Bo) be the minimizer ofy (3, Bv), which can be obtained in a closed form, as a result of
the soft-thresholding,

pL(Bo) = T(ﬁo - %(Vﬁ + V) (Bo), 222> (6)

whereT'(z, \) = sign(z) max(0, |z| — ) is the element-wise soft-thresholding operator.

In practice, an upper bound on the Lipschitz constant 6f+ V¥ can be expensive to compute, So
the parameter. is going to be determined iteratively. The algorithm is gia the top of the page.
The constanty is used to increase the estimate of the Lipschitz condtamtrom [2] we have that
the algorithm converges i@(1/¢) iterations.

3 Theoretical results

This section is going to address the statistical propedidbe estimation procedure presented in
Section 2. The properties are addressed in a double asyoifpembhework where the dimensionality
p = p(n) is allowed to grow with the sample size. For the simplicitytioé presentation, the
number of blocksB is assumed to be fixed and known in advanier the asymptotic framework
to make sense, we assume that there exists a fixed unknowersgof number$7; } that defines
the partition boundaries & = |n7; |, where|a| denotes the largest integer smaller thafThis
assures that as the number of samples grow, the same fratamples falls into every partition.
We call{7;} the boundary fractions.

We give sufficient conditions under which the sequeficg is consistently estimated. In partic-
ular, we show thatnax;cp) |T; — Tj| < nd, with probability tending to 1, whergo, }, is a
non-increasing sequence of positive numbers that tendsreo ¥Vith the boundary segments con-
sistently estimated, we further show that under suitabtalitmns for each node € V' the correct
neighborhood is selected on all estimated block partittbasare sufficiently large.

lWe have also a stronger result that does not need this assumptiorill matinclude it here.



The proof technique employed in this section is quite inedlvso we briefly describe the steps
used. Our analysis is based on careful inspection of thenalfity conditions that a solutiof® of
the optimization problem (2) need to satisfy. The KarushuiTucker (KKT) conditions, which
are sufficient and necessary f8f to be a solution of (2), are given #8.2. Using the optimality
conditions, we establish the rate of convergence for thetioarboundaries. This is done by proof
by contradiction. Suppose that there is a solution with #uitoon boundary7 that if far from 7.
Then we show that, with high-probability, all such solusanill not satisfy the KKT conditions and
therefore cannot be optimal. This shows that all the sabgtio the optimization problem (2) result
in partition boundaries that are “close” to the true partitboundaries, with high-probability. We
can further show that the neighborhood estimates are ¢enslisestimated, under the assumption
that the estimated blocks of the partition have enough sssngur analysis is going to focus on
one node: € V and its neighborhood. However, using the union bound oVeodles inV, we will

be able to carry over conclusions to the whole graph. To siynplir notation, when it is clear from

the context, we will omit the superscriptand write3, 8 and.S, etc., to denotg?, ¢ andS,, etc.

3.1 Assumptions

Before presenting our theoretical results, we give someaitiefis and assumptions that are going
to be used in this section. L&, := min;¢(p |T; — Tj_1| denote the minimum length between

change points{ i, := mingey minjep_q) |07+ — 67|, denote the minimum jump size and

Omin = Mingey Minjc|p) Minge g; |9§’j\ the minimum coefficient size. Throughout the section, we
assume that the following holds.

A1l There exist two constanig,;, > 0 and¢,,.x < oo such thatp,,;;, = min {Amin(z‘ga sa) RS
[B],a € V} anddumax = max {Amax(T% ¢ )1 j € [Bl,a eV}
A2 Variables are scaled so that, = 1 forall j € [B] and alla € V.

The assumptioi\1 is commonly used to ensure that the model is identifiable hdf gopulation
covariance matrix is ill-conditioned, the question of th@rect model identification if not well
defined, as a neighborhood of a node may not be uniquely defiffedassumptioA2 is assumed
for the simplicity of the presentation. The common variacae be obtained through scaling.

A3 There exists a constanf > 0 such thatnax,cy max; ye(s [|0%% — 647||2 < M.

The assumptioi3 states that the difference between coefficients on tworeiffieblocks |0 —
0%7||2, is bounded for alj, & € [B]. This assumption is simply satisfied if the coefficieftswere
bounded in thés norm.

A4 There exist a constant € (1/2, 1], such that the following holds

sup [En, 5,(Zs,5,) o S1-a,  VaeV,
=

where the supremum is taken oer; ;37 : v; >0, 3, v; = 1}.

The assumptiorA4 states that the variables in the neighborhood of the nqdg,, are not too
correlated with the variables in the s¥t,. We need this assumption in order to prove that even
when the partition boundaries are not correctly estimatsel neighborhood estimated on a block
of the estimated partition does not include variables frbm $etN,. This assumption is more
restrictive than the commonly assumed irrepresentabldition (see for example [21, 18]), which
is sufficient and necessary for the correct identificatiothefneighborhood on the blod¥ if the
partition boundaries were known.

A5 There exists a small constant> 0, so that for ally1, 45 € [0, 6) the following holds
129, (5%, ) e < 1—a, Vi€ [BlVaeV,

whereXi = (146, + 02) (X7 + 6,571 + §,%711) anda is defined inA4.



The conditionA5 is again related to the correct estimation of the neighbmihan the blocki3’.
The assumption is needed in order to show that even when ttiggaboundaries are not exactly
recovered, the correct neighborhood can be estimated diidble5”.

A6 There exists a constafif > 0 such that the number of variablgs= p,, satisfyp,, = O(n’).
The maximum degree of a node is assumed to be constaat,O(1). The minimum

coefficient Sizé,,i, satisfieDmin = Q(y/logn/n).

The assumption implies that our procedure can be used toastithe graph structure in a high-
dimensional setting withh > n. The bound on the degree of nodes is imposed for the simplicit
of the presentation and can be relaxed at the expense of monglex proofs. Our arguments can
be modified to allow for the maximum degree of a nade grow with the sample size. The lower
bound on the minimum coefficient si#g,;, is necessary, since if a partial correlation coefficient is
too close to zero the edge in the graph would not be detectable

A7 The sequence of partition boundarigs; } satisfyT; = |nr; |, where{r;} is a fixed, unknown
sequence of the boundary fractions belongin{ptd].

The assumption is needed for the asymptotic setting.nAs oo, there will be enough sample
points in each of the blocks to estimate the neighborhoodés correctly.

3.2 Characterization of solutions

Although the optimization problem in (2) is convex, thereynba multiple solutions to it, since it is
not strictly convex. Using Karush-Kuhn-Tucker condition® can characterize any solution of (2).
Lemma 1. A matrix 3 is optimal for the optimization probler?) if and only if there exist a
collection of subgradient vectorsz'};c(2., and {y};cpny, With 2 € 9(|8.; — B.i-1]> and
y' € 9||B..i]1, that satisfies

> xl (Xl B = Ba) =D oxle H2F D) 9 =0 7)
i=k

i=k i=k

forall k € [n] andz! = z"T! = 0.

While there may be multiple solutions to the problem (2), ursdene conditions, we can character-
ize the sparsity pattern of any solution that has specifietitipa boundaries .

Lemma 2. Let3 be a solution tq2), with 7~ being an associated estimate of the partition bound-
aries. Suppose that the subgradient vectors satigfy < 1 for all b ¢ S(3.;), then any other
solution3 with the partition boundarie§ satisfys, ;, = 0forall b & S(8.,).

The above Lemma states sufficient conditions under whictsjaesity patter of a solution with

the partition boundar§™ is unique. Note, however, that there may other solutiong}dhat have
different partition boundaries.

3.3 Someresults

Suppose that we know that there is a solution to the optimoizgiroblem (2) with the partition
boundary7". Then that solution is also a minimizer of the following atijee
P ~ . . B ) ) B ~ . .
min Y X =X +22 ) 1167 -0 b2 Y B0 (@)
eeey jEB j=2 j=1

Note that the problem (8) does not give a practical way ofiagl{2), but will help us to reason about
the solutions of (2). Le{r, } is an increasing sequence, to be characterized below. Gliigyw
characterize the neighborhood of the nadehenever the estimated block of the partition contains
more samples than,. We have the following proposition.



Figure 1: The figure illustrates where we expect to estimateighborhood of a node consistently.
The blue region corresponds to the overlap between the toek tbounded by gray lines) and the

estimated block (bounded by black lines). If the blue reggomuch larger than the orange regions,
the additional bias introduced from the samples from thegeaegion will not considerably affect

the estimation of the neighborhood of a node on the blue negldowever, we cannot hope to

consistently estimate the neighborhood of a node on thegersagion.

Proposition 3. Let {ﬁ.7i}i€[n] be any solution of2) and let7 be the associated estimate of the
block partition. Assume that1-A4 and A6-A7 hold. Let{r,},>1 be an increasing sequence of
numbers that satisf{r, o) "*A; — 0 andr, A2 — oo asn — oo. Then for all blocks3* defined
by the partition7 that satisfy|3*| > r,, we have

P[S(6%) C S] — 1.
The above statement holds uniformly for all solutieﬁﬁls’i}ie[n] of (2).

Suppose that the penalty parameters satisfy

A1 < A2 = O(y/logn/n), 9)

then, using proposition 3, on the blocks that are of sizeastte, = Q(n/logn), we have that the
estimated neighborhood is containeddn We will use this fact to prove the following result on
the convergence rate of the estimated boundariés. dfirst, under the assumption that the correct
number of blocks is known.

Theorem 4. Let{xi}ie[n] be a sequence of observation according to the mod@)inrAssume that
the conditions of proposition 3 are satisfied and that thegltgrparameters\; and A\, satisfy(9).
Let{d, }»>1 be a non-increasing positive sequence that converges toazer — oo and satisfies
Apmin > nd, for all n > 1. Furthermore, suppose thétd,,&min) 1A — 0, €1 v/sA2 — 0 and

(EminV/nd,) " 1/slogn — 0, then if| 7| = B + 1 the following holds

—1
min

Plmax |T; — T < né,] — 1.
[max [T, = T3] < s,

Suppose thai,, = (logn)?/n for somey > 1 and&i, = Q(/logn/(logn)?), the conditions of
theorem 5 are satisfied, and we have that the sequence ofdigurattions{r; } is consistently esti-
mated. Since the boundary fractions are consistently agtithwe will see below that the estimated

neighborhoods(67) on the blocki3? consistently recovers the true neighborhstd
Figure 1 illustrates the idea of correct neighborhood esiion on sufficiently large blocks.

Theorem 5. Let {x'};¢c n) be a sequence of observation according to the modél)jn Assume
that the conditions of theorem 4 are satisfied. In additiampose thaiA5 also holds. Then, if

17| = B + 1, it holds that

P[S* = S(6%)] -1, Vke[B].

Under the assumptions of theorem 4 each estimated blocksz®@®(n). As a result, there are
enough samples in each block to consistently estimate ttierlying neighborhood structure. Ob-

serve that the neighborhood is consistently estimateddtiea 57 N B7 for all j € [B] and the
error is made only on the small fraction of samples, when3’ N 37, which is of orderO(né,,).



4 Discussion

We have addressed the problem of covariance selection \wkamtlerlying probability distribution
changes abruptly at some points in time. Using a penalize&thberhood selection approach with
the fused-type penalty, we are able to consistently estirtiates when the distribution changes.
Furthermore, our procedure estimates the network stictomsistently whenever there is a large
overlap between the estimated blocks and the unknown taekdlof samples coming from the
same distribution. Applications of the proposed approacige from cognitive neuroscience, where
the problem is to identify changing associations betweéferéint parts of a brain when presented
with different stimuli, to system biology studies, where tlask is to identify changing patterns of
interactions between genes involved in different cellplarcesses.
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