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Abstract

Network models have been popular for modeling and representing complex rela-
tionships and dependencies between observed variables. A network can be ex-
plored by estimating the sparse precision matrix of the observed variables. This
work consider a scenario where data comes from a dynamic stochastic process, so
that a single static network model cannot adequately capture transient dependen-
cies, such as, gene regulatory dependencies throughout a developmental cycle of
an organism. It is assumed that the data can be partitioned into a number of blocks,
so that one precision matrix fits data in each block, which allows for modeling and
exploration of more general data sets. Without knowing the number of blocks or
the boundaries of the partitions, an estimation procedure is developed that jointly
estimates the partition boundaries and the coefficient of the sparse precision matrix
on each block of the partition. Convergence rates of both thepartition boundaries
and the network structure are established.

1 Introduction

In recent years, we have witnessed fast advancement of data-acquisition techniques in many ar-
eas, including biological domains, engineering and socialsciences. As a result, new statistical and
machine learning techniques are needed to help us develop better understanding of complexities
underlying large, noisy data sets. Networks have been commonly used to abstract noisy data and
provide an insight into regularities and dependencies between observed variables. Recent popular
techniques for modeling and exploring networks estimate the sparse precision matrix, which is the
inverse of the covariance matrix, since the elements of the precision matrix represent the associa-
tions or conditional covariances between corresponding variables. Once the sparse precision matrix
is estimated, the network is drawn by connecting variables whose corresponding elements of the
precision matrix are non-zero. The problem of estimating the precision matrix with zeros is known
in the statistical literature as covariance selection, as introduced in the seminal paper by [3].

Let D = {x1, . . . ,xn} be an independent and identically distributed sample according to ap-
dimensional multivariate normal distributionNp(0,Σ), whereΣ is the covariance matrix. LetΩ :=
Σ−1 denote the precision matrix, with elements(ωab), 1 ≤ a, b ≤ p. In the case of the multivariate
normal distribution, the precision matrixΩ encodes the conditional independence structure of the
distribution and the pattern of the zero elements in the precision matrix define the structure of the
associated graphG. In particular, an edge(a, b) is element of the edge set if and only if the element
of the precision matrixωab is non-zero. Covariance selection deals exactly with the problem of
estimating the non-zero elements ofΩ from the sampleD. Since the work of [3], there has been
a lot of work on model selection and parameter estimation of the precision matrix in the GGM,
which we do not plan summarize here. Recently proposed method estimate the sparse precision
matrix by optimizing penalized likelihood [20, 4, 1, 16, 5, 14, 22] or through neighborhood selection
[10, 12, 6, 19], where the structure of the graph is estimatedby estimating the neighborhood of each
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node. Both of these approaches are suitable for high-dimensional problems, even whenp ≫ n, and
can be efficiently implemented using scalable convex program solvers.

Most of the above mentioned work assumes that one network model is sufficient to describe the
dependencies in the observed data. Often such assumptions are not justified. For example, when
data consists of microarray measurements of the gene expression levels collected throughout the cell
cycle or development of an organism, different genes are active during different stages. This suggests
that different distributions and hence different networksshould be used to describe dependencies
between measured variables at different time intervals. Inthis paper we are going to tackle the
problem of estimating the structure of the GGM when the structure is allowed to change over time.
By assuming that the parameters of the precision matrix change with time, we obtain extra flexibility
to model a larger class of distributions while still retaining the interpretability of the static GGM. In
particular, as the coefficients of the precision matrix change over time, we also allow the structure
of the underlying graph to change as well.

Let {xi}i∈[n] ∈ R
p be a sequence ofn independent observations (we use[n] to denote the set

{1, . . . , n}) from a p-dimensional multivariate normal distribution, not necessarily the same for
every observation. Let{Bj}j∈[B] be a disjoint partitioning of the set[n] where each block of the

partition consists of consecutive elements, that is,Bj ∩ Bj′ = ∅ for j 6= j′ and
⋃

j Bj = [n] and
Bj = [Tj−1 : Tj ] := {Tj−1, Tj−1+1, . . . , Tj − 1}. LetT := {T0 = 1 < T1 < . . . < TB = n+1}
denote the set of partition boundaries. We will consider thefollowing model

xi ∼ Np(0,Σ
j), i ∈ Bj , (1)

so that observations indexed by elements inBj are p-dimensional realizations of a multivariate
normal distribution with zero mean and the covariance matrix Σj = (σj

ab)a,b∈[p]. LetΩj := (Σj)−1

denote the precision matrix with elements(ωj
ab)a,b∈[p]. With the number of partitions,B, and the

boundaries of partitions,T , unknown, we study the problem of estimating the non-zero elements of
the precision matrices{Ωj}j∈[B] from the sample{xi}i∈[n]. In particular, we study the problem
where the coefficients are piece-wise constant functions oftime. A scenario where the coefficients
are smoothly varying functions of time has been considered in [22] for the GGM and in [7] and [8]
for the discrete MRF.

If the partitions{Bj}j were known, the problem would be trivially reduced to the setting analyzed
in the previous work. Dealing with the unknown partitions, together with the structure estimation
of the model, calls for new methods. We propose and analyze a method based ontime-coupled
neighborhood selection, where the regression coefficientsare forced to stay similar across time
using a fusion-type penalty and the sparsity of each neighborhood is obtained through theℓ1 penalty.
Details of the approach are given in§2. The structural changes are commonly determined through
hypothesis testing and a separate linear model is fit to each of the estimated segments. In our work,
we use the penalized model selection approach to jointly estimate the partition boundaries and the
model parameters.

2 Graph estimation via Temporal-Difference Lasso

In this section, we introduce our covariance selection procedure, which is based on the neighborhood
selection using the fused-type penalty. We call the proposed procedure Temporal-Difference Lasso
(TD-Lasso). We start by reviewing the neighborhood selection procedure, which has previously
been used to estimate graphs in, for example, [12, 10, 13, 6].First, we relate the elements of the
precision matrixΩ to a regression problem. Let the setSa to denote the neighborhood of the node
a. DenoteS̄a the closure ofSa, S̄a := Sa ∪ {a}, andNa the set of nodes not in the neighborhood
of the nodea, Na = [p]\S̄a. It holds thatXa ⊥ XNa

|XSa
. The neighborhood of the nodea can

be easily seen from the non-zero pattern of the elements in the precision matrixΩ, Sa = {b ∈
[p]\{a} : ωab 6= 0}. Furthermore, it is a well known result for Gaussian graphical models that we
can writeXa =

∑

b∈Sa
Xbθ

a
b + ǫ, whereǫ is independent ofX\a andθab = −ωab/ωaa. Therefore,

the neighborhood of a nodea, Sa, is equal to the set of non-zero coefficients ofθa. This relationship
was used in [10] to estimate the coefficientsθa using the Lasso.

In this paper, we build on the neighbourhood selection procedure to estimate the changing graph
structure in model (1). We useSj

a to denote the neighborhood of the nodea on the blockBj and
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N j
a to denote nodes not in the neighborhood of the nodea on thej-th block,N j

a = V \Sj
a. The set

Sa is used to denote the union of all neighborhoods of the nodea, Sa = ∪j∈[B]S
j
a. Consider the

following estimation procedure

β̂a = argmin
β∈Rp−1×n

∑

i∈[n]

(

xi
a −

∑

b∈\a
xi
bβb,i

)2

︸ ︷︷ ︸

L(β)

+penλ1,λ2
(β) (2)

where the penalty is defined as

penλ1,λ2
(β) := 2λ1

n∑

i=2

||β·,i − β·,i−1||2 + 2λ2

n∑

i=1

∑

b∈\a
|βb,i|. (3)

The penalty term is constructed from two terms. The first termensures that the solution is going
to be piecewise constant for some partition of[n] (possibly a trivial one). The first term can be
seen as a sparsity inducing term in the temporal domain, since it penalizes the difference between
the coefficientsβ·,i andβ·,i+1 at successive time-points. The second term results in estimates that
have many zero coefficients at each block of the partition. The estimated set of partition boundaries
T̂ = {T̂0 = 1} ∪ {T̂j ∈ [2 : n] : β̂a

·,T̂j
6= β̂a

·,T̂j−1
} ∪ {T̂B̂ = n + 1} contains indices of

points at which a change is estimated, withB̂ being an estimate of the number of blocksB. The
estimated number of the block̂B is controlled through the user defined penalty parameterλ1, while
the sparsity of the neighborhood is controlled through the penalty parameterλ2.

Based on the estimated set of partition boundariesT̂ , we can define the neighborhood estimate of
the nodea for each estimated block. Let̂θa,j = β̂a

·,i, ∀i ∈ [T̂j−1 : T̂j ] be the estimated coefficient

vector for the blockB̂j = [T̂j−1 : T̂j ]. Using the estimated vector̂θa,j , we define the neighborhood
estimate of the nodea for the blockB̂j asŜj

a := S(θ̂a,j) := {b ∈ \a : θ̂a,jb 6= 0}. Solving (2)
for each nodea ∈ V gives us a neighborhood estimate for each node. Combining the neighborhood
estimates we can obtain an estimate of the graph structure for each pointi ∈ [n].

The choice of the penalty term is motivated by the work on penalization using total variation [15,
9], which results in a piece-wise constant approximation ofan unknown regression function. The
fusion-penalty has also been applied in the context of multivariate linear regression [17], where
the coefficients that are spatially close, are also biased tohave similar values. As a result, nearby
coefficients are fused to the same estimated value. Instead of penalizing theℓ1 norm on the difference
between coefficients, we use theℓ2 norm in order to enforce that all the changes occur at the same
point.

2.1 Numerical procedure

Finding a minimizerβ̂a of (2) can be a computationally challenging task for an off-the-shelf convex
optimization procedure. We propose two use an accelerated gradient method with a smoothing
technique [11], which converges inO(1/ǫ) iterations whereǫ is the desired accuracy.

We start by defining a smooth approximation of the fused penalty term. LetH ∈ R
n×n−1 be a

matrix with elements−1 wheni = j, 1 wheni = j +1 and 0 otherwise. With the matrixH we can
define the following smooth approximation to the fused penalty

Ψµ(β) := max
U∈Q

〈〈U, 2λ1βH〉〉 − µ||U||2F

whereQ := {U ∈ R
p−1×n−1 : ||U·,i||2 ≤ 1, ∀i ∈ [n − 1]} andµ > 0 is the smoothness

parameter. We have thatΨµ(β) ≤ Ψ0(β) ≤ Ψµ(β) + µ(n− 1). Setting the smoothness parameter
to µ = ǫ

2(n−1) , the correct rate of convergence is ensured. From [11], we have thatΨµ(β) is
continuously differentiable and convex, with the gradient

∇Ψµ(β) = 2λ1ΠQ(
λβH

µ
)H′ (4)

that is Lipschitz continuous. HereΠQ(·) is the projection operator onto the setQ.
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Algorithm: Accelerated Gradient Method for Equation (2)

Input: X ∈ R
n×p, β0 ∈ R

p−1×n, γ > 1, L > 0, µ = ǫ
2(n−1)

Output: β̂a

Initialize k := 1, αk := 1, zk := β0

repeat
while F (pL(zk)) > QL(pL(zk), zk) do

L := γL

βk := pL(zk) (using Eq. (6))

αk+1 := 1+
√
1+4αk

2

zk+1 := βk + αk−1
αk+1

(
βk − βk−1

)

until convergence

β̂a := βk

With the above defined smooth approximation, we focus on minimizing the following objective

min
β∈Rp−1×n

F (β) := min
β∈Rp−1×n

L(β) + Ψµ(β) + 2λ2||β||1.

Following [2], we define the following quadratic approximation of F (β) at a pointβ0

QL(β,β0) := L(β0)+Ψµ(β0)+〈〈β − β0,∇L(β0) +∇Ψ(β0)〉〉+
L

2
||β−β0||2F +2λ2||β||1 (5)

whereL > 0 is the parameter chosen as an upper bounds for the Lipschitz constant of∇L +∇Ψ.
Let pL(β0) be the minimizer ofQL(β,β0), which can be obtained in a closed form, as a result of
the soft-thresholding,

pL(β0) = T

(

β0 −
1

L

(
∇L+∇Ψ

)
(β0),

2λ2

L

)

(6)

whereT (x, λ) = sign(x)max(0, |x| − λ) is the element-wise soft-thresholding operator.

In practice, an upper bound on the Lipschitz constant of∇L+∇Ψ can be expensive to compute, so
the parameterL is going to be determined iteratively. The algorithm is given at the top of the page.
The constantγ is used to increase the estimate of the Lipschitz constantL. From [2] we have that
the algorithm converges inO(1/ǫ) iterations.

3 Theoretical results

This section is going to address the statistical propertiesof the estimation procedure presented in
Section 2. The properties are addressed in a double asymptotic framework where the dimensionality
p = p(n) is allowed to grow with the sample size. For the simplicity ofthe presentation, the
number of blocksB is assumed to be fixed and known in advance1 For the asymptotic framework
to make sense, we assume that there exists a fixed unknown sequence of numbers{τj} that defines
the partition boundaries asTj = ⌊nτj⌋, where⌊a⌋ denotes the largest integer smaller thata. This
assures that as the number of samples grow, the same fractionof samples falls into every partition.
We call{τj} the boundary fractions.

We give sufficient conditions under which the sequence{τj} is consistently estimated. In partic-
ular, we show thatmaxj∈[B] |T̂j − Tj | ≤ nδn with probability tending to 1, where{δn}n is a
non-increasing sequence of positive numbers that tends to zero. With the boundary segments con-
sistently estimated, we further show that under suitable conditions for each nodea ∈ V the correct
neighborhood is selected on all estimated block partitionsthat are sufficiently large.

1We have also a stronger result that does not need this assumption, but will not include it here.
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The proof technique employed in this section is quite involved, so we briefly describe the steps
used. Our analysis is based on careful inspection of the optimality conditions that a solution̂βa of
the optimization problem (2) need to satisfy. The Karush-Kuhn-Tucker (KKT) conditions, which
are sufficient and necessary forβ̂a to be a solution of (2), are given in§3.2. Using the optimality
conditions, we establish the rate of convergence for the partition boundaries. This is done by proof
by contradiction. Suppose that there is a solution with the partition boundaryT̂ that if far fromT .
Then we show that, with high-probability, all such solutions will not satisfy the KKT conditions and
therefore cannot be optimal. This shows that all the solutions to the optimization problem (2) result
in partition boundaries that are “close” to the true partition boundaries, with high-probability. We
can further show that the neighborhood estimates are consistently estimated, under the assumption
that the estimated blocks of the partition have enough samples. Our analysis is going to focus on
one nodea ∈ V and its neighborhood. However, using the union bound over all nodes inV , we will
be able to carry over conclusions to the whole graph. To simplify our notation, when it is clear from
the context, we will omit the superscripta and writeβ̂, θ̂ andS, etc., to denotêβa, θ̂a andSa, etc.

3.1 Assumptions

Before presenting our theoretical results, we give some definitions and assumptions that are going
to be used in this section. Let∆min := minj∈[B] |Tj − Tj−1| denote the minimum length between
change points,ξmin := mina∈V minj∈[B−1] ||θa,j+1 − θa,j ||2 denote the minimum jump size and

θmin = mina∈V minj∈[B] minb∈Sj |θa,jb | the minimum coefficient size. Throughout the section, we
assume that the following holds.

A1 There exist two constantsφmin > 0 andφmax < ∞ such thatφmin = min {Λmin(Σ
j
SaSa

) : j ∈
[B], a ∈ V } andφmax = max {Λmax(Σ

j
SaSa

) : j ∈ [B], a ∈ V }.

A2 Variables are scaled so thatσj
aa = 1 for all j ∈ [B] and alla ∈ V .

The assumptionA1 is commonly used to ensure that the model is identifiable. If the population
covariance matrix is ill-conditioned, the question of the correct model identification if not well
defined, as a neighborhood of a node may not be uniquely defined. The assumptionA2 is assumed
for the simplicity of the presentation. The common variancecan be obtained through scaling.

A3 There exists a constantM > 0 such thatmaxa∈V maxj,k∈[B] ‖θa,k − θa,j‖2 ≤ M .

The assumptionA3 states that the difference between coefficients on two different blocks,||θa,k −
θa,j ||2, is bounded for allj, k ∈ [B]. This assumption is simply satisfied if the coefficientsθa were
bounded in theℓ2 norm.

A4 There exist a constantα ∈ (1/2, 1], such that the following holds

sup
Σ̃

|||Σ̃NaSa
(Σ̃SaSa

)−1|||∞ ≤ 1− α, ∀a ∈ V,

where the supremum is taken over{∑j γjΣ
j : γj ≥ 0,

∑

j γj = 1}.

The assumptionA4 states that the variables in the neighborhood of the nodea, Sa, are not too
correlated with the variables in the setNa. We need this assumption in order to prove that even
when the partition boundaries are not correctly estimated,the neighborhood estimated on a block
of the estimated partition does not include variables from the setNa. This assumption is more
restrictive than the commonly assumed irrepresentable condition (see for example [21, 18]), which
is sufficient and necessary for the correct identification ofthe neighborhood on the blockBj if the
partition boundaries were known.

A5 There exists a small constantδ > 0, so that for allδ1, δ2 ∈ [0, δ) the following holds

|||Σ̃j

N
j
aS

j
a

(Σ̃j

S
j
aS

j
a

)−1|||∞ ≤ 1− α, ∀j ∈ [B], ∀a ∈ V,

whereΣ̃j = (1 + δ1 + δ2)
−1(Σj + δ1Σ

j−1 + δ2Σ
j+1) andα is defined inA4.
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The conditionA5 is again related to the correct estimation of the neighborhood on the blockBj .
The assumption is needed in order to show that even when the partition boundaries are not exactly
recovered, the correct neighborhood can be estimated on theblockBj .

A6 There exists a constantδp > 0 such that the number of variablesp = pn satisfypn = O(nδp).
The maximum degree of a node is assumed to be constant,s = O(1). The minimum
coefficient sizeθmin satisfiesθmin = Ω(

√

log n/n).

The assumption implies that our procedure can be used to estimate the graph structure in a high-
dimensional setting withp ≫ n. The bound on the degree of nodes is imposed for the simplicity
of the presentation and can be relaxed at the expense of more complex proofs. Our arguments can
be modified to allow for the maximum degree of a nodes to grow with the sample size. The lower
bound on the minimum coefficient sizeθmin is necessary, since if a partial correlation coefficient is
too close to zero the edge in the graph would not be detectable.

A7 The sequence of partition boundaries{Tj} satisfyTj = ⌊nτj⌋, where{τj} is a fixed, unknown
sequence of the boundary fractions belonging to[0, 1].

The assumption is needed for the asymptotic setting. Asn → ∞, there will be enough sample
points in each of the blocks to estimate the neighborhood of nodes correctly.

3.2 Characterization of solutions

Although the optimization problem in (2) is convex, there may be multiple solutions to it, since it is
not strictly convex. Using Karush-Kuhn-Tucker conditions, we can characterize any solution of (2).

Lemma 1. A matrix β̂ is optimal for the optimization problem(2) if and only if there exist a
collection of subgradient vectors{ẑi}i∈[2:n] and {ŷi}i∈[n], with ẑi ∈ ∂||β̂·,i − β̂·,i−1||2 and

ŷi ∈ ∂||β̂·,i||1, that satisfies

n∑

i=k

xi
\a〈xi

\a, β̂·,i − β·,i〉 −
n∑

i=k

xi
\aǫ

i + λ1ẑ
k + λ2

n∑

i=k

ŷi = 0 (7)

for all k ∈ [n] and ẑ1 = ẑn+1 = 0.

While there may be multiple solutions to the problem (2), under some conditions, we can character-
ize the sparsity pattern of any solution that has specified partition boundarieŝT .

Lemma 2. Let β̂ be a solution to(2), with T̂ being an associated estimate of the partition bound-
aries. Suppose that the subgradient vectors satisfy|ŷib| < 1 for all b 6∈ S(β̂·,i), then any other
solutionβ̃ with the partition boundarieŝT satisfyβ̃b,i = 0 for all b 6∈ S(β̂·,i).

The above Lemma states sufficient conditions under which thesparsity patter of a solution with
the partition boundarŷT is unique. Note, however, that there may other solutions to (2) that have
different partition boundaries.

3.3 Some results

Suppose that we know that there is a solution to the optimization problem (2) with the partition
boundaryT̂ . Then that solution is also a minimizer of the following objective

min
θ1,...,θB̂

∑

j∈B̂

||XB̂j

a −XB̂j

\aθ
j ||22 + 2λ1

B̂∑

j=2

||θj − θj−1||2 + 2λ1

B̂∑

j=1

|B̂j |||θj ||1. (8)

Note that the problem (8) does not give a practical way of solving (2), but will help us to reason about
the solutions of (2). Let{rn} is an increasing sequence, to be characterized below. Our goal is to
characterize the neighborhood of the nodea whenever the estimated block of the partition contains
more samples thanrn. We have the following proposition.
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Figure 1: The figure illustrates where we expect to estimate aneighborhood of a node consistently.
The blue region corresponds to the overlap between the true block (bounded by gray lines) and the
estimated block (bounded by black lines). If the blue regionis much larger than the orange regions,
the additional bias introduced from the samples from the orange region will not considerably affect
the estimation of the neighborhood of a node on the blue region. However, we cannot hope to
consistently estimate the neighborhood of a node on the orange region.

Proposition 3. Let {β̂·,i}i∈[n] be any solution of(2) and let T̂ be the associated estimate of the
block partition. Assume thatA1-A4 and A6-A7 hold. Let{rn}n≥1 be an increasing sequence of
numbers that satisfy(rnλ2)

−1λ1 → 0 andrnλ2
2 → ∞ asn → ∞. Then for all blocksB̂k defined

by the partitionT̂ that satisfy|B̂k| ≥ rn we have

P[S(θ̂k) ⊆ S] → 1.

The above statement holds uniformly for all solutions{β̂·,i}i∈[n] of (2).

Suppose that the penalty parameters satisfy

λ1 ≍ λ2 = O(
√

log n/n), (9)

then, using proposition 3, on the blocks that are of size at leastrn = Ω(n/ log n), we have that the
estimated neighborhood is contained inS. We will use this fact to prove the following result on
the convergence rate of the estimated boundaries ofT̂ . First, under the assumption that the correct
number of blocks is known.

Theorem 4. Let{xi}i∈[n] be a sequence of observation according to the model in(1). Assume that
the conditions of proposition 3 are satisfied and that the penalty parametersλ1 andλ2 satisfy(9).
Let {δn}n≥1 be a non-increasing positive sequence that converges to zero asn → ∞ and satisfies
∆min ≥ nδn for all n ≥ 1. Furthermore, suppose that(nδnξmin)

−1λ1 → 0, ξ−1
min

√
sλ2 → 0 and

(ξmin

√
nδn)

−1
√
s log n → 0, then if|T̂ | = B + 1 the following holds

P[max
j∈[B]

|Tj − T̂j | ≤ nδn] → 1.

Suppose thatδn = (log n)γ/n for someγ > 1 andξmin = Ω(
√

log n/(log n)γ), the conditions of
theorem 5 are satisfied, and we have that the sequence of boundary fractions{τj} is consistently esti-
mated. Since the boundary fractions are consistently estimated, we will see below that the estimated
neighborhoodS(θ̂j) on the blockB̂j consistently recovers the true neighborhoodSj .

Figure 1 illustrates the idea of correct neighborhood estimation on sufficiently large blocks.

Theorem 5. Let {xi}i∈[n] be a sequence of observation according to the model in(1). Assume
that the conditions of theorem 4 are satisfied. In addition, suppose thatA5 also holds. Then, if
|T̂ | = B + 1, it holds that

P[Sk = S(θ̂k)] → 1, ∀k ∈ [B].

Under the assumptions of theorem 4 each estimated block is ofsizeO(n). As a result, there are
enough samples in each block to consistently estimate the underlying neighborhood structure. Ob-
serve that the neighborhood is consistently estimated at each i ∈ B̂j ∩ Bj for all j ∈ [B] and the
error is made only on the small fraction of samples, wheni 6∈ B̂j ∩ Bj , which is of orderO(nδn).
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4 Discussion

We have addressed the problem of covariance selection when the underlying probability distribution
changes abruptly at some points in time. Using a penalized neighborhood selection approach with
the fused-type penalty, we are able to consistently estimate times when the distribution changes.
Furthermore, our procedure estimates the network structure consistently whenever there is a large
overlap between the estimated blocks and the unknown true blocks of samples coming from the
same distribution. Applications of the proposed approach range from cognitive neuroscience, where
the problem is to identify changing associations between different parts of a brain when presented
with different stimuli, to system biology studies, where the task is to identify changing patterns of
interactions between genes involved in different cellularprocesses.
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